リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spectral and scattering theory of one-dimensional coupled photonic crystals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spectral and scattering theory of one-dimensional coupled photonic crystals

De Nittis, G. Moscolari, M. Richard, Serge Tiedra de Aldecoa, R. 名古屋大学

2021.09

概要

We study the spectral and scattering theory of light transmission in a system consisting of two asymptotically periodic waveguides, also known as one-dimensional photonic crystals, coupled by a junction. Using analyticity techniques and commutator methods in a two-Hilbert spaces setting, we determine the nature of the spectrum and prove the existence and completeness of the wave operators of the system.

この論文で使われている画像

参考文献

[1] W. O. Amrein, A. Boutet de Monvel, and V. Georgescu, C0-groups, commutator methods and spectral theory of N-body Hamiltonians, volume 135 of Progress in Mathematics, Birkhauser Verlag, Basel, 1996.

[2] R. Alicki, Dirac equations for MHD waves: Hamiltonian spectra and supersymmetry, J. Phys. A: Math. Gen. 25: 6075{6085, 1992.

[3] C. E. Bradley, Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part I. Theory, J. Acoust. Soc. Am. 96(3): 1844{1853, 1994.

[4] G. L. Brown, The Inverse Reection Problem for Electric Waves on Non-Uniform Transmission Lines, Thesis, Univ. of Wisconsin 1965.

[5] M. S. Birman and M. Z. Solomyak, L2-Theory of the Maxwell operator in arbitrary domains, Uspekhi Mat. Nauk 42(6): 61{76, 1987.

[6] O. Bourget, On embedded bound states of unitary operators and their regularity, Bulletin des Sciences Math ematiques 137(1): 1{29, 2013.

[7] W. Craig, M. Gazeau, C. Lacave, and C. Sulem, Bloch Theory and Spectral Gaps for Linearized Water Waves, SIAM J. Math. Anal. 50(5): 5477{5501, 2018.

[8] G. De Nittis and M. Lein, E ective Light Dynamics in Perturbed Photonic Crystals, Comm. Math. Phys. 332: 221{260, 2014.

[9] G. De Nittis and M. Lein, Derivation of Ray Optics Equations in Photonic Crystals via a Semiclassical Limit, Ann. Henri Poincar e 18: 1789{1831, 2017.

[10] G. De Nittis and M. Lein, The Schrodinger formalism of electromagnetism and other classical waves: How to make quantum-wave analogies rigorous, Ann. Phys. 396: 579{617, 2018.

[11] A. Figotin and A. Klein, Localization of Classical Waves II: Electromagnetic Waves, Commun. Math. Phys. 184: 411{441, 1997.

[12] C. G erard and F. Nier, The Mourre Theory for Analytically Fibered Operators, J. Func. Anal. 152(1): 202{219, 1998.

[13] P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory With Applications to Schrodinger Operators, volume 113 of Applied Mathematical Sciences, Springer, 1996.

[14] J. D. Jackson, Classical Electrodynamics (3rd Edition), John Wiley & Sons, New York, 1999.

[15] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (2nd Edition), Princeton University Press, Princeton, 2008.

[16] T. Kato, Scattering theory with two Hilbert spaces, J. Func. Anal. 1: 342{369, 1967.

[17] T. Kato, Perturbation theory for linear operators, Reprint of the 1980 edition, Classics in Mathematics. Springer-Verlag, Berlin, 1995.

[18] T. Komatsu, H. Morioka, E. Segawa, Generalized eigenfunctions for quantum walks via path counting approach, to appear in Rev. Math. Phys.

[19] P. A. Kuchment, Floquet Theory for Partial Dierential Equations, Birkhauser, Basel, 1993.

[20] P. A. Kuchment, The Mathematics of Photonic Crystals, in Mathematical Modeling in Optical Science (Gang Bao, Lawrence Cowsar, Wen Masters Eds.), vol. 22, SIAM, pp. 207{272, 2001.

[21] I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Boston, 1994.

[22] M. Maeda, A. Suzuki, K. Wada, Absence of singular continuous spectra and embedded eigenvalues for one dimensional quantum walks with general long range coins, https://arxiv.org/abs/2007. 12832.

[23] H. Morioka, E. Segawa, Detection of edge defects by embedded eigenvalues of quantum walks, Quantum Inf. Process 18(9): Paper No. 283, 18 pp, 2019.

[24] J. R. Munkres, Topology, Second edition, Prentice Hall, Upper Saddle River, 2000.

[25] S. T. Peng, T. Tamir, and H. L. Bertoni, Theory of periodic dielectric waveguides, IEEE Trans. Microwave Theory Tech. MTT-23: 123{133, 1975.

[26] M. Reed and B. Simon, Methods of modern mathematical physics II, Fourier analysis, self-adjointness, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London, 1975.

[27] M. Reed and B. Simon, The scattering of classical waves from inhomogeneous media, J. Funct. Anal. 155: 163{180, 1977.

[28] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, Harcourt Brace Jovanovich Publishers, New York, 1978.

[29] M. Reed and B. Simon, Methods of modern mathematical physics I, Functional analysis, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London, 1980.

[30] S. Richard, A. Suzuki, and R. Tiedra de Aldecoa, Quantum walks with an anisotropic coin I: spectral theory, Lett. Math. Phys. 108(2): 331{357, 2018.

[31] S. Richard, A. Suzuki, and R. Tiedra de Aldecoa, Quantum walks with an anisotropic coin II: scattering theory, Lett. Math. Phys. 109(1): 61{88, 2019.

[32] S. Richard and R. Tiedra de Aldecoa, A few results on Mourre theory in a two-Hilbert spaces setting, Anal. Math. Phys. 3(2): 183{200, 2013.

[33] J. Sahbani, The conjugate operator method for locally regular Hamiltonians, J. Operator Theory 38(2): 297|322, 1997.

[34] B. Simon, Trace Ideals and Their Applications, Mathematical Surveys and Monographs 120, AMS 2005.

[35] T. Suslina, Absolute continuity of the spectrum of periodic operators of mathematical physics, Journ ees Equations aux d eriv ees partielles : 1{13, 2000.

[36] A. Suzuki, Asymptotic velocity of a position-dependent quantum walk, Quantum Inf. Process. 15: 103{119, 2016.

[37] J. R. Schulenberger and C. H. Wilcox, Completeness of the wave operators for perturbations of uniformly propagative systems, J. Funct. Anal. 7: 447{474, 1971.

[38] L. E. Thomas, Time dependent approach to scattering from impurities in a crystal, Comm. Math. Phys. 33: 335{343, 1973.

[39] E. P. Wigner, On Unitary Representations of the Inhomogeneous Lorentz Group, Ann. of Math. 40(1): 149{204, 1939.

[40] C. H. Wilcox, Electric Wave Propagation on Non-Uniform Coupled Transmission Lines, SIAM Rev. 6(2): 148{165, 1964.

[41] C. H. Wilcox, Wave operators and asymptotic solutions of wave propagation problems of classical physics, Arch. Ration. Mech. Anal. 22: 37{78, 1966.

[42] D. R. Yafaev, Mathematical scattering theory, volume 105 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1992.

[43] D. R. Yafaev, Trace-class approach in scattering problems for perturbations of media, Advances in operator algebras and mathematical physics 275{285, Theta Ser. Adv. Math. 5, Theta, Bucharest, 2005.

[44] F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros and S. LeonSaval, Foundations of Photonic Crystal Fibres (2nd Edition), Imperial College Press, 2012.

参考文献をもっと見る