リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Flexible Finite-Fault Inversion Method to Estimate Fault Geometry from Teleseismic Data」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Flexible Finite-Fault Inversion Method to Estimate Fault Geometry from Teleseismic Data

清水, 宏亮 筑波大学 DOI:10.15068/0002005714

2022.11.28

概要

Finite-fault inversion of seismic waveforms has been used as a common tool to understand rupture evolution during an earthquake since 1980s. Despite the development of dense and high-quality seismic networks, especially since the 2000s, difference of source models for the same earthquake has been pointed out, which may come from modeling errors due to inappro- priate assumption of source model. In particular, modeling errors of fault geometry can largely distort solutions and bias understanding of source processes. In recent years, there have been studies introducing modeling errors of fault geometry into seismic source inversion. However, fault geometry is crucial information to understand regional tectonics and earthquake dynamics, and seismic waveforms generally contain information on fault geometry as well as rupture evo- lution. This dissertation aimed at development of inversion methods simultaneously to estimate rupture evolution and fault geometry from teleseismic P waveforms. In the first step, we imple- mented an inversion method extracting information on fault geometry as well as rupture evolu- tion, named potency density tensor inversion, by representing fault slip on the assumed simple fault plane by the superposition of five basis double-couple components of potency density tensor, instead of two double-couple components compatible with the fault direction. Because teleseismic P-wave Green’s function is quite sensitive to shear-slip direction while relatively in- sensitive to shear-slip location, the inversion method enables us to infer spatiotemporal potency density tensor distribution without detailed assumptions about fault geometry. In the next step, making use of the developed potency density tensor inversion method, a further advanced in- version method to construct fault geometry was implemented as a non-linear inversion process, first assuming a flat fault surface and then updating the fault geometry by using the information on slip direction. The developed inversion methods were evaluated by numerical simulations and applications to teleseismic P waveforms of the MW 7.7 2013 Balochistan, Pakistan and the MW 7.9 2015 Gorkha, Nepal, earthquakes, which occurred along geometrically complex fault systems. The obtained spatiotemporal potency density tensor distribution of the Balochistan earthquake suggests that the rupture propagated unilaterally towards southwest from the epi- center, and its constructed fault shows a curved strike-slip fault convex to southeast, which is consistent with the observed surface ruptures. The constructed fault of the Gorkha earthquake is a reverse fault with a ramp-flat-ramp structure, which is also consistent with the fault geometry derived from geodetic and geological data. These results exhibit that the developed inversion methods work well for estimating fault geometry of an earthquake and make great contribution to the advancement of detailed understanding of earthquake source processes and tectonics.

Keywords: Finite-Fault Inversion, Fault Geometry, Nonlinear Inversion, The 2013 Balochis- tan Pakistan Earthquake, The 2015 Gorkha Nepal Earthquake

参考文献

Akaike, H., 1980. Likelihood and the Bayes procedure. Trabajos de Estadistica Y de Investiga- cion Operativa, 31(1), 143–166. doi:10.1007/BF02888350.

Aki, K., 1979. Characterization of barriers on an earthquake fault. Journal of Geophysical Research: Solid Earth, 84(B11), 6140–6148. doi:10.1029/JB084iB11p06140.

Aki, K. & Richards, P. G., 2002. Quantitative Seismology.

Ampuero, J. P. & Dahlen, F. A., 2005. Ambiguity of the moment tensor. Bulletin of the Seismological Society of America, 95(2), 390–400. doi:10.1785/0120040103.

Ara´nguiz, R., Esteban, M., Takagi, H., Mikami, T., Takabatake, T., Go´mez, M., Gonza´lez, J., Shibayama, T., Okuwaki, R., Yagi, Y., Shimizu, K., Achiari, H., Stolle, J., Robertson, I., Ohira, K., Nakamura, R., Nishida, Y., Krautwald, C., Goseberg, N., & Nistor, I., 2020. The 2018 Sulawesi tsunami in Palu city as a result of several landslides and coseismic tsunamis. Coastal Engineering Journal, 62(4), 445–459. doi:10.1080/21664250.2020.1780719.

Asano, K. & Iwata, T. Kinematic Source Inversion using Strong Motion Data Considering Three-Dimensional Fault Geometry. In AGU Fall Meeting Abstracts, volume 2009, pages S31A–1688, 2009.

Avouac, J. P., Ayoub, F., Wei, S., Ampuero, J. P., Meng, L., Leprince, S., Jolivet, R., Duputel, Z., & Helmberger, D., 2014. The 2013, Mw 7.7 Balochistan earthquake, energetic strike- slip reactivation of a thrust fault. Earth and Planetary Science Letters, 391, 128–134. doi:10.1016/j.epsl.2014.01.036.

Avouac, J.-P., Meng, L., Wei, S., Wang, T., & Ampuero, J.-P., 2015. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 8 (9), 708–711. doi:10.1038/ngeo2518.

Backus, G. & Mulcahy, M., 1976. Moment Tensors and other Phenomenological Descriptions of Seismic Sources̶I. Continuous Displacements. Geophysical Journal International, 46 (2), 341–361.

Barnhart, W. D., Hayes, G. P., Briggs, R. W., Gold, R. D., & Bilham, R., 2014. Ball-and-socket tectonic rotation during the 2013 Mw7.7 Balochistan earthquake. Earth and Planetary Science Letters, 403, 210–216. doi:10.1016/j.epsl.2014.07.001.

Beresnev, I. A., 2003. Uncertainties in finite-fault slip inversions: To what extent to believe? (A critical review). Bulletin of the Seismological Society of America, 93(6), 2445–2458. doi:10.1785/0120020225.

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J., 2010. Ob- sPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. doi:10.1785/gssrl.81.3.530.

Bodin, T., Sambridge, M., & Gallagher, K., 2009. A self-parametrizing partition model ap- proach to tomographic inverse problems. Inverse Problems, 25(5). doi:10.1088/0266- 5611/25/5/055009.

Dal Zilio, L., van Dinther, Y., Gerya, T., & Avouac, J.-P., 2019. Bimodal seismicity in the Himalaya controlled by fault friction and geometry. Nature Communications, 10(1), 48. doi:10.1038/s41467-018-07874-8.

Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). Technical report, 2011. URL http://pubs.er.usgs.gov/publication/ ofr20111073.

DeMets, C., Gordon, R. G., & Argus, D. F., 2010. Geologically current plate motions. Geo- physical Journal International, 181(1), 1–80. doi:10.1111/j.1365-246X.2009.04491.x.

Du, Y., Aydin, A., & Segall, P., 1992. Comparison of various inversion techniques as applied to the determination of a geophysical deformation model for the 1983 Borah Peak earthquake. Bulletin of the Seismological Society of America, 82(4), 1840–1866.

Duputel, Z. & Rivera, L., 2017. Long-period analysis of the 2016 Kaikoura earthquake. Physics of the Earth and Planetary Interiors, 265, 62–66. doi:10.1016/j.pepi.2017.02.004.

Duputel, Z., Kanamori, H., Tsai, V. C., Rivera, L., Meng, L., Ampuero, J. P., & Stock, J. M., 2012a. The 2012 Sumatra great earthquake sequence. Earth and Planetary Science Letters, 351-352, 247–257. doi:10.1016/j.epsl.2012.07.017.

Duputel, Z., Rivera, L., Kanamori, H., & Hayes, G., 2012b. W phase source inversion for moderate to large earthquakes (1990-2010). Geophysical Journal International, 189(2), 1125–1147. doi:10.1111/j.1365-246X.2012.05419.x.

Duputel, Z., Agram, P. S., Simons, M., Minson, S. E., & Beck, J. L., 2014. Accounting for prediction uncertainty when inferring subsurface fault slip. Geophysical Journal Interna- tional, 197(1), 464–482. doi:10.1093/gji/ggt517.

Duputel, Z., Vergne, J., Rivera, L., Wittlinger, G., Farra, V., & Hete´nyi, G., 2016. The 2015 Gorkha earthquake: A large event illuminating the Main Himalayan Thrust fault. Geophys- ical Research Letters, 43(6), 2517–2525. doi:10.1002/2016GL068083.

Dutta, R., Jo´nsson, S., & Vasyura-Bathke, H., 2021. Simultaneous Bayesian Estimation of Non-Planar Fault Geometry and Spatially-Variable Slip. Journal of Geophysical Research: Solid Earth, 126(7). doi:10.1029/2020JB020441.

Dziewonski, A. M., Chou, T., & Woodhouse, J., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. doi:10.1029/JB086iB04p02825.

Ekstro¨m, G., Nettles, M., & Dziewon´ski, A. M., 2012. The global CMT project 2004 ‒ 2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary In- teriors, 200-201, 1–9. doi:10.1016/j.pepi.2012.04.002.

Elliott, J. R., Jolivet, R., Gonzalez, P. J., Avouac, J. P., Hollingsworth, J., Searle, M. P., & Stevens, V. L., 2016. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nature Geoscience, 9(2), 174–180. doi:10.1038/ngeo2623.

Fielding, E. J., Sladen, A., Li, Z., Avouac, J. P., Bu¨rgmann, R., & Ryder, I., 2013. Kinematic fault slip evolution source models of the 2008 M7.9 wenchuan earthquake in china from SAR interferometry, GPS and teleseismic analysis and implications for longmen shan tec- tonics. Geophysical Journal International, 194(2), 1138–1166. doi:10.1093/gji/ggt155.

Freymueller, J., King, N. E., & Segall, P., 1994. The Coseismic Slip Distribution of the Landers Earthquake. Bulletin of the Seismological Society of America, 84(3), 646–659.

Fukahata, Y. & Wright, T. J., 2008. A non-linear geodetic data inversion using ABIC for slip distribution on a fault with an unknown dip angle. Geophysical Journal International, 173 (2), 353–364. doi:10.1111/j.1365-246X.2007.03713.x.

Fukahata, Y., Yagi, Y., & Matsu’ura, M., 2003. Waveform inversion for seismic source processes using ABIC with two sorts of prior constraints: Comparison be- tween proper and improper formulations. Geophysical Research Letters, 30(6), 1–4. doi:10.1029/2002GL016293.

Fukahata, Y., Nishitani, A., & Matsu’ura, M., 2004. Geodetic data inversion using ABIC to estimate slip history during one earthquake cycle with viscoelastic slip-response functions. Geophysical Journal International, 156(1), 140–153. doi:10.1111/j.1365- 246X.2004.02122.x.

Fukuda, J. & Johnson, K. M., 2008. A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing. Bulletin of the Seismological Society of America, 98(3), 1128–1146. doi:10.1785/0120070194.

Haghipour, N., Burg, J. P., Kober, F., Zeilinger, G., Ivy-Ochs, S., Kubik, P. W., & Faridi, M., 2012. Rate of crustal shortening and non-Coulomb behaviour of an active accretionary wedge: The folded fluvial terraces in Makran (SE, Iran). Earth and Planetary Science Letters, 355-356, 187–198. doi:10.1016/j.epsl.2012.09.001.

Hartzell, S. H. & Heaton, T. H., 1983. Inversion of strong ground motion and teleseismic wave- form data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73(6), 1553–1583.

Hayes, G. P., 2017. The finite, kinematic rupture properties of great-sized earth- quakes since 1990. Earth and Planetary Science Letters, 468(June 2016), 94–100. doi:10.1016/j.epsl.2017.04.003.

Hicks, S. P., Okuwaki, R., Steinberg, A., Rychert, C. A., Harmon, N., Abercrombie, R. E., Bogiatzis, P., Schlaphorst, D., Zahradnik, J., Kendall, J.-M., Yagi, Y., Shimizu, K., & Sudhaus, H., 2020. Back-propagating supershear rupture in the 2016 Mw 7.1 Romanche transform fault earthquake. Nature Geoscience, 13(9), 647–653. doi:10.1038/s41561-020- 0619-9.

Hu, Y., Yagi, Y., Okuwaki, R., & Shimizu, K., 2021. Back-propagating rupture evolution within a curved slab during the 2019 Mw 8.0 Peru intraslab earthquake. Geophysical Journal International, 227(3), 1602–1611. doi:10.1093/gji/ggab303.

Hubbard, J., Almeida, R., Foster, A., Sapkota, S. N., Bu¨rgi, P., & Tapponnier, P., 2016. Struc- tural segmentation controlled the 2015 MW 7.8 Gorkha earthquake rupture in Nepal. Ge- ology, 44(8), 639–642. doi:10.1130/G38077.1.

Hunter, J. D., 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engi- neering, 9(3), 90–95. doi:10.1109/MCSE.2007.55.

Ide, S., Takeo, M., & Yoshida, Y., 1996. Source Process of the 1995 Kobe Earthquake: De- termination of SpatioTemporal Slip Distribution by Bayesian Modeling. Bulletin of the Seismological Society of America, 86(3), 547–566.

Ji, C., Wald, D. J., & Helmberger, D. V., 2002. Source description of the 1999 Hector Mine, Cal- ifornia, earthquake, part I: Wavelet domain inversion theory and resolution analysis. Bul- letin of the Seismological Society of America, 92(4), 1192–1207. doi:10.1785/0120000916.

Jolivet, R., Duputel, Z., Riel, B., Simons, M., Rivera, L., Minson, S. E., Zhang, H., Aivazis, M. A., Ayoub, F., Leprince, S., Samsonov, S., Motagh, M., & Fielding, E. J., 2014. The 2013 Mw7.7 Balochistan earthquake: Seismic potential of an accretionary wedge. Bulletin of the Seismological Society of America, 104(2), 1020–1030. doi:10.1785/0120130313.

Kikuchi, M. & Kanamori, H., 1991. Inversion of Complex Body Waves-III. Bulletin of the Seismological Society of America, 81(6), 2335–2350.

Koketsu, K., Hikima, K., Miyazaki, S., & Ide, S., 2004. Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachi-oki, Hokkaido, earthquake. Earth, Planets and Space, 56(3), 329–334. doi:10.1186/BF03353060.

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J., 2015. ObsPy: a bridge for seismology into the scientific Python ecosystem. Computa- tional Science & Discovery, 8(1), 14003. doi:10.1088/1749-4699/8/1/014003.

Laske, G., Masters, G., Ma, Z., & Pasyanos, M., 2013. Update on CRUST1.0—A 1-degree global model of Earth’s crust. EGU General Assembly 2013, 15, 2658.

Mai, P. M., Spudich, P., & Boatwright, J., 2005. Hypocenter Locations in Finite-Source Rupture Models. Bulletin of the Seismological Society of America, 95(3), 965–980. doi:10.1785/0120040111.

Mai, P. M., Schorlemmer, D., Page, M., Ampuero, J., Asano, K., Causse, M., Custodio, S., Fan, W., Festa, G., Galis, M., Gallovic, F., Imperatori, W., Ka¨ser, M., Malytskyy, D., Okuwaki, R., Pollitz, F., Passone, L., Razafindrakoto, H. N. T., Sekiguchi, H., Song, S. G., Somala, S. N., Thingbaijam, K. K. S., Twardzik, C., van Driel, M., Vyas, J. C., Wang, R., Yagi, Y., & Zielke, O., 2016. The Earthquake ‐ Source Inversion Validation (SIV) Project. Seismological Research Letters, 87(3), 690–708. doi:10.1785/0220150231.

Megies, T., Beyreuther, M., Barsch, R., Krischer, L., & Wassermann, J., 2011. ObsPy ‒ What can it do for data centers and observatories? Annals of Geophysics, 54(1), 47–58.

Meier, M.-A., Ampuero, J. P., & Heaton, T. H., 2017. The hidden simplic- ity of subduction megathrust earthquakes. Science, 357(6357), 1277 LP – 1281. doi:10.1126/science.aan5643.

Minson, S. E., Simons, M., & Beck, J. L., 2013. Bayesian inversion for finite fault earthquake source models I-theory and algorithm. Geophysical Journal International, 194(3), 1701– 1726. doi:10.1093/gji/ggt180.

Nocquet, J. M., 2018. Stochastic static fault slip inversion from geodetic data with non- negativity and bound constraints. Geophysical Journal International, 214(1), 366–385. doi:10.1093/gji/ggy146.

Okuwaki, R. & Yagi, Y., 2017. Rupture Process During the Mw 8.1 2017 Chiapas Mexico Earthquake: Shallow Intraplate Normal Faulting by Slab Bending. Geophysical Research Letters, 44(23), 11,816–11,823. doi:10.1002/2017GL075956.

Okuwaki, R. & Yagi, Y., 2018. Role of geometric barriers in irregular-rupture evolution during the 2008 Wenchuan earthquake. Geophysical Journal International, 212(3), 1657–1664. doi:10.1093/gji/ggx502.

Okuwaki, R., Kasahara, A., Yagi, Y., Hirano, S., & Fukahata, Y., 2019. Backprojection to image slip. Geophysical Journal International, 216, 1529–1537. doi:10.1093/gji/ggy505.

Okuwaki, R., Hirano, S., Yagi, Y., & Shimizu, K., 2020. Inchworm-like source evolution through a geometrically complex fault fueled persistent supershear rupture during the 2018 Palu Indonesia earthquake. Earth and Planetary Science Letters, 547, 116449. doi:10.1016/j.epsl.2020.116449.

Olson, A. H. & Apsel, R. J., 1982. Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bulletin of the Seismological Society of America, 72(6), 1969–2001.

Qiu, Q., Hill, E. M., Barbot, S., Hubbard, J., Feng, W., Lindsey, E. O., Feng, L., Dai, K., Sam- sonov, S. V., & Tapponnier, P., 2016. The mechanism of partial rupture of a locked megath- rust: The role of fault morphology. Geology, 44(10), 875–878. doi:10.1130/G38178.1.

Ragon, T., Sladen, A., & Simons, M., 2018. Accounting for uncertain fault geometry in earth- quake source inversions ‒ I : theory and simplified application. Geophysical Journal International, 214, 1174–1190. doi:10.1093/gji/ggy187.

Shi, Q., Wei, S., & Chen, M., 2018. An MCMC multiple point sources inversion scheme and its application to the 2016 Kumamoto Mw 6.2 earthquake. Geophysical Journal International, 215(2), 737–752. doi:10.1093/gji/ggy302.

Shimizu, K., Yagi, Y., Okuwaki, R., & Fukahata, Y., 2020. Development of an inversion method to extract information on fault geometry from teleseismic data. Geophysical Journal Inter- national, 220(2), 1055–1065. doi:10.1093/gji/ggz496.

Shimizu, K., Yagi, Y., Okuwaki, R., & Fukahata, Y., 2021. Construction of fault geometry by finite-fault inversion of teleseismic data. Geophysical Journal International, 224(2), 1003–1014. doi:10.1093/gji/ggaa501.

Tadapansawut, T., Okuwaki, R., Yagi, Y., & Yamashita, S., 2021. Rupture Process of the 2020 Caribbean Earthquake Along the Oriente Transform Fault, Involving Supershear Rupture and Geometric Complexity of Fault. Geophysical Research Letters, 48(1), e2020GL090899. doi:10.1029/2020GL090899.

Trifunac, M., 1974. A three dimensional dislocation model for the San Fernando, California, earthquake of February 9, 1971. Bulletin of the Seismological Society of America, 64(1), 149–172.

Wald, D. J. & Heaton, T. H., 1994. Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bulletin of the Seismological Society of America, 84(3), 668–691.

Wang, D., Kawakatsu, H., Mori, J., Ali, B., Ren, Z., & Shen, X., 2016. Backprojection analyses from four regional arrays for rupture over a curved dipping fault: The Mw7.7 24 September 2013 Pakistan earthquake. Journal of Geophysical Research: Solid Earth, 121(3), 1948– 1961. doi:10.1002/2015JB012168.

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F., 2013. Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45), 409–410. doi:10.1002/2013EO450001.

Yabuki, T. & Matsu’ura, M., 1992. Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip. Geophysical Journal International, 109(2), 363–375. doi:10.1111/j.1365-246X.1992.tb00102.x.

Yagi, Y. & Fukahata, Y., 2011a. Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes. Geophysical Journal International, 186(2), 711– 720. doi:10.1111/j.1365-246X.2011.05043.x.

Yagi, Y. & Fukahata, Y., 2011b. Rupture process of the 2011 Tohoku-oki earth- quake and absolute elastic strain release. Geophysical Research Letters, 38(19), 1–5. doi:10.1029/2011GL048701.

Yagi, Y. & Okuwaki, R., 2015. Integrated seismic source model of the 2015 Gorkha, Nepal, earthquake. Geophysical Research Letters, 42(15), 6229–6235. doi:10.1002/2015GL064995.

Yagi, Y., Nakao, A., & Kasahara, A., 2012a. Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method. Earth and Planetary Science Letters, 355-356, 94–101. doi:10.1016/j.epsl.2012.08.018.

Yagi, Y., Nishimura, N., & Kasahara, A., 2012b. Source process of the 12 May 2008 Wenchuan, China, earthquake determined by waveform inversion of teleseismic body waves with a data covariance matrix. Earth, Planets and Space, 64(7), e13–e16. doi:10.5047/eps.2012.05.006.

Yamashita, S., Yagi, Y., Okuwaki, R., Shimizu, K., Agata, R., & Fukahata, Y., 2021. Con- secutive ruptures on a complex conjugate fault system during the 2018 Gulf of Alaska earthquake. Scientific Reports, 11(1), 5979. doi:10.1038/s41598-021-85522-w.

Yamashita, S., Yagi, Y., Okuwaki, R., Shimizu, K., Agata, R., & Fukahata, Y., 2021b. Potency density tensor inversion of complex body waveforms introducing time-adaptive smoothing constraint. EarthArXiv. doi:10.31223/X5JW4V.

Ye, L., Lay, T., Kanamori, H., & Rivera, L., 2016. Rupture characteristics of major and great (Mw 7.0) megathrust earthquakes from 1990 to 2015: 1. Journal of Geophysical Research: Solid Earth, 121(2), 826–844. doi:10.1002/2015JB012426.

Ye, L., Lay, T., Bai, Y., Cheung, K. F., & Kanamori, H., 2017. The 2017 Mw 8.2 Chiapas, Mexico, Earthquake: Energetic Slab Detachment. Geophysical Research Letters, 44(23), 11,811–824,832. doi:10.1002/2017GL076085.

Yue, H. & Lay, T., 2020. Resolving Complicated Faulting Process Using Multi-Point-Source Representation: Iterative Inversion Algorithm Improvement and Application to Recent Complex Earthquakes. Journal of Geophysical Research: Solid Earth, 125(2), 1–24. doi:10.1029/2019JB018601.

Yue, H., Lay, T., Schwartz, S. Y., Rivera, L., Protti, M., Dixon, T. H., Owen, S., & Newman, A. V., 2013. The 5 September 2012 Nicoya, Costa Rica Mw 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties. Journal of Geophysical Research: Solid Earth, 118(10), 5453–5466. doi:10.1002/jgrb.50379.

Zinke, R., Hollingsworth, J., & Dolan, J. F., 2014. Surface slip and off-fault deformation patterns in the 2013 Mw7.7 Balochistan, Pakistan earthquake: Implications for controls on the distribution of near-surface coseismic slip. Geochemistry, Geophysics, Geosystems, 15 (12), 5034–5050. doi:10.1002/2014GC005538.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る