リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cyclin J-CDK complexes limit innate immune responses by reducing proinflammatory changes in macrophage metabolism」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cyclin J-CDK complexes limit innate immune responses by reducing proinflammatory changes in macrophage metabolism

Chong, Yee Kien 京都大学 DOI:10.14989/doctor.k24140

2022.07.25

概要

The activation of macrophages is controlled by the dynamic metabolic changes induced by extracellular stimuli such as Toll-like receptor (TLR) ligands and viral infection, as well as environmental changes like hypoxia. Particularly, glycolysis activation as well as mitochondrial reactive oxygen species (ROS) production are known to promote inflammatory responses in macrophages. Despite elaborate studies on innate immune metabolism, the regulatory mechanism of macrophage metabolic changes is not fully understood.

The aim of this study was to investigate the function of Cyclins in macrophage innate immune responses. Using publicly available database of macrophage activation, an atypical cyclin, called cyclin J, was identified to exhibit unusual inducibility by TLR ligands such as LPS and Type I Interferon. Cyclin J was then demonstrated to function as an unconventional repressor of TLR-induced inflammatory responses in macrophages using both overexpression and genetic depletion approaches. In-depth analyses revealed that Cyclin J affects metabolic activity of macrophage through suppression of glycolysis processes, shown by the depletion in gene expression encoded for glycolytic genes, production of HIF-1α, and reduction in glycolysis process. Cyclin J was further identified to affect mitochondrial oxidative phosphorylation with notable changes in mitochondrial fitness, including reduced membrane potential and capability of ROS production upon activation. Mechanistically, Cyclin J associates with Cyclin-dependent kinases (CDKs) and the interaction is required for its immune-regulatory function in macrophages. As the Cyclin/CDK complex triggers phosphorylation on a set of specific substrates, phosphoproteomic analysis was then performed and a unique set of proteins phosphorylated by the Cyclin J/CDK complex was discovered in macrophages. Further analyses uncovered that Cyclin J targets immuno-metabolic signaling in macrophages through FoxK1 and Drp1, respectively.

Cyclin J/CDK-mediated phosphorylation of FoxK1 resulted in impaired glycolytic gene transcription by the impairment of its nuclear localization. On the other hand, Drp1 phosphorylation by Cyclin J/CDK led to mitochondrial fission and suppression of ROS production. Overall, Cyclin J coordinately controls metabolism and thereby suppresses inflammatory responses in macrophages. To address the functional roles of Cyclin J in macrophages in vivo, sub-lethal dose of LPS was injected into mice to mimic septic shock. The results showed that myeloid-specific Cyclin J-deficient mice experienced higher fatality with heightened serum pro-inflammatory cytokine profile compared with control mice.

On the other hand, mice were systemically infected with S. aureus infection and showed that myeloid-specific Cyclin J-deficient mice were protected from succumb to fatality with lower bacterial burden in multiple organs together with elevated cytokine production. Beyond acute infection model, the role of Cyclin J was examined using cancer model using both xenograft and colitis-associated cancer models, in which Cyclin J could mediate tumor progression through affecting the behavior of tumor associated macrophages, with elevation of pro-tumoral and pro-inflammatory characters with the change in metabolic status such as glycolysis. In summary, this study provides a new perspective of Cyclin J-CDK-mediated immuno-regulation by identifying a novel role of Cyclin J in controlling macrophage function via immuno-metabolism. Our evidence showed that global inhibition or activation of CDKs can affect cellular functions such as cell cycling and transcription broadly, in addition to the immune regulation. Therefore, this new finding provides a different perspective for the establishment of novel therapeutic approaches, in which developing small molecules targeting Cyclin expression in modulating CDK activity of macrophage are promising in controlling both infectious diseases and tumor progression in future.

この論文で使われている画像

参考文献

1. P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy, S. Goerdt, S. Gordon, J. A. Hamilton, L. B. Ivashkiv, T. Lawrence, M. Locati, A. Mantovani, F. O. Martinez, J. L. Mege, D. M. Mosser, G. Natoli, J. P. Saeij, J. L. Schultze, K. A. Shirey, A. Sica, J. Suttles, I. Udalova, J. A. van Ginderachter, S. N. Vogel, T. A. Wynn, Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14- 20 (2014).

2. T. A. Wynn, A. Chawla, J. W. Pollard, Macrophage biology in development, homeostasis and disease. Nature 496, 445-455 (2013).

3. B. Z. Qian, J. W. Pollard, Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51 (2010).

4. K. A. Fitzgerald, J. C. Kagan, Toll-like Receptors and the Control of Immunity. Cell 180, 1044-1066 (2020).

5. L. A. O'Neill, E. J. Pearce, Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213, 15-23 (2016).

6. M. A. Lauterbach, J. E. Hanke, M. Serefidou, M. S. J. Mangan, C. C. Kolbe, T. Hess, M. Rothe, R. Kaiser, F. Hoss, J. Gehlen, G. Engels, M. Kreutzenbeck, S. V. Schmidt, A. Christ, A. Imhof, K. Hiller, E. Latz, Toll-like Receptor Signaling Rewires Macrophage Metabolism and Promotes Histone Acetylation via ATP-Citrate Lyase. Immunity 51, 997- 1011 e1017 (2019).

7. A. Palazon, A. W. Goldrath, V. Nizet, R. S. Johnson, HIF transcription factors, inflammation, and immunity. Immunity 41, 518-528 (2014).

8. S. E. Corcoran, L. A. O'Neill, HIF1alpha and metabolic reprogramming in inflammation. J Clin Invest 126, 3699-3707 (2016).

9. G. M. Tannahill, A. M. Curtis, J. Adamik, E. M. Palsson-McDermott, A. F. McGettrick, G. Goel, C. Frezza, N. J. Bernard, B. Kelly, N. H. Foley, L. Zheng, A. Gardet, Z. Tong, S. S. Jany, S. C. Corr, M. Haneklaus, B. E. Caffrey, K. Pierce, S. Walmsley, F. C. Beasley, E. Cummins, V. Nizet, M. Whyte, C. T. Taylor, H. Lin, S. L. Masters, E. Gottlieb, V. P. Kelly, C. Clish, P. E. Auron, R. J. Xavier, L. A. J. O'Neill, Succinate is an inflammatory signal that induces IL-1 beta through HIF-1 alpha. Nature 496, 238-+ (2013).

10. R. Kapetanovic, S. F. Afroz, D. Ramnath, G. M. Lawrence, T. Okada, J. E. Curson, J. de Bruin, D. P. Fairlie, K. Schroder, J. C. St John, A. Blumenthal, M. J. Sweet, Lipopolysaccharide promotes Drp1-dependent mitochondrial fission and associated inflammatory responses in macrophages. Immunol Cell Biol 98, 528-539 (2020).

11. A. P. West, I. E. Brodsky, C. Rahner, D. K. Woo, H. Erdjument-Bromage, P. Tempst, M. C. Walsh, Y. Choi, G. S. Shadel, S. Ghosh, TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476-480 (2011).

12. S. J. Forrester, D. S. Kikuchi, M. S. Hernandes, Q. Xu, K. K. Griendling, Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ Res 122, 877-902 (2018).

13. O. Takeuchi, S. Akira, Pattern recognition receptors and inflammation. Cell 140, 805-820 (2010).

14. E. Quandt, M. P. C. Ribeiro, J. Clotet, Atypical cyclins: the extended family portrait. Cell Mol Life Sci 77, 231-242 (2020).

15. D. O. Morgan, Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13, 261-291 (1997).

16. S. Lim, P. Kaldis, Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140, 3079-3093 (2013).

17. M. L. Schmitz, M. Kracht, Cyclin-Dependent Kinases as Coregulators of Inflammatory Gene Expression. Trends Pharmacol Sci 37, 101-113 (2016).

18. S. Choudhary, K. P. Rosenblatt, L. Fang, B. Tian, Z. H. Wu, A. R. Brasier, High throughput short interfering RNA (siRNA) screening of the human kinome identifies novel kinases controlling the canonical nuclear factor-kappaB (NF-kappaB) activation pathway. J Biol Chem 286, 37187-37195 (2011).

19. R. S. Jhou, K. H. Sun, G. H. Sun, H. H. Wang, C. I. Chang, H. C. Huang, S. Y. Lu, S. J. Tang, Inhibition of cyclin-dependent kinases by olomoucine and roscovitine reduces lipopolysaccharide-induced inflammatory responses via down-regulation of nuclear factor kappaB. Cell Prolif 42, 141-149 (2009).

20. O. Cingoz, S. P. Goff, Cyclin-dependent kinase activity is required for type I interferon production. Proc Natl Acad Sci U S A 115, E2950-E2959 (2018).

21. H. J. Lee, G. H. Chua, A. Krishnan, D. P. Lane, C. S. Verma, Substrate specificity of cyclins determined by electrostatics. Cell Cycle 6, 2219-2226 (2007).

22. M. P. Swaffer, A. W. Jones, H. R. Flynn, A. P. Snijders, P. Nurse, CDK Substrate Phosphorylation and Ordering the Cell Cycle. Cell 167, 1750-1761 e1716 (2016).

23. A. Dey, W. Yang, A. Gegonne, A. Nishiyama, R. Pan, R. Yagi, A. Grinberg, F. D. Finkelman, K. Pfeifer, J. Zhu, D. Singer, J. Zhu, K. Ozato, BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses. EMBO J 38, (2019).

24. L. Liu, Y. Lu, J. Martinez, Y. Bi, G. Lian, T. Wang, S. Milasta, J. Wang, M. Yang, G. Liu, D. R. Green, R. Wang, Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1alpha-dependent. Proc Natl Acad Sci U S A 113, 1564-1569 (2016).

25. P. K. Vadiveloo, H. Christopoulos, U. Novak, I. Kola, P. J. Hertzog, J. A. Hamilton, Type I interferons mediate the lipopolysaccharide induction of macrophage cyclin D2. J Interferon Cytokine Res 20, 355-359 (2000).

26. P. K. Vadiveloo, G. Vairo, A. K. Royston, U. Novak, J. A. Hamilton, Proliferation- independent induction of macrophage cyclin D2, and repression of cyclin D1, by lipopolysaccharide. J Biol Chem 273, 23104-23109 (1998).

27. R. L. Finley, Jr., B. J. Thomas, S. L. Zipursky, R. Brent, Isolation of Drosophila cyclin D, a protein expressed in the morphogenetic furrow before entry into S phase. Proc Natl Acad Sci U S A 93, 3011-3015 (1996).

28. M. Malumbres, Cyclin-dependent kinases. Genome Biol 15, 122 (2014).

29. T. J. Gibson, J. D. Thompson, A. Blocker, T. Kouzarides, Evidence for a protein domain superfamily shared by the cyclins, TFIIB and RB/p107. Nucleic Acids Res 22, 946-952 (1994).

30. S. R. Himes, S. Cronau, C. Mulford, D. A. Hume, The Runx1 transcription factor controls CSF-1-dependent and -independent growth and survival of macrophages. Oncogene 24, 5278-5286 (2005).

31. V. Sukonina, H. Ma, W. Zhang, S. Bartesaghi, S. Subhash, M. Heglind, H. Foyn, M. J. Betz, D. Nilsson, M. E. Lidell, J. Naumann, S. Haufs-Brusberg, H. Palmgren, T. Mondal, M. Beg, M. P. Jedrychowski, K. Tasken, A. Pfeifer, X. R. Peng, C. Kanduri, S. Enerback, FOXK1 and FOXK2 regulate aerobic glycolysis. Nature 566, 279-283 (2019).

32. C. J. Bowman, D. E. Ayer, B. D. Dynlacht, Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat Cell Biol 16, 1202-1214 (2014).

33. H. Nakatsumi, M. Matsumoto, K. I. Nakayama, Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor- Associated Macrophages. Cell Rep 21, 2471-2486 (2017).

34. T. B. Fonseca, A. Sanchez-Guerrero, I. Milosevic, N. Raimundo, Mitochondrial fission requires DRP1 but not dynamins. Nature 570, E34-E42 (2019).

35. N. Taguchi, N. Ishihara, A. Jofuku, T. Oka, K. Mihara, Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282, 11521-11529 (2007).

36. D. G. DeNardo, B. Ruffell, Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 19, 369-382 (2019).

37. I. Vitale, G. Manic, L. M. Coussens, G. Kroemer, L. Galluzzi, Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab 30, 36-50 (2019).

38. O. R. Colegio, N. Q. Chu, A. L. Szabo, T. Chu, A. M. Rhebergen, V. Jairam, N. Cyrus, C. E. Brokowski, S. C. Eisenbarth, G. M. Phillips, G. W. Cline, A. J. Phillips, R. Medzhitov, Functional polarization of tumour-associated macrophages by tumour- derived lactic acid. Nature 513, 559-563 (2014).

39. K. Z. Lee, M. Lestradet, C. Socha, S. Schirmeier, A. Schmitz, C. Spenle, O. Lefebvre, C. Keime, W. M. Yamba, R. Bou Aoun, S. Liegeois, Y. Schwab, P. Simon-Assmann, F. Dalle, D. Ferrandon, Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack. Cell Host Microbe 20, 716-730 (2016).

40. H. Wang, B. N. Nicolay, J. M. Chick, X. Gao, Y. Geng, H. Ren, H. Gao, G. Yang, J. A. Williams, J. M. Suski, M. A. Keibler, E. Sicinska, U. Gerdemann, W. N. Haining, T. M. Roberts, K. Polyak, S. P. Gygi, N. J. Dyson, P. Sicinski, The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature 546, 426-430 (2017).

41. Y. Lee, J. E. Dominy, Y. J. Choi, M. Jurczak, N. Tolliday, J. P. Camporez, H. Chim, J. H. Lim, H. B. Ruan, X. Yang, F. Vazquez, P. Sicinski, G. I. Shulman, P. Puigserver, Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510, 547-551 (2014).

42. I. C. Lopez-Mejia, S. Lagarrigue, A. Giralt, L. Martinez-Carreres, N. Zanou, P. D. Denechaud, J. Castillo-Armengol, C. Chavey, M. Orpinell, B. Delacuisine, A. Nasrallah, C. Collodet, L. Zhang, B. Viollet, D. G. Hardie, L. Fajas, CDK4 Phosphorylates AMPKalpha2 to Inhibit Its Activity and Repress Fatty Acid Oxidation. Mol Cell 68, 336- 349 e336 (2017).

43. L. He, A. P. Gomes, X. Wang, S. O. Yoon, G. Lee, M. J. Nagiec, S. Cho, A. Chavez, T. Islam, Y. Yu, J. M. Asara, B. Y. Kim, J. Blenis, mTORC1 Promotes Metabolic Reprogramming by the Suppression of GSK3-Dependent Foxk1 Phosphorylation. Mol Cell 70, 949-960 e944 (2018).

44. M. Sakaguchi, W. Cai, C. H. Wang, C. T. Cederquist, M. Damasio, E. P. Homan, T. Batista, A. K. Ramirez, M. K. Gupta, M. Steger, N. J. Wewer Albrechtsen, S. K. Singh, E. Araki, M. Mann, S. Enerback, C. R. Kahn, FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nat Commun 10, 1582 (2019).

45. D. G. Russell, L. Huang, B. C. VanderVen, Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol 19, 291-304 (2019).

46. M. Liesa, O. S. Shirihai, Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17, 491-506 (2013).

47. L. Simula, I. Pacella, A. Colamatteo, C. Procaccini, V. Cancila, M. Bordi, C. Tregnago, M. Corrado, M. Pigazzi, V. Barnaba, C. Tripodo, G. Matarese, S. Piconese, S. Campello, Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep 25, 3059-3073 e3010 (2018).

48. S. Park, J. H. Won, I. Hwang, S. Hong, H. K. Lee, J. W. Yu, Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci Rep 5, 15489 (2015).

49. Z. Gao, Y. Li, F. Wang, T. Huang, K. Fan, Y. Zhang, J. Zhong, Q. Cao, T. Chao, J. Jia, S. Yang, L. Zhang, Y. Xiao, J. Y. Zhou, X. H. Feng, J. Jin, Mitochondrial dynamics controls anti-tumour innate immunity by regulating CHIP-IRF1 axis stability. Nat Commun 8, 1805 (2017).

50. J. Tur, S. Pereira-Lopes, T. Vico, E. A. Marin, J. P. Munoz, M. Hernandez-Alvarez, P. J. Cardona, A. Zorzano, J. Lloberas, A. Celada, Mitofusin 2 in Macrophages Links Mitochondrial ROS Production, Cytokine Release, Phagocytosis, Autophagy, and Bactericidal Activity. Cell Rep 32, 108079 (2020).

51. A. L. Doedens, C. Stockmann, M. P. Rubinstein, D. Liao, N. Zhang, D. G. DeNardo, L. M. Coussens, M. Karin, A. W. Goldrath, R. S. Johnson, Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70, 7465-7475 (2010).

52. B. E. Clausen, C. Burkhardt, W. Reith, R. Renkawitz, I. Forster, Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8, 265- 277 (1999).

53. F. R. Greten, L. Eckmann, T. F. Greten, J. M. Park, Z. W. Li, L. J. Egan, M. F. Kagnoff, M. Karin, IKKbeta links inflammation and tumorigenesis in a mouse model of colitis- associated cancer. Cell 118, 285-296 (2004).

54. R. K. Dagda, S. J. Cherra, 3rd, S. M. Kulich, A. Tandon, D. Park, C. T. Chu, Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284, 13843-13855 (2009).

55. T. Masuda, M. Tomita, Y. Ishihama, Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7, 731-740 (2008).

56. J. Rappsilber, Y. Ishihama, M. Mann, Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75, 663-670 (2003).

57. J. Rappsilber, M. Mann, Y. Ishihama, Protocol for micro-purification, enrichment, pre- fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2, 1896- 1906 (2007).

58. N. Sugiyama, T. Masuda, K. Shinoda, A. Nakamura, M. Tomita, Y. Ishihama, Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6, 1103-1109 (2007).

59. J. Cox, M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367-1372 (2008).

60. M. Mann, M. Wilm, Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66, 4390-4399 (1994).

61. H. Nakagami, N. Sugiyama, K. Mochida, A. Daudi, Y. Yoshida, T. Toyoda, M. Tomita, Y. Ishihama, K. Shirasu, Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol 153, 1161-1174 (2010).

62. E. Afgan, D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Cech, J. Chilton, D. Clements, N. Coraor, B. A. Gruning, A. Guerler, J. Hillman-Jackson, S. Hiltemann, V. Jalili, H. Rasche, N. Soranzo, J. Goecks, J. Taylor, A. Nekrutenko, D. Blankenberg, The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46, W537-W544 (2018).

63. M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139- 140 (2010).

64. C. W. Law, Y. Chen, W. Shi, G. K. Smyth, voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15, R29 (2014).

65. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, The Protein Data Bank. Nucleic Acids Res 28, 235-242 (2000).

66. L. Zimmermann, A. Stephens, S. Z. Nam, D. Rau, J. Kubler, M. Lozajic, F. Gabler, J. Soding, A. N. Lupas, V. Alva, A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J Mol Biol 430, 2237-2243 (2018).

67. K. Bettayeb, N. Oumata, A. Echalier, Y. Ferandin, J. A. Endicott, H. Galons, L. Meijer, CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene 27, 5797-5807 (2008).

68. D. W. A. Buchan, D. T. Jones, The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res 47, W402-W407 (2019).

69. B. Webb, A. Sali, Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics 54, 5 6 1-5 6 37 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る