リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Photosynthetic and Morphological Acclimation to High and Low Light Environments in Petasites japonicus subsp. giganteus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Photosynthetic and Morphological Acclimation to High and Low Light Environments in Petasites japonicus subsp. giganteus

Deguchi Ray Koyama Kohei 帯広畜産大学

2021.01.15

概要

Within each species, leaf traits such as light-saturated photosynthetic rate or dark respiration rate acclimate to local light environment. Comparing only static physiological traits, however, may not be sufficient to evaluate the effects of such acclimation in the shade because the light environment changes diurnally. We investigated leaf photosynthetic and morphological acclimation for a perennial herb, butterbur (Petasites japonicus (Siebold et Zucc.) Maxim. subsp. giganteus (G.Nicholson) Kitam.) (Asteraceae), in both a well-lit clearing and a shaded understory of a temperate forest. Diurnal changes in light intensity incident on the leaves were also measured on a sunny day and an overcast day. Leaves in the clearing were more folded and upright, whereas leaves in the understory were flatter. Leaf mass per area (LMA) was approximately twofold higher in the clearing than in the understory, while light-saturated photosynthetic rate and dark respiration rate per unit mass of leaf were similar between the sites. Consequently, both light-saturated photosynthetic rate and dark respiration rate per unit area of leaf were approximately twofold higher in the clearing than in the understory, consistent with previous studies on different species. Using this experimental dataset, we performed a simulation in which sun and shade leaves were hypothetically exchanged to investigate whether such plasticity increased carbon gain at each local environment. As expected, in the clearing, the locally acclimated sun leaves gained more carbon than the hypothetically transferred shade leaves. By contrast, in the understory, the daily net carbon gain was similar between the simulated sun and shade leaves on the sunny day due to the frequent sunflecks. Lower LMA and lower photosynthetic capacity in the understory reduced leaf construction cost per area rather than maximizing net daily carbon gain. These results indicate that information on static photosynthetic parameters may not be sufficient to evaluate shade acclimation in forest understories.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Walters, M.B.; Field, C.B. Photosynthetic light acclimation in two rainforest Piper species with different

ecological amplitudes. Oecologia 1987, 72, 449–456. [CrossRef]

Ellsworth, D.S.; Reich, P.B. Leaf mass per area, nitrogen content and photosynthetic carbon gain in

Acer saccharum seedlings in contrasting forest light environments. Funct. Ecol. 1992, 6, 423–435. [CrossRef]

Noda, H.; Muraoka, H.; Washitani, I. Morphological and physiological acclimation responses to contrasting

light and water regimes in Primula sieboldii. Ecol. Res. 2004, 19, 331–340. [CrossRef]

Muraoka, H.; Tang, Y.; Koizumi, H.; Washitani, I. Combined effects of light and water availability on

photosynthesis and growth of Arisaema heterophyllum in the forest understory and an open site. Oecologia

1997, 112, 26–34. [CrossRef]

Gruntman, M.; Segev, U.; Tielbörger, K.; Gange, A. Shade-induced plasticity in invasive Impatiens glandulifera

populations. Weed Res. 2019, 60, 16–25. [CrossRef]

Muraoka, H.; Tang, Y.H.; Koizumi, H.; Washitani, I. Effects of light and soil water availability on leaf

photosynthesis and growth of Arisaema heterophyllum, a riparian forest understorey plant. J. Plant Res. 2002,

115, 419–427. [CrossRef] [PubMed]

Wang, A.-Y.; Hao, G.-Y.; Guo, J.-J.; Liu, Z.-H.; Zhang, J.-L.; Cao, K.-F. Differentiation in leaf physiological traits

related to shade and drought tolerance underlies contrasting adaptations of two Cyclobalanopsis (Fagaceae)

species at the seedling stage. Forests 2020, 11, 844. [CrossRef]

Valladares, F.; Wright, S.J.; Lasso, E.; Kitajima, K.; Pearcy, R.W. Plastic phenotypic response to light of 16

congeneric shrubs from a panamanian rainforest. Ecology 2000, 81, 1925–1936. [CrossRef]

Niu, K.; Zhang, S.; Lechowicz, M.J.; Perez Carmona, C. Harsh environmental regimes increase the functional

significance of intraspecific variation in plant communities. Funct. Ecol. 2020, 34, 1666–1677. [CrossRef]

Niu, K.; He, J.-S.; Lechowicz, M.J.; Souza, L. Grazing-induced shifts in community functional composition

and soil nutrient availability in Tibetan alpine meadows. J. Appl. Ecol. 2016, 53, 1554–1564. [CrossRef]

Forests 2020, 11, 1365

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

17 of 21

Volf, M.; Redmond, C.; Albert, A.J.; Le Bagousse-Pinguet, Y.; Biella, P.; Gotzenberger, L.; Hrazsky, Z.;

Janecek, S.; Klimesova, J.; Leps, J.; et al. Effects of long- and short-term management on the functional

structure of meadows through species turnover and intraspecific trait variability. Oecologia 2016, 180, 941–950.

[CrossRef] [PubMed]

Jung, V.; Violle, C.; Mondy, C.; Hoffmann, L.; Muller, S. Intraspecific variability and trait-based community

assembly. J. Ecol. 2010, 98, 1134–1140. [CrossRef]

Enquist, B.J.; Norberg, J.; Bonser, S.P.; Violle, C.; Webb, C.T.; Henderson, A.; Sloat, L.L.; Savage, V.M. Scaling

from traits to ecosystems. Adv. Ecol. Res. 2015, 52, 249–318. [CrossRef]

Violle, C.; Enquist, B.J.; McGill, B.J.; Jiang, L.; Albert, C.H.; Hulshof, C.; Jung, V.; Messier, J. The return of the

variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 2012, 27, 244–252. [CrossRef]

dos Santos, V.A.H.F.; Ferreira, M.J. Are photosynthetic leaf traits related to the first-year growth of tropical

tree seedlings? A light-induced plasticity test in a secondary forest enrichment planting. For. Ecol. Manag.

2020, 460, 117900. [CrossRef]

Baltzer, J.L.; Thomas, S.C. Determinants of whole-plant light requirements in Bornean rain forest tree saplings.

J. Ecol. 2007, 95, 1208–1221. [CrossRef]

Craine, J.M.; Reich, P.B. Leaf-level light compensation points in shade-tolerant woody seedlings. New Phytol.

2005, 166, 710–713. [CrossRef]

Ntawuhiganayo, E.B.; Uwizeye, F.K.; Zibera, E.; Dusenge, M.E.; Ziegler, C.; Ntirugulirwa, B.; Nsabimana, D.;

Wallin, G.; Uddling, J. Traits controlling shade tolerance in tropical montane trees. Tree Physiol. 2020, 40,

183–197. [CrossRef]

Kitajima, K. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling

shade tolerance of 13 tropical trees. Oecologia 1994, 98, 419–428. [CrossRef]

Pons, T.L.; Poorter, H. The effect of irradiance on the carbon balance and tissue characteristics of five

herbaceous species differing in shade-tolerance. Front. Plant Sci. 2014, 5, 12. [CrossRef]

Kupers, S.J.; Wirth, C.; Engelbrecht, B.M.J.; Hernández, A.; Condit, R.; Wright, S.J.; Rüger, N. Performance

of tropical forest seedlings under shade and drought: An interspecific trade-off in demographic responses.

Sci. Rep. 2019, 9, 18784. [CrossRef] [PubMed]

Bartholomew, D.C.; Bittencourt, P.R.L.; da Costa, A.C.L.; Banin, L.F.; de Britto Costa, P.; Coughlin, S.I.;

Domingues, T.F.; Ferreira, L.V.; Giles, A.; Mencuccini, M.; et al. Small tropical forest trees have a greater

capacity to adjust carbon metabolism to long-term drought than large canopy trees. Plant Cell Environ. 2020,

43, 2380–2393. [CrossRef] [PubMed]

Valladares, F.; Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences.

Annu. Rev. Ecol. Evol. S. 2008, 39, 237–257. [CrossRef]

Björkman, O. Responses to different quantum flux densities. In Physiological Plant Ecology I: Responses to the

Physical Environment; Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., Eds.; Springer: Berlin/Heidelberg,

Germany, 1981; pp. 57–107. [CrossRef]

Givnish, T.J. Adaptation to sun and shade: A whole-plant perspective. Funct. Plant Biol. 1988, 15, 63–92.

[CrossRef]

Yoshimura, K. Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution

of leaves in Cedrela sinensis. Plant Cell Environ. 2010, 33, 750–758. [CrossRef]

Rozendaal, D.M.A.; Hurtado, V.H.; Poorter, L. Plasticity in leaf traits of 38 tropical tree species in response to

light; relationships with light demand and adult stature. Funct. Ecol. 2006, 20, 207–216. [CrossRef]

Poorter, H.; Niinemets, U.; Ntagkas, N.; Siebenkas, A.; Maenpaa, M.; Matsubara, S.; Pons, T. A meta-analysis

of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance.

New Phytol. 2019, 223, 1073–1105. [CrossRef]

Poorter, H.; Pepin, S.; Rijkers, T.; de Jong, Y.; Evans, J.R.; Körner, C. Construction costs, chemical composition

and payback time of high- and low-irradiance leaves. J. Exp. Bot. 2006, 57, 355–371. [CrossRef]

Wan, Y.; Zhang, Y.; Zhang, M.; Hong, A.; Yang, H.; Liu, Y. Shade effects on growth, photosynthesis and

chlorophyll fluorescence parameters of three Paeonia species. PeerJ 2020, 8, e9316. [CrossRef]

Vincent, G. Leaf photosynthetic capacity and nitrogen content adjustment to canopy openness in tropical

forest tree seedlings. J. Trop. Ecol. 2001, 17, 495–509. [CrossRef]

Forests 2020, 11, 1365

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

18 of 21

Lei, T.T.; Tabuchi, R.; Kitao, M.; Koike, T. Functional relationship between chlorophyll content and leaf

reflectance, and light-capturing efficiency of Japanese forest species. Physiol. Plant. 1996, 96, 411–418.

[CrossRef]

Onoda, Y.; Schieving, F.; Anten, N.P. Effects of light and nutrient availability on leaf mechanical properties of

Plantago major: A conceptual approach. Ann. Bot. 2008, 101, 727–736. [CrossRef] [PubMed]

Poorter, H.; Niinemets, U.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf

mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [CrossRef] [PubMed]

Ellsworth, D.S.; Reich, P.B. Canopy structure and vertical patterns of photosynthesis and related leaf traits in

a deciduous forest. Oecologia 1993, 96, 169–178. [CrossRef] [PubMed]

Niinemets, Ü. Within-canopy variations in functional leaf traits: Structural, chemical and ecological controls

and diversity of responses. In Canopy Photosynthesis: From Basics to Applications; Hikosaka, K., Niinemets, Ü.,

Anten, N.P.R., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 101–141.

Anten, N.P.R.; During, H.J. Is analysing the nitrogen use at the plant canopy level a matter of choosing the

right optimization criterion? Oecologia 2011, 167, 293–303. [CrossRef] [PubMed]

Koyama, K.; Kikuzawa, K. Geometrical similarity analysis of photosynthetic light response curves, light

saturation and light use efficiency. Oecologia 2010, 164, 53–63. [CrossRef] [PubMed]

Koyama, K.; Kikuzawa, K. Is whole-plant photosynthetic rate proportional to leaf area? A test of scalings

and a logistic equation by leaf demography census. Am. Nat. 2009, 173, 640–649. [CrossRef]

Koyama, K.; Kikuzawa, K. Reduction of photosynthesis before midday depression occurred: Leaf

photosynthesis of Fagus crenata in a temperate forest in relation to canopy position and a number of

days after rainfall. Ecol. Res. 2011, 26, 999–1006. [CrossRef]

Muryono, M.; Chen, C.P.; Sakai, H.; Tokida, T.; Hasegawa, T.; Usui, Y.; Nakamura, H.; Hikosaka, K. Nitrogen

distribution in leaf canopies of high-yielding rice cultivar takanari. Crop. Sci. 2017, 57, 2080–2088. [CrossRef]

Campany, C.E.; Tjoelker, M.G.; Von Caemmerer, S.; Duursma, R.A. Coupled response of stomatal and

mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks. Plant Cell Environ.

2016, 39, 2762–2773. [CrossRef]

Bhusal, N.; Han, S.-G.; Yoon, T.-M. Summer pruning and reflective film enhance fruit quality in excessively

tall spindle apple trees. Hortic. Environ. Biotechnol. 2017, 58, 560–567. [CrossRef]

Kusi, J.; Karsai, I. Plastic leaf morphology in three species of Quercus: The more exposed leaves are smaller,

more lobated and denser. Plant Spec. Biol. 2020, 35, 24–37. [CrossRef]

Hollinger, D.Y. Optimality and nitrogen allocation in a tree canopy. Tree Physiol. 1996, 16, 627–634. [CrossRef]

[PubMed]

Posada, J.M.; Lechowicz, M.J.; Kitajima, K. Optimal photosynthetic use of light by tropical tree crowns

achieved by adjustment of individual leaf angles and nitrogen content. Ann. Bot. 2009, 103, 795–805.

[CrossRef] [PubMed]

Hagemeier, M.; Leuschner, C. Functional crown architecture of five temperate broadleaf tree species: Vertical

gradients in leaf morphology, leaf angle, and leaf area density. Forests 2019, 10, 265. [CrossRef]

Walters, M.B.; Reich, P.B. Trade-offs in low-light CO2 exchange: A component of variation in shade tolerance

among cold temperate tree seedlings. Funct. Ecol. 2000, 14, 155–165. [CrossRef]

Chazdon, R.L.; Pearcy, R.W. Photosynthetic responses to light variation in rainforest species. i. induction

under constant and fluctuating light conditions. Oecologia 1986, 69, 517–523. [CrossRef]

Chazdon, R.L. Sunflecks and their importance to forest understorey plants. In Advances in Ecological Research;

Begon, M., Fitter, A.H., Ford, E.D., Macfadyen, A., Eds.; Academic Press: Cambridge, MA, USA, 1988;

Volume 18, pp. 1–63.

Morales, A.; Kaiser, E. Photosynthetic acclimation to fluctuating irradiance in plants. Front. Plant Sci. 2020,

11, 268. [CrossRef]

Parker, G.G.; Fitzjarrald, D.R.; Gonçalves Sampaio, I.C. Consequences of environmental heterogeneity for

the photosynthetic light environment of a tropical forest. Agr. For. Meteorol. 2019, 278, 107661. [CrossRef]

Hartikainen, S.M.; Pieristè, M.; Lassila, J.; Robson, T.M. Seasonal patterns in spectral irradiance and leaf

UV-A absorbance under forest canopies. Front. Plant Sci. 2020, 10. [CrossRef]

Muraoka, H.; Koizumi, H.; Pearcy, R.W. Leaf display and photosynthesis of tree seedlings in a cool-temperate

deciduous broadleaf forest understorey. Oecologia 2003, 135, 500–509. [CrossRef] [PubMed]

Forests 2020, 11, 1365

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

19 of 21

Muraoka, H.; Takenaka, A.; Tang, Y.; Koizumi, H.; Washitani, I. Flexible leaf orientations of Arisaema

heterophyllum maximize light capture in a forest understorey and avoid excess irradiance at a deforested site.

Ann. Bot. 1998, 82, 297–307. [CrossRef]

Kaiser, E.; Morales, A.; Harbinson, J. Fluctuating light takes crop photosynthesis on a rollercoaster ride.

Plant Physiol. 2018, 176, 977–989. [CrossRef] [PubMed]

Slattery, R.A.; Walker, B.J.; Weber, A.P.M.; Ort, D.R. The impacts of fluctuating light on crop performance.

Plant Physiol. 2018, 176, 990. [CrossRef]

Way, D.A.; Pearcy, R.W. Sunflecks in trees and forests: From photosynthetic physiology to global change

biology. Tree Physiol. 2012, 32, 1066–1081. [CrossRef]

Miyashita, A.; Sugiura, D.; Sawakami, K.; Ichihashi, R.; Tani, T.; Tateno, M. Long-term, short-interval

measurements of the frequency distributions of the photosynthetically active photon flux density and net

assimilation rate of leaves in a cool-temperate forest. Agric. For. Meteorol. 2012, 152, 1–10. [CrossRef]

Valladares, F.; Pearcy, R.W. Drought can be more critical in the shade than in the sun: A field study of carbon

gain and photo-inhibition in a Californian shrub during a dry El Nino year. Plant Cell Environ. 2002, 25,

749–759. [CrossRef]

Poorter, H.; Fiorani, F.; Pieruschka, R.; Wojciechowski, T.; van der Putten, W.H.; Kleyer, M.; Schurr, U.;

Postma, J. Pampered inside, pestered outside? Differences and similarities between plants growing in

controlled conditions and in the field. New Phytol. 2016, 212, 838–855. [CrossRef]

Valladares, F.; Zaragoza-Castells, J.; Sanchez-Gomez, D.; Matesanz, S.; Alonso, B.; Portsmuth, A.; Delgado, A.;

Atkin, O.K. Is shade beneficial for Mediterranean shrubs experiencing periods of extreme drought and

late-winter frosts? Ann. Bot. 2008, 102, 923–933. [CrossRef]

Ohashi, H.; Kadota, Y.; Murata, J.; Yonekura, K.; Kihara, H. Wild Flowers of Japan; Heibonsha: Tokyo, Japan,

2015.

Sok, D.E.; Oh, S.H.; Kim, Y.B.; Kang, H.G.; Kim, M.R. Neuroprotection by extract of Petasites japonicus leaves,

a traditional vegetable, against oxidative stress in brain of mice challenged with kainic acid. Eur. J. Nutr.

2006, 45, 61–69. [CrossRef]

Xu, J.; Ji, F.; Cao, X.; Ma, J.; Ohizumi, Y.; Lee, D.; Guo, Y. Sesquiterpenoids from an edible plant Petasites

japonicus and their promoting effects on neurite outgrowth. J. Funct. Food. 2016, 22, 291–299. [CrossRef]

Japan Meteorological Agency. Available online: http://www.jma.go.jp (accessed on 14 September 2020).

Fleck, S.; Niinemets, U.; Cescatti, A.; Tenhunen, J.D. Three-dimensional lamina architecture alters

light-harvesting efficiency in Fagus: A leaf-scale analysis. Tree Physiol. 2003, 23, 577–589. [CrossRef]

[PubMed]

Chambelland, J.-C.; Dassot, M.; Adam, B.; Donès, N.; Balandier, P.; Marquier, A.; Saudreau, M.; Sonohat, G.;

Sinoquet, H. A double-digitising method for building 3D virtual trees with non-planar leaves: Application

to the morphology and light-capture properties of young beech trees (Fagus sylvatica). Funct. Plant Biol. 2008,

35, 1059–1069. [CrossRef] [PubMed]

Johnson, I.R.; Thornley, J.H.M. A model of instantaneous and daily canopy photosynthesis. J. Theor. Biol.

1984, 107, 531–545. [CrossRef]

Liu, Y.Y.; Li, J.; Liu, S.C.; Yu, Q.; Tong, X.J.; Zhu, T.T.; Gao, X.X.; Yu, L.X. Sugarcane leaf photosynthetic light

responses and their difference between varieties under high temperature stress. Photosynthetica 2020, 58,

1009–1018. [CrossRef]

Maxima.sourceforge.net. Maxima, a Computer Algebra System. Version 5.43.0 (2020). Available online:

http://maxima.sourceforge.net/ (accessed on 14 September 2020).

Koyama, K.; Shirakawa, H.; Kikuzawa, K. Redeployment of shoots into better-lit positions within the crowns

of saplings of five species with different growth patterns. Forests 2020, 11, 1301. [CrossRef]

Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods

2012, 9, 671. [CrossRef]

John, G.P.; Scoffoni, C.; Buckley, T.N.; Villar, R.; Poorter, H.; Sack, L. The anatomical and compositional basis

of leaf mass per area. Ecol. Lett. 2017, 20, 412–425. [CrossRef]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing;

R Core Team: Vienna, Austria, 2020.

Wilke, C.O. cowplot: Streamlined Plot Theme and Plot Annotations for ’ggplot2’. CRAN Repos. 2016, 2, R2.

Forests 2020, 11, 1365

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

20 of 21

Clarke, E.; Sherrill-Mix, S. ggbeeswarm: Categorical Scatter (Violin Point) Plots. 2017. Available online:

https://cran.R-project.org (accessed on 14 September 2020).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016.

Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.

2015, 67, 48. [CrossRef]

Pattison, P.M.; Tsao, J.Y.; Brainard, G.C.; Bugbee, B. LEDs for photons, physiology and food. Nature 2018, 563,

493–500. [CrossRef] [PubMed]

Tateno, M.; Taneda, H. Photosynthetically versatile thin shade leaves: A paradox of irradiance-response

curves. Photosynthetica 2007, 45, 299–302. [CrossRef]

Oguchi, R.; Hikosaka, K.; Hiura, T.; Hirose, T. Costs and benefits of photosynthetic light acclimation by tree

seedlings in response to gap formation. Oecologia 2008, 155, 665–675. [CrossRef] [PubMed]

Oguchi, R.; Onoda, Y.; Terashima, I.; Tholen, D. Leaf Anatomy and Function. In The Leaf: A Platform for

Performing Photosynthesis; Adams Iii, W.W., Terashima, I., Eds.; Springer International Publishing: Cham,

Switzerland, 2018; pp. 97–139. [CrossRef]

Terashima, I.; Miyazawa, S.-I.; Hanba, Y.T. Why are sun leaves thicker than shade leaves?—Consideration

based on analyses of CO2 diffusion in the leaf. J. Plant Res. 2001, 114, 93–105. [CrossRef]

Bhusal, N.; Bhusal, S.J.; Yoon, T.-M. Comparisons of physiological and anatomical characteristics between

two cultivars in bi-leader apple trees (Malus × domestica Borkh.). Sci. Hortic. 2018, 231, 73–81. [CrossRef]

Wyka, T.P.; Oleksyn, J.; Zytkowiak,

R.; Karolewski, P.; Jagodzinski,

A.M.; Reich, P.B. Responses of leaf

structure and photosynthetic properties to intra-canopy light gradients: A common garden test with four

broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia 2012, 170, 11–24.

[CrossRef]

Mooney, H.A.; Gulmon, S.L. Environmental and evolutionary constraints on the photosynthetic characteristics

of higher plants. In Topics in Plant Population Biology; Solbrig, O.T., Jain, S., Johnson, G.B., Raven, P.H., Eds.;

Macmillan Education: London, UK, 1979; pp. 316–337.

Tanaka, T.; Oikawa, S.; Kurokawa, C. Leaf shedding increases the photosynthetic rate of the canopy in

N2 -fixing and non-N2 -fixing woody species. Tree Physiol. 2018, 38, 1903–1911. [CrossRef]

Oikawa, S.; Hikosaka, K.; Hirose, T. Does leaf shedding increase the whole-plant carbon gain despite some

nitrogen being lost with shedding? New Phytol. 2008, 178, 617–624. [CrossRef]

Kubínová, Z.; Janáˇcek, J.; Lhotáková, Z.; Šprtová, M.; Kubínová, L.; Albrechtová, J. Norway spruce needle size

and cross section shape variability induced by irradiance on a macro- and microscale and CO2 concentration.

Trees 2017, 32, 231–244. [CrossRef]

Dörken, V.M.; Lepetit, B. Morpho-anatomical and physiological differences between sun and shade leaves

in Abies alba Mill. (Pinaceae, Coniferales): A combined approach. Plant Cell Environ. 2018, 41, 1683–1697.

[CrossRef]

Niinemets, Ü.; Tobias, M.; Cescatti, A.; Sparrow, A. Size-dependent variation in shoot light-harvesting

efficiency in shade-intolerant conifers. Int. J. Plant Sci. 2006, 167, 19–32. [CrossRef]

Anten, N.P.R. Optimization and game theory in canopy models. In Canopy Photosynthesis: From Basics to

Applications; Hikosaka, K., Niinemets, Ü, Anten, N.P.R., Eds.; Springer: Dordrecht, The Netherlands, 2016;

pp. 355–377.

De Wit, M.; Kegge, W.; Evers, J.B.; Vergeer-van Eijk, M.H.; Gankema, P.; Voesenek, L.A.; Pierik, R. Plant

neighbor detection through touching leaf tips precedes phytochrome signals. Proc. Natl. Acad. Sci. USA

2012, 109, 14705–14710. [CrossRef] [PubMed]

Saudreau, M.; Ezanic, A.; Adam, B.; Caillon, R.; Walser, P.; Pincebourde, S. Temperature heterogeneity over

leaf surfaces: The contribution of the lamina microtopography. Plant Cell Environ. 2017, 40, 2174–2188.

[CrossRef] [PubMed]

Reich, P.B.; Walters, M.B.; Tjoelker, M.G.; Vanderklein, D.; Buschena, C. Photosynthesis and respiration rates

depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in

relative growth rate. Funct. Ecol. 1998, 12, 395–405. [CrossRef]

Walters, M.B.; Reich, P.B. Low-light carbon balance and shade tolerance in the seedlings of woody plants: Do

winter deciduous and broad-leaved evergreen species differ? New Phytol. 1999, 143, 143–154. [CrossRef]

Forests 2020, 11, 1365

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

21 of 21

Kurosawa, Y.; Mori, S.; Wang, M.; Ferrio, J.P.; Yamaji, K.; Koyama, K.; Haruma, T.; Doyama, K. Initial burst of

root development with decreasing respiratory carbon cost in Fagus crenata Blume seedlings. Plant Spec. Biol.

2020. [CrossRef]

Miyashita, A.; Tateno, M. A novel index of leaf RGR predicts tree shade tolerance. Funct. Ecol. 2014, 28,

1321–1329. [CrossRef]

Tatsumi, K.; Kuwabara, Y.; Motobayashi, T. Photosynthetic light-use efficiency of rice leaves under fluctuating

incident light. Agrosyst. Geosci. Environ. 2020, 3, e20030. [CrossRef]

Matthews, J.S.A.; Vialet-Chabrand, S.; Lawson, T. Role of blue and red light in stomatal dynamic behaviour.

J. Exp. Bot. 2020, 71, 2253–2269. [CrossRef]

Zhang, S.B.; Hao, Y.J.; Deng, Q.L. Photosynthetic induction is slower in young leaves than in mature leaves

in a tropical invader, Chromolaena Odorata. Photosynth. 2019, 57, 1044–1052. [CrossRef]

Kimura, H.; Hashimoto-Sugimoto, M.; Iba, K.; Terashima, I.; Yamori, W. Improved stomatal opening enhances

photosynthetic rate and biomass production in fluctuating light. J. Exp. Bot. 2020, 71, 2339–2350. [CrossRef]

[PubMed]

Sakoda, K.; Yamori, W.; Groszmann, M.; Evans, J.R. Stomatal, mesophyll conductance, and biochemical

limitations to photosynthesis during induction. Plant Physiol. 2020. [CrossRef]

Shimadzu, S.; Seo, M.; Terashima, I.; Yamori, W. Whole irradiated plant leaves showed faster photosynthetic

induction than individually irradiated leaves via improved stomatal opening. Front. Plant Sci. 2019, 10.

[CrossRef] [PubMed]

Yamori, W.; Kusumi, K.; Iba, K.; Terashima, I. Increased stomatal conductance induces rapid changes to

photosynthetic rate in response to naturally fluctuating light conditions in rice. Plant Cell Environ. 2020, 43,

1230–1240. [CrossRef] [PubMed]

Alter, P.; Dreissen, A.; Luo, F.L.; Matsubara, S. Acclimatory responses of Arabidopsis to fluctuating light

environment: Comparison of different sunfleck regimes and accessions. Photosynth. Res. 2012, 113, 221–237.

[CrossRef]

Naumburg, E.; Ellsworth, D.S. Photosynthetic sunfleck utilization potential of understory saplings growing

under elevated CO2 in FACE. Oecologia 2000, 122, 163–174. [CrossRef]

Duursma, R.A.; Payton, P.; Bange, M.P.; Broughton, K.J.; Smith, R.A.; Medlyn, B.E.; Tissue, D.T. Near-optimal

response of instantaneous transpiration efficiency to vapour pressure deficit, temperature and CO2 in cotton

(Gossypium hirsutum L.). Agric. For. Meteorol. 2013, 168, 168–176. [CrossRef]

Koyama, K.; Takemoto, S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep.

2014, 4, 4389. [CrossRef]

Scoffoni, C.; Sack, L.; Ort, D. The causes and consequences of leaf hydraulic decline with dehydration. J. Exp.

Bot. 2017, 68, 4479–4496. [CrossRef]

Muraoka, H.; Tang, Y.H.; Terashima, I.; Koizumi, H.; Washitani, I. Contributions of diffusional limitation,

photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in

natural high light. Plant Cell Environ. 2000, 23, 235–250. [CrossRef]

Espadafor, M.; Orgaz, F.; Testi, L.; Lorite, I.J.; González-Dugo, V.; Fereres, E. Responses of transpiration and

transpiration efficiency of almond trees to moderate water deficits. Sci. Hortic. 2017, 225, 6–14. [CrossRef]

Paillassa, J.; Wright, I.J.; Prentice, I.C.; Pepin, S.; Smith, N.G.; Ethier, G.; Westerband, A.C.; Lamarque, L.J.;

Wang, H.; Cornwell, W.K.; et al. When and where soil is important to modify the carbon and water economy

of leaves. New Phytol. 2020, 228, 121–135. [CrossRef] [PubMed]

Bhusal, N.; Lee, M.; Reum Han, A.; Han, A.; Kim, H.S. Responses to drought stress in Prunus sargentii and

Larix kaempferi seedlings using morphological and physiological parameters. For. Ecol. Manag. 2020, 465,

118099. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional

affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る