リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quantitation of Residual Host Cell DNA in Recombinant Adeno-Associated Virus Using Droplet Digital Polymerase Chain Reaction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quantitation of Residual Host Cell DNA in Recombinant Adeno-Associated Virus Using Droplet Digital Polymerase Chain Reaction

Higashiyama, Kiyoko Yuan, Yuzhe Hashiba, Noriko Masumi-Koizumi, Kyoko Yusa, Keisuke Uchida, Kazuhisa 神戸大学

2023.06

概要

Recombinant adeno-associated virus (rAAV) is a viral vector commonly used in gene therapy. Residual host cell DNA is an impurity that has been associated with the risk of infection and oncogenicity. Thus, it needs to be monitored for quality control. We aimed to develop a droplet digital polymerase chain reaction (ddPCR) method targeting 18S ribosomal RNA (rRNA) genes to quantitate residual host cell DNA. The copy number of the 18S rRNA gene was determined using two sets of primer pairs for 116- and 247-bp amplicons sharing the C-terminus. For conversion of the copy number of the 18S rRNA gene into the mass concentration of genomic DNA, the accurate copy number of 18S rRNA genes in HEK293 genomic DNA was determined by comparison with copy numbers of three reference genes (EIF5B, DCK, and HBB). Results showed that 88.6–97.9% of HEK293 genomic DNA spiked into rAAV preparations was recovered. The ddPCR-based assay was applied to rAAV preparations to quantitate residual host cell DNA as an impurity. Our findings indicate that the assay can be used for the quantitation and size distribution of residual host cell DNA in rAAV products.

この論文で使われている画像

参考文献

1. Wang D, Tai PWL, Gao G. Adeno-associated virus

vector as a platform for gene therapy delivery.

Nat Rev Drug Discov 2019;18(5):358–378; doi:

10.1038/s41573-019-0012-9

2. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al.

Current clinical applications of in vivo gene

therapy with AAVs. Mol Ther 2021;29(2):464–488;

doi: 10.1016/j.ymthe.2020.12.007

3. Leebeek FWG, Miesbach W. Gene therapy for

hemophilia: A review on clinical benefit, limitations, and remaining issues. Blood 2021;138(11):

923–931; doi: 10.1182/blood.2019003777

4. Jensen TL, Gøtzsche CR, Woldbye DPD. Current

and future prospects for gene therapy for rare

genetic diseases affecting the brain and spinal

cord. Front Mol Neurosci 2021;14:695937; doi:

10.3389/fnmol.2021.695937

5. Bower JJ, Song L, Bastola P, et al. Harnessing the

natural biology of adeno-associated virus to enhance the efficacy of cancer gene therapy. Viruses

2021;13(7); doi: 10.3390/v13071205

6. Scott LJ. Alipogene tiparvovec: A review of its

use in adults with familial lipoprotein lipase deficiency. Drugs 2015;75(2):175–182; doi: 10.1007/

s40265-014-0339-9

7. Waldrop MA, Kolb SJ. Current treatment options

in neurology-SMA therapeutics. Curr Treat Options

Neurol 2019;21(6):25; doi: 10.1007/s11940-019-0568-z

8. Hauck B, Murphy SL, Smith PH, et al. Undetectable

transcription of cap in a clinical AAV vector: Implications for preformed capsid in immune responses. Mol

Ther 2009;17(1):144–152; doi: 10.1038/mt.2008.227

9. Wright JF. Product-related impurities in clinicalgrade recombinant AAV vectors: Characterization

and risk assessment. Biomedicines 2014;2(1):80–

97; doi: 10.3390/biomedicines2010080

10. Urabe M, Ding C, Kotin RM. Insect cells as a

factory to produce adeno-associated virus type 2

vectors. Hum Gene Ther 2002;13(16):1935–1943;

doi: 10.1089/10430340260355347

11. Cle´ment N, Knop DR, Byrne BJ. Large-scale

adeno-associated viral vector production using a

herpesvirus-based system enables manufacturing

for clinical studies. Hum Gene Ther 2009;20(8):

796–806; doi: 10.1089/hum.2009.094

12. Su W, Patrı´cio MI, Duffy MR, et al. Self-attenuating

adenovirus enables production of recombinant

adeno-associated virus for high manufacturing yield

without contamination. Nat Commun 2022;13(1):

1182; doi: 10.1038/s41467-022-28738-2

13. Knezevic I, Stacey G, Petricciani J. WHO Study

Group on cell substrates for production of bio-

logicals, Geneva, Switzerland, 11–12 June 2007.

Biologicals 2008;36(3):203–211; doi: 10.1016/

j.biologicals.2007.11.005

14. Wang Y, Cooper R, Kiladjian A, et al. A digestionfree method for quantification of residual host cell

DNA in rAAV gene therapy products. Mol Ther

Methods Clin Dev 2019;13:526–531; doi: 10.1016/

j.omtm.2019.05.005

15. WHO. Recommendations for the evaluation of

animal cell cultures as substrates for the manufacture of biological medicinal products and for

the characterization of cell banks. Technical Report Series 2013;No 978, Annex 3.

16. Ayuso E, Mingozzi F, Montane J, et al. High AAV

vector purity results in serotype- and tissueindependent enhancement of transduction efficiency. Gene Ther 2010;17(4):503–510; doi:

10.1038/gt.2009.157

17. Andre´ M, Reghin S, Boussard E, et al. Universal

real-time PCR assay for quantitation and size

evaluation of residual cell DNA in human viral

vaccines. Biologicals 2016;44(3):139–149; doi:

10.1016/j.biologicals.2016.03.002

18. Lecomte E, Tournaire B, Cogne´ B, et al. Advanced

characterization of DNA molecules in rAAV vector

preparations by single-stranded virus nextgeneration sequencing. Mol Ther Nucleic Acids

2015;4(10):e260; doi: 10.1038/mtna.2015.32

19. Hindson BJ, Ness KD, Masquelier DA, et al.

High-throughput droplet digital PCR system for

absolute quantitation of DNA copy number. Anal

Chem 2011;83(22):8604–8610; doi: 10.1021/

ac202028g

20. Duewer DL, Kline MC, Romsos EL, et al. Evaluating droplet digital PCR for the quantification of

human genomic DNA: Converting copies per nanoliter to nanograms nuclear DNA per microliter.

Anal Bioanal Chem 2018;410(12):2879–2887; doi:

10.1007/s00216-018-0982-1

21. Graham FL, Smiley J, Russell WC, et al. Characteristics of a human cell line transformed by DNA

from human adenovirus type 5. J Gen Virol 1977;

36(1):59–74; doi: 10.1099/0022-1317-36-1-59

22. Lin YC, Boone M, Meuris L, et al. Genome dynamics

of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun

2014;5:4767; doi: 10.1038/ncomms5767

23. Sambrook J, Fritsch EF, T. M. Molecular Cloning:

A Laboratory Manual. Cold Spring Harbor Laboratory Press: New York, NY, USA; 1989.

24. He HJ, Stein EV, DeRose P, et al. Limitations of

methods for measuring the concentration of human genomic DNA and oligonucleotide samples.

Biotechniques 2018;64(2):59–68; doi: 10.2144/

btn-2017-0102

25. Kline MC, Duewer DL. Evaluating droplet digital

polymerase chain reaction for the quantification of

human genomic DNA: Lifting the traceability fog.

Anal Chem 2017;89(8):4648–4654; doi: 10.1021/

acs.analchem.7b00240

26. Shmidt AA, Egorova TV. PCR-based analytical

methods for quantification and quality control of

recombinant adeno-associated viral vector preparations. Pharmaceuticals (Basel) 2021;15(1); doi:

10.3390/ph15010023

27. McBride C, Gaupp D, Phinney DG. Quantifying levels

of transplanted murine and human mesenchymal

stem cells in vivo by real-time PCR. Cytotherapy

2003;5(1):7–18; doi: 10.1080/14653240310000038

28. Funakoshi K, Bagheri M, Zhou M, et al. Highly

sensitive and specific Alu-based quantification of

human cells among rodent cells. Sci Rep 2017;

7(1):13202; doi: 10.1038/s41598-017-13402-3

29. Tai PWL, Xie J, Fong K, et al. Adeno-associated

virus genome population sequencing achieves full

vector genome resolution and reveals humanvector chimeras. Mol Ther Methods Clin Dev

2018;9:130–141; doi: 10.1016/j.omtm.2018.02.002

30. McStay B, Grummt I. The epigenetics of rRNA

genes: From molecular to chromosome biology.

Annu Rev Cell Dev Biol 2008;24:131–157; doi:

10.1146/annurev.cellbio.24.110707.175259

31. Malinovskaya EM, Ershova ES, Golimbet VE, et al.

Copy number of human ribosomal genes with

aging: Unchanged mean, but narrowed range and

decreased variance in elderly group. Front Genet

2018;9:306; doi: 10.3389/fgene.2018.00306

32. U.S. Food and Drug Administration. Characterization and qualification of cell substrates and other

biological materials used in the production of viral

vaccines for infectious disease indications. Silver

Spring, MD; 2010. Available from: https://www.

fda.gov/regulatory-information/search-fda-guidancedocuments/characterization-and-qualification-cellsubstrates-and-other-biological-materials-used-production

[Last accessed: May 17, 2019].

33. Brimble MA, Cheng PH, Winston SM, et al. Preventing packaging of translatable P5-associated

DNA contaminants in recombinant AAV vector

preps. Mol Ther Methods Clin Dev 2022;24:280–

291; doi: 10.1016/j.omtm.2022.01.008

Received for publication January 18, 2023;

accepted after revision April 12, 2023.

Published online: April 13, 2023.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る