リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A simple method that enhances minority species detection in the microbiota: 16S metagenome-DRIP (Deeper Resolution using an Inhibitory Primer)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A simple method that enhances minority species detection in the microbiota: 16S metagenome-DRIP (Deeper Resolution using an Inhibitory Primer)

Nakajima, Aruto Yoshida, Keisuke Gotoh, Aina Katoh, Toshihiko Ojima, Miriam N. Sakanaka, Mikiyasu Xiao, Jin-Zhong Odamaki, Toshitaka Katayama, Takane 京都大学 DOI:10.20517/mrr.2022.08

2022

概要

Aim: 16S rRNA gene-based microbiota analyses (16S metagenomes) using next-generation sequencing (NGS) technologies are widely used to examine the microbial community composition in environmental samples. However, the sequencing capacity of NGS is sometimes insufficient to cover the whole microbial community, especially when analyzing soil and fecal microbiotas. This limitation may have hampered the detection of minority species that potentially affect microbiota formation and structure. Methods: We developed a simple method, termed 16S metagenome-DRIP (Deeper Resolution using an Inhibitory Primer), that not only enhances minority species detection but also increases the accuracy of their abundance estimation. The method relies on the inhibition of normal amplicon formation of the 16S rRNA gene of a target major (abundant) species during the first PCR step. The addition of a biotinylated primer that is complementary to the variable sequence of the V3-V4 region of the target species inhibits a normal amplification process to form an aberrant short amplicon. The fragment is then captured by streptavidin beads for removal from the reaction mixture, and the resulting mixture is utilized for the second PCR with barcode-tag primers. Thus, this method only requires two additional experimental procedures to the conventional 16S metagenome analysis. A proof-of-concept experiment was first conducted using a mock sample consisting of the genomes of 14 bacterial species. Then, the method was applied to infant fecal samples using a Bifidobacterium-specific inhibitory primer (n = 11). Results: As a result, the reads assigned to the family Bifidobacteriaceae decreased on average from 16, 657 to 1718 per sample without affecting the total read counts (36, 073 and 34, 778 per sample for the conventional and DRIP methods, respectively). Furthermore, the minority species detection rate increased with neither affecting Bray-Curtis dissimilarity calculated by omitting the target Bifidobacterium species (median: 0.049) nor changing the relative abundances of the non-target species. While 115 amplicon sequence variants (ASVs) were unique to the conventional method, 208 ASVs were uniquely detected for the DRIP method. Moreover, the abundance estimation for minority species became more accurate, as revealed thorough comparison with the results of quantitative PCR analysis. Conclusion: The 16S metagenome-DRIP method serves as a useful technique to grasp a deeper and more accurate microbiota composition when combined with conventional 16S metagenome analysis methods.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Paine RT. A note on trophic complexity and community stability. The American Naturalist 1969;103:91-3. DOI

Power ME, Tilman D, Estes JA, et al. Challenges in the quest for keystones. BioScience 1996;46:609-20. DOI

Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human

colon. ISME J 2012;6:1535-43. DOI PubMed PMC

Centanni M, Lawley B, Butts CA, et al. Bifidobacterium pseudolongum in the ceca of rats fed hi-maize starch has characteristics of a

keystone species in bifidobacterial blooms. Appl Environ Microbiol 2018;84:e00547-18. DOI PubMed PMC

Yamada C, Gotoh A, Sakanaka M, et al. Molecular insight into evolution of symbiosis between breast-fed infants and a member of the

human gut microbiome bifidobacterium longum. Cell Chem Biol 2017;24:515-524.e5. DOI PubMed

Raynaud X, Nunan N. Spatial ecology of bacteria at the microscale in soil. PLoS One 2014;9:e87217. DOI PubMed PMC

Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Cell 2016;164:337-40. DOI PubMed

Odamaki T, Kato K, Sugahara H, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a crosssectional study. BMC Microbiol 2016;16:90. DOI PubMed PMC

Gotoh A, Katoh T, Sakanaka M, et al. Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal

cultures supplemented with Bifidobacterium bifidum. Sci Rep 2018;8:13958. DOI PubMed PMC

Untergasser A, Cutcutache I, Koressaar T, et al. Primer3 - new capabilities and interfaces. Nucleic Acids Res 2012;40:e115. DOI

PubMed PMC

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for

polymerase chain reaction. BMC Bioinformatics 2012;13:134. DOI PubMed PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357-9. DOI PubMed PMC

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from illumina

amplicon data. Nat Methods 2016;13:581-3. DOI PubMed PMC

Clifford RJ, Milillo M, Prestwood J, et al. Detection of bacterial 16S rRNA and identification of four clinically important bacteria by

real-time PCR. PLoS One 2012;7:e48558. DOI PubMed PMC

R Core Team. R: a language and environment for statistical computing. Vienna, Austria; 2021. Available from: https://www.rproject.org/ [Last accessed on 25 May 2022].

Harrell Jr FE. Hmisc: Harrell Miscellaneous; 2021. Available from: https://cran.r-project.org/package=Hmisc [Last accessed on 25

May 2022].

Oksanen J, Blanchet FG, Friendly M, et al. vegan: Community Ecology Package; 2020. Available from: https://cran.rproject.org/package=vegan [Last accessed on 25 May 2022].

Nishijima S, Suda W, Oshima K, et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res

2016;23:125-33. DOI PubMed PMC

Sakanaka M, Hansen ME, Gotoh A, et al. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant

symbiosis. Sci Adv 2019;5:eaaw7696. DOI PubMed PMC

Gonzalez JM, Portillo MC, Belda-Ferre P, Mira A. Amplification by PCR artificially reduces the proportion of the rare biosphere in

microbial communities. PLoS One 2012;7:e29973. DOI PubMed PMC

...

参考文献をもっと見る