リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「自然条件下におけるCunninghamia lanceolata(Lamb.) Hook.の風化現象及び耐候処理に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

自然条件下におけるCunninghamia lanceolata(Lamb.) Hook.の風化現象及び耐候処理に関する研究

崔, 新婕 CUI, XINJIE ツイ, シンジエ 九州大学

2021.09.24

概要

本研究の目的は、Cunninghamia lanceolata(コウヨウザン)を対象に、屋外暴露された試験体の表面劣化現象及び耐候性に与える耐候処理の影響を明らかにすることである。

まず、コウヨウザンの風化挙動について検討した。(1)木材表面の色の変化は、暴露の初期段階から著しく現れたが、暴露後 1 週間まで構造変化は表れなかった。1 か月後、コウヨウザンの表面の微細な組織構造がひどく損傷した。(2)心材に与える風化の影響が辺材より大きく、地上高が高くなるほど、軸方向に上に上がれば上がるほど、抗風化能力が弱くなることを明らかにした。(3)コウヨウザンの風化挙動は木材密度との間に正の相関関係が認められた。

次に、コウヨウザン木材の耐候性における熱処理の影響について検討した。熱処理された木材は、自然風化の過程で均一な木材の色を維持することができた。熱変性は、構造安定性の維持に効果がなかった。自然暴露された木材構造の損傷程度は 220 度熱処理> 190 度熱処理>未処理の順であった。故に、木材構造への影響を考えると、熱処理は耐候性を改善する理想的な方法ではないため、熱処理木材の長所及び短所を配慮の上で利用が必要であることが明らかになった。

最後に、コウヨウザン木材の風化防止における低分子量フェノール樹脂の効果について検討した。 LVSEM 観察により、風化した場合、未処理の木材よりも含浸木材の劣化が遅いことが明らかになった。処理された含浸木材は、最初の風化の間、色の安定性を維持した。コウヨウザンの耐候性は、低分子量フェノール樹脂の含浸によって大幅に改善されることを明らかにした。

以上の研究成果より、コウヨウザンの耐候性及び耐候処理対策を講じる上で、貴重な情報が示され、自然環境におけるコウヨウザンの耐候性を高めることに役立ち、エクステリアで利用される木製品の寿命を延ばし、コウヨウザンの利用率の向上に寄与できることを示した。

この論文で使われている画像

参考文献

1. Agnieszka J. (2013). The study of changes in color of wood angelim pedra (Hymenolobium sp.) and piquia (Caryocar sp.) during artificial weathering. Forestry and Wood Technology, 82, 339–343.

2. Ajji Z. (2006). Preparation of pinewood/polymer/composites using gamma irradiation. Radiation Physics and Chemistry, 75, 1075–1079.

3. Akachuku AE. (1984). The possibility of tree selection and breeding for genetic improvement of wood properties of Gmelina arborea. Forest Science, 30, 275– 283.

4. Ala-Viikari J. & Mayes D. (2009). New generation thermowood*how to take thermowood to the next level. In F. Englund, B. K. Segerholm, C. A. S. Hill & H. Militz (Eds.), Proceedings of 4th European Conference on Wood Modification, Stockholm, 27-29 April 2009 (pp. 23–29).

5. Alfred JS., Horace KB. & Albert AK. (1946). Staybwood—heat-stabilized wood. Industrial and Engineering Chemistry, 38, 630–634.

6. Alfred JS. (1956). Thermal degradation of wood and cellulose. Industrial and Engineering Chemistry, 48, 413–417.

7. Altgen M., Adamopoulos S. & Militz H. (2015). Wood defects during industrial- scale production of thermally modified Norway spruce and Scots pine. Wood Material Science & Engineering, 12, 14–23.

8. Anderson EL., Pawlak Z., Owen NL. & Feist WC. (1991). Infrared studies of wood weathering. Part II: Hardwoods. Applied. Spectroscopy, 45, 648–652.

9. Archer K. & Lebow S. (2006). Wood preservation. In: Walker JCF (ed) primary wood processing, 2nd edition. Springer, 297–338.

10. Ashton HE. (1967). Clear finishes for exterior wood. Field exposure tests. Journal of Paint Technology, 39(507), 212–224.

11. Ayadi N., Lejeune F., Charrier F., Charrier B. & Merlin A. (2003). Color stability of heat–treated wood during artificial weathering. Holz als Roh– und Werkstoff, 61(3), 221–226.

12. Bauch J. & Berndt H. (1973). Variability of the chemical composition of pit membranes in bordered pits of gymnosperms. Wood Science and Technology, 7, 6–9.

13. Bekhta P. & Niemz P. (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung, 57(5), 539–546.

14. Bengtsson C., Jermer J. & Brem F. (2002). Bending strength of heat-treated Spruce and Pine timber. In International Research Group Wood Pre, Section 4- Processes; Nº IRG/WP; International Research Group on Wood Protection: Stockholm, Sweden, p. 40242.

15. Boonstra MJ., Rijsdijk JF., Sander C., Kegel E., Tjeerdsma B., Militz H., Acker JV. & Stevens M. (2006). Microstructural and physical aspects of heat-treated wood. Part 1. Softwoods. Maderas. Ciencia y Tecnologia, 8(3), 193–208.

16. Borrega M. & Gibson LJ. (2015). Mechanics of balsa (Ochroma pyramidale) wood. Mechanics and Materials, 84, 75–90.

17. Borgin K. (1969). The stability, durability, and weather resistance of wooden houses under cold climatic conditions. Architect Builder, June–July.

18. Boxall J. (1977). Painting weathered timber. Buildg. Res. Est. (UK) Information Sheet, 20/77, 1–2.

19. Borgin K. (1968). The protection of wood against dimensional instability. Forestry in South Africa, 9, 81–94.

20. Borgin KJ. (1970). The use of the scanning electron microscope for the study of weathered wood. Journal of Microscopy, 92(1), 47–55.

21. Borgin KJ. (1971). The mechanism of the breakdown of the structure of wood due to environmental factors. Institute of Wood Science Journal, 5(4), 26–30.

22. Borgin K., Parameswaran N. & Liese W. (1975). The effect of aging on the ultrastructure of wood. Wood Science and Technology, 9(2), 87–98.

23. Brischke C., Welzbacher C., Brandt K. & Rapp A. (2007). Quality control of thermally modified timber: interrelationship between heat treatment intensity and CIE L*a*b* color data on homogenized wood samples. Holzforschung, 61, 19–22.

24. Brischke C. & Meyer VL. (2015). Moisture content and decay of differently sized wooden components during 5 years of outdoor exposure. European Journal of Wood and Wood Products, 73, 719–728.

25. Browne FL. & Simonson HC. (1957). The penetration of light into wood. Forest Product Journal, 7(10), 308–314.

26. Buchner J., Irle M., Belloncle C., Michaud F. & Macchioni N. (2018). Fungal and bacterial colonies growing on weathered wood surfaces. Wood Material Science Engineering, 14(1), 33–41.

27. Caba K., Guerrero P., Rio M. & Mondragon I. (2007). Weathering behaviour of wood-faced construction materials. Construction and Building Materials, 21(6), 1288–1294.

28. Cai L., Ferretto PW. & Deng Y. (2016). A study of the timber structure of drum towers of Chinese Dong Minority architecture and its development evolution. In Proceedings of the 20th IIWC International Conference and Symposium, Falun, Sweden, 13–16 April 2016; pp. 51–61. Available online: http://iiwc.icomos.org/assets/cai-ferretto-deng-falun.pdf (accessed on 11 December 2020)

29. Cao Y., Jiang J., Lu J., Huang R., Jiang J. & Wu Y. (2012). Color change of Chinese fir through steam-heat treatment. Bioresources, 7(3), 2809–2819.

30. Calienno L., Monaco AL., Pelosi C. & Picchio R. (2014). Colour and chemical changes on photodegraded beech wood with or without red heartwood. Wood Science and Technology, 48, 1167–1180.

31. Calculate Wood Decay Hazard Index (Scheffer Index). Available online: https://www.wbdg.org/tools/corrdefense/wood_decay.html (accessed on 11 December 2020).

32. Chang TC., Chang HT., Wu CL. & Chang ST. (2010). Influences of extractives on the photodegradation of wood. Polymer Degradation and Stability, 95(4), 516–521.

33. Chang ST., Hon DNS. & Feist WC. (1982). Photodegradation and photoprotection of wood surfaces. Wood and Fiber Science, 14(2), 104–117.

34. Chang ST. & Chang HT. (2001a). Inhibition of the photodiscoloration of wood by butyrylation. Holzforschung, 55, 255–259.

35. Chang ST. & Chang HT. (2001b). Comparisons of the photostability of esterified wood. Polymer Degradation and Stability, 71(2), 261–266.

36. Chang ST. & Chang HT. (2006). Modification of wood with isopropyl glycidyl ether and its effects on decay resistance and light stability. Bioresource Technology, 97(11), 1265–1271.

37. Cheng DL. (2007). The study on technics and properties of heat-treated fir wood. Master’s Thesis, Nanjing Forest University, Nanjing, China, June.

38. Cheng S., Huang A., Wang S. & Zhang Q. (2016). Effect of different heat treatment temperatures on the chemical composition and structure of Chinese fir wood. BioResources, 11(2), 4006–4016.

39. Cleland MR., Galloway RA., Berejka AJ., Montoney D., Driscoll M., Smith L. & Scott Larsen L. (2009). X-ray initiated polymerization of wood impregnants. Radiation Physics Chemistry, 78(7–8), 535–538.

40. Colom X., Carrillo F., Nogue’s F. & Garriga P. (2003). Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and Stabiloty, 80(3), 543–549.

41. Deng LL. (2007). Common trees (2 south). China Forestry Publishing House, Beijing, China. ISBN 978-7-5038-4590-1.

42. Derbyshire H. & Miller E R. (1981). The photodegradation of wood during solar irradiation. Part 1. Effects on the structural integrity of thin wood strips. Holz als Roh–und Werkstoff, 39(8), 341–350.

43. Derbyshire H., Miller ER. & Turkulin H. (1996). Investigations into the photodegradation of wood using microtensile testing. Part 2: an investigation of the changes in tensile strength of different softwood species during natural weathering. Holz als Roh– Werkstoff, 54, 1–6.

44. Deka M., Humar M., Rep G., Kriˇcej B., Šentjurc M. & Petriˇc M. (2008). Effects of UV light irradiation on colour stability of thermally modified, copper ethanolamine treated and non-modified wood: EPR and DRIFT spectroscopic studies. Wood Science and Technology, 42, 5–20.

45. Desai RL. (1967). Coating adhesion to weathered wood. Can. Dept. Fisheries and Forestry. Bi-monthly Res. Notes 23, 36–37.

46. Devi RR., Maji TK. & Banerjee AN. (2004). Studies on dimensional stability and thermal properties of rubber wood chemically modified with styrene and glycidyl methacrylate. Journal of Applied Polymer Science, 93(4), 1938–1945.

47. Devi RR. & Maji TK. (2007). Effect of glycidyl methacrylate on the physical properties of wood-polymer composites. Polymer Composites, 28, 1–5.

48. Dirol D. & Guyonnet R. (1993). The improvement of wood durability by ratification process. In: International Research Group on Wood Preservation. Paper-II, 24, 1–11.

49. Dubey MK., Pang S. & Walker J. (2010). Color and dimensional stability of oil heat-treated radiata pinewood after accelerated UV weathering. Forest Products Journal, 60(5), 453–459.

50. El-Awady NI. (1999). Wood polymer composites using thermal and radiation techniques. Journal of Reinforced Plastics and Composites, 18, 1367–1374.

51. Esteves B., Marques AV., Domingos IJ. & Pereira H. (2007). Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology, 41, 193–207.

52. Esteves BM., Domingos IJ. & Pereira HM. (2008). Pine wood modification by heat treatment in air. Bioresources, 3(1), 142–154.

53. Esteves B. & Pereira H. (2009). Wood modification by heat treatment: A review. Bioresources, 4(1), 370–404.

54. Evans PD., Thay PD. & Schmalzl KJ. (1996). Degradation of wood surfaces during natural weathering. Effects on lignin and cellulose and on the adhesion of acrylic latex primers. Wood Science and Technology, 30, 411–422.

55. Evans PD. (1988). A note on assessing the deterioration of thin wood veneers during weathering. Wood and Fiber Science, 20, 487–492.

56. Evans PD., Schmalzl KJ. & Michell AF. (1993). Rapid loss of lignin at wood surfaces during natural weathering. In Cellulosics: Pulp, Fibre and Environmental Aspects. J. F Kennedy, G. O. Phillips, and P. A. Williams, Eds. Chichester: Ellis Horwood, 335–340.

57. Evans PD. & Banks WB. (1990). Degradation of wood surfaces by water: weight losses and changes in ultrastructure and chemical composition. Holz Roh-Werkst, 48(4), 159–163.

58. Evans PD., Michell AJ. & Schmalzl KJ. (1992). Studies of the degradation and protection of wood surfaces. Wood Science and Technology, 26(2), 151–163.

59. Evans PD. (1989). Structural changes in Pinus radiata during weathering. Journal of the Institute of Wood Science, 11(5), 172–181.

60. Evans PD. & Banks WB. (1988). Degradation of wood surfaces by water. Changes in mechanical properties of thin wood strips. Holz als Roh-und Werkstoff, 46(11), 427–435.

61. Evans PD., Chowdhury MJ., Mathews B., Schmalzl K., Ayer S., Kiguchi M. & Kataoka Y. (2005). Weathering and surface protection of wood. In: Kutz M, editor. Handbook of environmental degradation of materials. William Andrew.

62. Evans PD., Wallis AFA. & Owen NL. (2000) Weathering of chemically modified wood surfaces. Wood Science and Technology, 34(2),151-165.

63. Evans PD., Owen NL., Schmid S. & Webster RD. (2002). Weathering and photostability of benzoylated wood. Polymer Degradation and Stability, 76(2), 291–303.

64. Evans PD. (2009). Review of the weathering and photostability of modified wood. Wood Material Science and Engineering, 4(1-2), 2-13.

65. Evans PD. (2008). Weathering and photoprotection of wood. Development of Commercial Wood Preservatives, 5, 69–117.

66. Feist WC. (1989). Outdoor wood weathering and protection. Advances in Chemistry, 263-298.

67. Feist WC. & Sell J. (1987). Weathering behavior of dimensionally stabilized wood treated by heating under pressure of nitrogen gas. Wood and Fiber Science, 19(2), 183-195.

68. Feist WC. & Hon DNS. (1984). Chemistry of weathering and protection. In Chemistry of Solid Wood. R. M. Rowell, Ed. Washington, DC: American Chemistry Society, 401–454.

69. Feist WC. (1988). Role of pigment concentration in the weathering of semitransparent stains. Forest Products Journal, 38(2), 41–44.

70. Finlay MR. (2004). Old efforts at new uses: a brief history of chemurgy and the American search for biobased materials. Journal of Industrial Ecology, 7(3–4), 33–46.

71. Fu LG., Yu YF. & Robert RM. (1999). Taxodiaceae. Flora of China, 4, 54–61.

72. Funaoka M., Kako T. & Abe I. (1990). Condensation of lignin during heating of wood. Wood Science and Technology, 24, 277–288.

73. Gago J., López A., Santiago J., Acevedo M. & Rodríguez J. (2007). Wood – polymer composites obtained by gamma irradiation. AIP Conference Proceedings, 947, 481–482.

74. Geiser K. (2001). Materials matter: towards a sustainable materials policy. MIT Press, Cambridge, Massachusetts, USA.

75. Gérardin P. (2016). New alternatives for wood preservation based on thermal and chemical modification of wood— a review. Annals of Forest Science, 73(3), 559–570.

76. Giebeler E. (1983). Dimensional stabilization of wood by moisture-heat- pressure-treatment. Holz als Roh- und Werkstoff, 41, 87-94.

77. Gindl W., Zargar-Yaghubi F. & Wimmer R. (2003). Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresource Technology, 87(3), 325–330.

78. Gonzalez Peña MM., Curling SF. & Hale MDC. (2009). On the effect of heat on the chemical composition and dimensions of thermally modified wood. Polymer Degradation Stability, 94(12), 2184–2193.

79. Hansmann C., Deka, M., Wimmer R. & Gindl W. (2006). Artificial weathering of wood surfaces modified by melamine formaldehyde resins. Holz Als Roh-und Werkstoff, 64(3), 198–203.

80. Hatae F., Kataoka Y., Kiguchi M., Matsunaga H. & Matsumura J. (2012a). In site visualization of wood degradation during artificial weathering by variable pressure scanning electron microscopy. In Proceedings of the 11th Pacific Rim Bio-Based Composites Symposium (BIOCOMP 2012), Shizuoka, Japan, 27–30 November; 226–232.

81. Hatae F., Kataoka Y., Kiguchi M., Matsunaga H. & Matsumura J. (2012b). Use of variable pressure scanning electron microscopy for in situ observation of degradation of wood surfaces during artificial weathering. In Proceedings of the International Research Group on Wood Protection, IRG/WP 12-20489, Kuala Lumpur, Malaysia, 6–10 May.

82. Hasegawa M., Takata M., Matsumura J. & Oda K. (2011). Effect of wood properties on within-tree variation in ultrasonic wave velocity in softwood. Ultrasonics, 51(3), 296–302.

83. Henningsson B. & Carlsson B. (1984). Leaching of copper, chrome and arsenic from preservative treated timber in playground equipment. International Research Group on Wood Preservation, Doc. No. IRG/WP 3149.

84. Hermawan A., Nakahara T., Sakagami H., Fujimoto N. & Uchikura K. (2013). Performance of Sugi lamina impregnated with low-molecular weight phenolic resin. Journal of Wood Science, 59(4), 299–306.

85. High Precision with New Designed Sensor and Auto-Weighing Function Electronic Densimeter. Available online: https://www.alfamirage.com/english/catalog/data/300s_features.pdf (accessed on 11 April 2021).

86. Hilditch EA. & Crookes JV. (1981). Exterior wood stains, varieties, performance and appearance. Record of the Annual Convention. British Wood Preservers Association, 59–66.

87. Hill CAS. (2006). Wood modification. Chemical, thermal and other processes. Chichester: John Wiley & Sons.

88. Hill CAS., Cetin NS., Quinney RF., Derbyshire H. & Ewen RJ. (2001). An investigation of the potential for chemical modification and subsequent polymeric grafting as a means of protecting wood against photodegradation. Polymer Degradation & Stability, 72(1), 133–139.

89. Hon DNS. (1991). Photochemistry of wood. In Wood and Cellulosic Chemistry; Hon, D.N.S., Shiraishi, N., Eds.; Marcel Decker lic: New York, NY, USA; pp. 525–555. ISBN 9780824700249.

90. Hon DNS. & Chang ST. (1984). Surface degradation of wood by ultraviolet light. Journal of Polymer Science, 22(9), 2227–2235.

91. Hon NS. (1975). Formation of free radicals in photoirradiated cellulose. 1. Effect of wavelength. Journal of Polymer Science: Polymer Chemistry Edition, 13(6), 1347–1361.

92. Hon DNS. & Feist WC. (1993). Interaction of sulfur dioxide and nitric oxide with photoirradiated wood surfaces. Wood and Fiber Science, 25(2), 136–141.

93. Hon NS. & Feist WC. (1986). Weathering characteristics of hardwood surfaces. Wood Science and Technology, 20, 169–183.

94. Hon DNS. & Minemura N. (1991). Colour and discoloration in wood and cellulose chemistry. D. N. –S. Hon and N. Shiraishi, Eds. New York: Marcel Dekker, pp. 395–454.

95. Hon DNS. & Ifju G. (1978). Measuring penetration of light into wood by detection of photo-induced free radicals. Wood Science, 11(2), 118–127.

96. Huang X., Kocaefe D., Kocaefe Y., Boluk Y. & Pichette A. (2012). Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation. Polymer Degradation and Stability, 97(2), 1197–1214.

97. Hyvärinen M., Butylina S. & Kärki T. (2015). Acc elerated and natural weathering of wood-polypropylene composites containing pigments. Advanced Materials Research, 1077, 139–145.

98. Ivkovi´c M., Gapare WJ., Abarquez A., Ilic J., Powell MB. & Wu HX. (2009). Prediction of wood stiffness, strength, and shrinkage in juvenile wood of radiata pine. Wood Science and Technology, 43, 237–257.

99. Ishiguri F., Maruyama S., Takahashi K., Abe Z., Yokota S., Andoh M. & Yoshizawa N. (2003). Extractives relating to heartwood color changes in sugi (Cryptomeria japonica) by a combination of smoke-heating and UV radiation exposure. Journal of Wood Science, 49, 135–139.

100. Ja¨msa¨ S., Ahola P. & Viitaniemi P. (2000). Long-term natural weathering of coated ThermoWood. Pigment & Resin Technology, 29(2), 68–74.

101. Jankowska A., Artur W. & Mazurek A. (2014). The influence of artificial weathering on changes in color of selected coniferous wood species. Forestry and Wood Technology, 85, 95–100.

102. Japan Meteorological Agency. (2017). Available online: http://www.jma.go.jp/jma/index.html (accessed on 1 September 2017).

103. Japan Meteorological Agency. (2018). Available online: https://www.jma.go.jp/jma/index.html (accessed on 1 September 2018).

104. Jøker D. (2000). Cunninghamia Lanceolata (Lamb.) Hook. SEED LEAFLET, No.43 October 2000. Available online: https://sl.ku.dk/rapporter/seedleaflets/filer/cunninghamia-lanceolata-43.pdf. (assessed on 11 December 2020).

105. Kataoka Y. & Kiguchi M. (2001). Depth profiling of photo-induced degradation in wood by FT-IR microspectroscopy. Journal of Wood Science, 47(4), 325–327.

106. Kataoka Y. & Kiguchi M. (2009). Weatherability of water-borne wood preservation semi-transparent coatings (I)—Coating performance during 24 months of natural weathering. Wood Preservation, 35, 204–214.

107. Kalnins MA. (1966). Surface characteristics of wood as they affect the durability of finishes. Part 2: photochemical degradation of wood. U.S. Forest Products Laboratory Report, 57, 23–60.

108. Kalnins MA. (1984). Photochemical degradation of acetylated, methylated, phenylhydrazine-modified and ACC-treated wood. Journal of Applied Polymer Science, 29(1), 105-115.

109. Ken F. Tropical plants database, Tropical.Theferns.Info. Available online: tropical.theferns.info/viewtropical.pchp?id=Cunninghamia+lanceolata (accessed on 11 December 2020)

110. Kiguchi M., Kataoka Y., Doi S., Mori M., Hasegawa M., Morita S., Kinjo M., Kadegaru Y. & Imamura Y. (1996). Evaluation of weathering resistance of the commercial pigmented stains by outdoor exposure tests in Japan. Mokuzai Gakkaishi, 22(3), 150–159.

111. Kiguchi M., Suzuki M., Kinoshita T. & Kawamura J. (1997a). Evaluation of exterior pigmented stains by a new criterion of refinishing. Mokuzai Gakkaishi, 52(12), 612–617.

112. Kiguchi M., Suzuki M., Kinoshita T. & Kawamura J. (1997b). Estimation of weather resistance of wooden sashes finished with exterior stains. Materials Life, 9(4), 188–195.

113. Kiguchi M. & Evans PD. (1998). Photostabilisation of wood surfaces using a grafted benzophenone UV absorber. Polymer Degradation & Stability, 61, 33– 45.

114. Kiguchi M., Evans PD., Ekstedt J., Williams RS. & Kataoka Y. (2001). Improvement of the durability of clear coatings by grafting of UV-absorbers on to wood. Surface Coating International Part B: Coating Transactions, 84, 263- 270.

115. Kocaefe D., Poncsak S. & Boluk Y. (2008a). Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources, 3(2), 517–537.

116. Kocaefe D., Poncsak S., Doré G. & Younsi R. (2008b). Effect of heat treatment on the wettability of white ash and soft maple by water. Holz Roh-und Werkstoff, 66, 355–361.

117. Kollmann FFP., Kuenzi EW. & Stamm AJ. (1975). Principles of wood science and technology: II wood based materials; Springer-Verlag: Heidelberg/Berlin, Germany.

118. Kržišnik D., Lesar B., Thaler N. & Humar M. (2018). Influence of natural and artificial weathering on the colour change of different wood and wood-based materials. Forests, 9, 488.

119. Kucera LJ. & Sell J. (1987). Weathering behaviour of beech around the ray tissue region. Holz als Roh-Werkstoff, 45(3), 89–93.

120. Kudo K. & Saito H. (1980). Light-induced discolouration of wood. II. Discolouration of Karamatsu wood and its control. Hokkaidoritsu Kogyo Shikenjo Hokoku, 279, 5–10.

121. Kumar M., Srivastav A., Sah PL. & Jaidi MGH. (2008). Recent trends in low grade wood polymer composites modification techniques and their mechanical and thermal characteriztion. Advances in Heterogeneous Material Mechanics 2008: proceedings of the 2nd international conference on heterogeneous material mechanics, ICHMM 2008 p. 998.

122. Larnøy E., Militz H. & Eikenes M. (2005). Uptake of chitosan based impregnation solutions with varying viscosities in four different European wood species. Holz als Roh- und Werkstoff, 63, 456–462.

123. Larson PR. (1969). Wood formation and the concept of wood technology. McGraw Hill: New York, NY, USA; Volume 1.

124. Leary GJ. (1967). Yellowing of wood by light. Tappi, 50(1), 17–19.

125. Leary GJ. (1968). The yellowing of wood by light. Part II. Tappi, 51(6), 257– 260.

126. Lesar B., Pavlič M., Petrič M., Škapin AS. & Humar M. (2011). Wax treatment of wood slows photodegradation. Polymer Degradation and Stability, 96(7), 1271–1278.

127. Li MH., Ritchie GA. (1999). Eight hundred years of clonal forestry in China: I. traditional afforestation with Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). New Forests, 18, 131–142.

128. Li Y., Liu Y., Shi J. & Li G. (2010). Structure and property of PGMA/wood composite. Advanced Materials Research, 87–88, pp. 456–461.

129. Li KF., Yong FY. & Robert RM. (1999). Taxodiaceae. Flora China, 4, 54–61.

130. Li YF., Deng XW., Zhang YF., Huang YQ., Wang CY., Xiang WH., Xiao FM. & Wei XC. (2019). Chemical characteristics of heartwood and sapwood of red- heart Chinese fir (Cunninghamia lanceolata). Forest Products Journal, 69(2), 103–109.

131. Lukowsky D. (2002). Influence of the formaldehyde content of water based melamine formaldehyde resins on physical properties of Scots pine impregnated therewith. Holz als Roh- und Werkstoff, 60, 349–355.

132. Luo L., Wu Y., He X. & Qin W. (2019). Analysis of building materials for wind and rain bridge. Materials Science, Energy Technology and Power Engineering III (MEP 2019). In Proceedings of the AIP Conference Proceedings, Hohhot, China, 28–29 July 2019; AIP Publishing: Melville, NY, USA, Volume 2154, p. 020050.

133. Mathias LJ. & Wright JR. (1989). New wood-polymer composites: impregnation and in situ polymerization of hydroxymethylacrylates. American Chemical Society Polymer Preprints, Division of Polymer Chemistry, 30, 233– 234.

134. Maschek D., Goodell B., Jellison J., Lessard M. & Militz H. (2013). A new approach for the study of the chemical composition of bordered pit membranes: 4Pi and confocal laser scanning microscopy. American Journal of Botany, 100(9), 1751–1756.

135. Masanori K. & Nakano T. (2004). Artificial weathering of tropical woods. Part 2: Color change. Holzforschung, 58, 558–565.

136. Mawson D. (1915). The home of the Blizzard. Being the story of the Australasian Antarctic expedition, 1911–1914. London: William Heinemann, pp. 123–124.

137. Metsa KS., Paajanen L. & Viitanen H. (2011). Durability of thermally modified Norway spruce and Scots pine in above-ground conditions. Wood Material Science Engineering, 6(4), 163–169.

138. MetsäKS. & Viitanen H. (2015). Durability of thermally modifi ed sapwood and heartwood of Scots pine and Norway spruce in the modified double layer test. Wood Material Science Engineering, 12(3), 129-139.

139. Militz H. (2002). Heat treatment of wood: European processes and their background. In International Research Group Wood Pre, Section 4-Processes; Nº IRG/WP; International Research Group on Wood Protection: Stockholm, Sweden; p. 40241.

140. Militz H. (2008). Processes and properties of thermally modified wood manufactured in Europe. In T. Schulz, H. Militz, M. H. Freeman, B. Goodell & D. D. Nicholas (Eds.), Development of wood preservative systems (pp. 372-388). Washington DC: ACS.

141. Mitsui K. (2004). Changes in the properties of light-irradiated wood with heat treatment. Holz als Roh-und Werkstoff, 62, 23–30.

142. Mitsui K. & Tsuchikawa S. (2005). Low atmospheric temperature dependence on photodegradation of wood. Journal of Photochemistry and Photobiology B: Biology, 81(2), 84–88.

143. Miklecic J., Jirouš-Rajkovi´c V., Antonovi´c A. & Špani´c N. (2011). Discoloration of thermally modified wood during simulated indoor sunlight exposure. BioResources, 6(1), 434–446.

144. Minghe L. & Ritchie GA. (1999). Eight hundred years of clonal forestry in China: I. traditional afforestation with Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). New Forests, 18, 131–142.

145. Missanjo E. & Matsumura J. (2016). Wood density and mechanical properties of Pinus kesiya Royle ex Gordon in Malawi. Forests, 7(7), 135.

146. Miniutti VP. (1967). Microscopic observations of ultraviolet irradiated and weathered softwood surfaces and clear coatings; FPL 74; U.S. Department of Agriculture, Forest Service; Forest Products Laboratory: Madison, WI, USA.

147. Miniutti VP. (1964). Preliminary observations. Microscale changes in cell structure at softwood surfaces during weathering. Forest Products Journal, 14(12), 571–576.

148. Miniutti VP. (1970). Reflected-light and scanning electron microscopy of ultraviolet irradiated redwood surfaces. Microscope, 18(1), 61–72.

149. Nicholas DD. (1982). Wood deterioration and its prevention by preservative treatments: Volume 1: degradation and protection of wood; Syracuse University Press: New York, NY, USA; ISBN 0815622856.

150. Nuopponen M., Vuorinen T., Jamsa S. & Viitaniemi P. (2004a). Thermal modification in softwood studied by FT-IR and UV-resonance Raman spectroscopies. Journal of Wood Chemistry Technology, 24(1), 13–26.

151. Nuopponen M., Wikberg H., Vuorinen T., Maunu SL., Ja¨msa¨S. & Viitaniemi P. (2004b). Heat-treated softwood exposed to weathering. Journal of Applied Polymer Science, 91(4), 2128-2134.

152. Nzokou P., Kamdem DP. & Temiz A. (2011). Effect of accelerated weathering on discoloration and roughness of finished ash wood surfaces in comparison with red oak and hard maple. Progress Organic Coatings, 71(4), 350–354.

153. Ohkoshi M. (2002). FTIR-PAS study of light induced changes in the surface of acetylated or polyethylene glycol-impregnated wood. Journal of Wood Science, 48, 394–401.

154. Operating Instructions Model H-300S—PCE Instruments. Available online: https://www.industrial-needs.com/technical-data/densimeter-pce-h-300s.htm (accessed on 11 December 2020).

155. Orwa C., Mutua A., Kindt R., Jamnadass R. & Simons A. (2009). Cunninghamia Lanceolata (Lamb.) Hook. Agroforestry Database 4.0. 2009, pp. 1–5. Available online:http://apps.worldagroforestry.org/treedb2/AFTPDFS/Cunninghamia_lan ceolata.PDF.

156. Pandey KK. (2005a). Study of the effect of photo-irradiation on the surface chemistry of wood. Polymer Degradation and Stability, 90(1), 9–20.

157. Pandey KK. (2005b). A note on the influence of extractives on the photo- discoloration and photo-degradation of wood. Polymer Degradation and Stability, 87(2), 375–379.

158. Pandey KK. & Vuorinen T. (2008). Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polymer Degradation and Stability, 93(12), 2138–2146.

159. Panshin AJ. & DeZeeuw C. (1980). Textbook of wood technology. 4th Ed. New Tork: McGraw-Hill.

160. Park BS., Furuno T. & Uehara T. (1996). Histochemical changes of wood surfaces irradiated with ultraviolet light. Mokuzai Gakkaishi, 42(1), 1–9.

161. Preklet E., Papp G., Barta E., Tolvaj L., Berkesi O., Bohus J. & Szatmári S. (2012). Changes in DRIFT spectra of wood irradiated by lasers of different wavelength. Journal of Photochemistry Photobiology B: Biology, 112, 43–47.

162. Raczkowski J. (1980). Seasonal effects on the atmospheric corrosion of spruce micro-sections. Holz als Roh- und Werkstoff, 38(6), 231–234.

163. Robertson AR. (1977). The CIE 1976 color-difference formulae. Color Research & Application, 2(1), 7–11.

164. Roger MR., Sandra EL. & Rodney EJ. (2000). Weathering performance of plant- fiber/thermoplastic composites. Molecular Crystals and Liquid Crystals Science and Technology Section A. Molecular Crystals and Liquid Crystals, 353(1), 85– 94.

165. Rowell RM., Roger P., James SH., Jeffrey SR. & Mandla AT. (2005). Cell wall chemistry. In Handbook of Wood Chemistry and Wood Composites, 2nd ed.; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA; pp. 35–74.

166. Ren H. & Nakai T. (2006). Intratree variability of wood density and main wood mechanical properties in Chinese fir and poplar plantation. Scientia Silvae Sinicae, 42(3), 13–20.

167. Rüther P. & Jelle BP. (2013). Color changes of wood and wood-based materials due to natural and artificial weathering. Wood Material Science & Engineering, 8(1), 13–25.

168. Rowell RM. (1983). Chemical modification of wood. Forest Prod. Abstracts, Review Article, 6, 363–382.

169. Rowell RM. (2005). Chemical modification of wood in handbook of wood chemistry and wood composites. Taylor and Francis, 381–420.

170. Ryu J-Y., Takahashi M., Imamura Y. & Sato T. (1991). Biological resistance of phenol-resin treated wood. Mokuzai Gakkaishi, 37(9), 852–858.

171. Ryu J-Y., Imamura Y., Takahashi M. & Kajita H. (1993). Effect of molecular weight of resin in the biological resistance of phenol resin-treated wood. Mokuzai Gakkaishi, 39(4), 486–492.

172. Sandak A., Sandak J. & Allegretti O. (2015). Quality control of vacuum thermally modified wood with near infrared spectroscopy. Vacuum, 114, 44–48.

173. Scheffer TC. (1971). A climate index for estimating potential for decay in wood structures above ground. Forest Products Journal, 21(10), 25–31.

174. Schneider MH. (1995). New cell wall and cell lumen wood polymer composites. Wood Science and Technology, 29, 121–127.

175. Schultz TP., Nicholas DD. & Preston AF. (2007). A brief review of the past, present and future of wood preservation. Pest Management Science, 63(8), 784– 788.

176. Sell J. & Feist WC. (1986). Role of density in the erosion of wood during weathering. Forest Products Journal, 36(3), 57–60.

177. Shmulsky R. & Jones PD. (2019). Forest products and wood science: an introduction. WILEY Blackwell: Hoboken, NJ, USA.

178. Sheikh N. & Taromi FA. (1993). Radiation induced polymerization of vinyl monomers and their application for preparation of wood-polymer composites. Radiation Physics and Chemistry, 42(1-3), 179–182.

179. Shen H., Cao J., Sun W. & Peng Y. (2016). Influence of post-extraction on photostability of thermally modified scots pine wood during artificial weathering. BioResources, 11(2), 4512–4525.

180. Singh AP. & Dawson BSW. (2003). The mechanism of failure of clear coated wooden boards as revealed by microscopy. IAWA Journal, 24(1), 1–11.

181. Sivonen H., Maunu SL., Sundholm F., Jamsa S. & Viitaniemi P. (2002). Magnetic resonance studies of thermally modified wood. Holzforschung, 56, 648–654.

182. Şolpan D. & Güven O. (1998). Comparison of the dimensional stabilities of oak and cedar wood preserved by in situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate. Die Angewandte Makromolekulare Chemie, 259(1), 33–37.

183. Şolpan D. & Güven O. (1999a). Preparation and properties of some wood/(co)polymer composites. Die Angewandte Makromolekulare Chemie, 269(1), 30–35.

184. Şolpan D. & Güven O. (1999b). Preservation of beech and spruce wood by allyl alcohol-based copolymers. Radiation Physics and Chemistry, 54, 583–591.

185. Şolpan D. & Güven O. (1999c). Modification of some mechanical properties of cedar wood by radiation induced in-situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate. Iranian Polymer Journal, 8(2), 73– 81.

186. Soulounganga P., Loubinoux B., Wozniak E., Lemor A. & Gérardin P. (2004). Improvement of wood properties by impregnation with polyglycerol methacrylate. Holz als Roh- und Werkstoff, 62, 281–285.

187. Spedding DJ. (1970). Sorption of sulphur dioxide by indoor surfaces. II. Wood. Journal of Applied Chemistry, 20(7), 226–228.

188. Srinivas K. & Pandey KK. (2012). Photodegradation of thermally modified wood. Journal of Photochemistry and Photobiology B: Biology, 117, 140–145.

189. Stamm AJ. & Tarkow H. (1947). Dimensional stabilization of wood. The Journal of Physical Chemistry, 51(2), 493–505.

190. Stamm AJ. & Seborg RM. (1951). Resin-treated laminated, compressed wood – compreg. USDA Forest Service, Forest Product Laboratory, report no. 1381.

191. Stamm AJ. & Seborg RM. (1962). Resin-treated laminated, compressed wood – impreg. USDA Forest Service, Forest Product Laboratory, report no. 1380.

192. Sundqvist B. (2002). Color response of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula pubescens) subjected to heat treatment in capillary phase. Holz als Roh- und Werkstoff, 60, 106-114.

193. Svetlana B., Marko H. & Timo K. (2012). Weathering of wood-polypropylene composites containing pigments. European Journal of Wood and Wood Produsts, 70, 719–726.

194. Syrjänen T. & Kangas E. (2000). Heat -treated timber in Finland. In International Research Group Wood Pre, Section 4-Processes; Nº IRG/WP; International Research Group on Wood Protection: Stockholm, Sweden; p. 40158.

195. Takahashi M. & Imamura Y. (1990). Biological resistance of phenol-resin treated wood. International Research Group on Wood Preservation, Doc. No. IRG/ WP 3602.

196. Temiz A., Terziev N., Jacobsen B. & Eikenes M. (2006). Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood. Journal of Applied Polymer Science, 102(5), 4506–4513.

197. Thomas PT., Babu BRS. & Neelakandan K. (1993). Studies on certain wood- plastic-composites prepared by gamma irradiation. Bulletin of Materials Science, 16, 73–83.

198. Todaro L., D’Auria M., Langerame F., Salvi AM. & Scopa A. (2015). Surface characterization of untreated and hydro-thermally pre-treated Turkey oak woods after UV-C irradiation. Surface and Interface Analysis, 47(2), 206–215.

199. Tolvaj L. & Faix O. (1995). Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L*a*b* color measurements. I. Effect of UV light. Holzforschung, 49, 397–404.

200. Tjeerdsma B., Boonstra M., Pizzi A., Tekely P. &Militz H. (1998). Charactersation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff, 56, 149–153.

201. Todaro L., D'Auria M., Langerame F., Salvi AM. & Scopa A. (2015). Surface characterization of untreated and hydro-thermally pre-treated Turkey oak woods after UV-C irradiation. Surface and Interface Analysis, 47(2), 206–215.

202. Tolvaj L., Németh R., Varga D. & Molnar S. (2009). Colour homog enisation of beech wood by steam treatment. Drewno, 52, 5–17.

203. Tomak ED., Ustaomer D., Yildiz S. & Pesman E. (2014). Changes in surface and mechanical properties of heat-treated wood during natural weathering. Measurement, 53, 30–39.

204. Tomak ED., Ustaomer D., Ermeydan MA., & Yildiz S. (2018). An investigation of surface properties of thermally modified wood during natural weathering for 48 months. Measurement, 127, 187–197.

205. Turkoglu T., Toker H., Baysal E., Kart S., Yuksel M. & Ergun ME. (2015). Some surface properties of heat treated and natural weathered oriental beech. Wood Research, 60(6), 881–890.

206. Uchikura K. (2009). Eco accord wood (in Japanese). Wood Preservation (Japan), 35(2), 66–70.

207. Underhaug A., Lund TJ. & Kleive K. (1983). Wood protection—the interaction between substrate and product and the influence on durability. Journal of Oil and Colour Chemists’ Association, 66(11), 345–350.

208. Vernois M. (2001). Heat treatment of wood in France*State of the art. In Review on heat treatments of wood. Proceedings of Special Seminar of Cost Action E22, Antibes, France.

209. Watanabe U., Norimoto M., Fujita M. & Gril J. (1998). Transverse shrinkage anisotropy of coniferous wood investigated by the power spectrum analysis. Journal of Wood Science, 44, 9–14.

210. Wang XQ., Fei BH. & Ren HQ. (2009). FTIR spectroscopic studies of the photo- discoloration of Chinese fir. Spectroscopic and Spectral Analysis, 29(5), 1272– 1275.

211. Welzbacher CR., Brischke C. & Rapp AO. (2009). Performance of thermally modified timber (TMT) in outdoor application-durability, abrasion and optical appearance. Drvna Industrija, 60(2), 75–82.

212. Welzbacher CR., Wehsener J., Rapp AO. & Haller P. (2008). Thermo- mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale—Dimensional stability and durability aspects. Holz als Roh-und Werkstoff, 66, 39–49.

213. Williams RS. (2005). Weathering of wood. In handbook of wood chemistry and wood composites, 2nd ed.; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA, pp. 139–185.

214. William CF. & David NSH. (1984). Chemistry of weathering and protection. In The Chemistry of Solid Wood, Advances in Chemistry Series 207; Rowell, R.M., Ed.; American Chemical Society: Washington, DC, USA; pp. 401–451.

215. Williams RS. (1987). Acid effects on accelerated wood weathering. Forest Products Journal, 37(2), 37–38.

216. Williams RS., Knaebe MT., Sotos PG. & Feist WC. (2001a). Erosion rates of wood during natural weathering. Part I: Effects of grain angle and surface texture. Wood and Fiber Science, 33(1), 31–42.

217. Williams RS., Knaebe MT. & Feist WC. (2001b). Erosion rates of wood during natural weathering. Part II: Earlywood and latewood erosion rates. Wood and Fiber Science, 33(1), 43–49.

218. Williams RS. & Feist WC. (1993a). Durability of paint or solid-color stain applied to pre-weathered wood. Forest Products Journal, 43(1), 8–14.

219. Williams RS. & Feist WC. (1993b). Finishing wood decks. Wood Design Focus, Fall, pp. 17–20.

220. Williams RS., Plantinga PL. & Feist WC. (1990). Photodegradation of wood affects paint adhesion. Forest Products Journal, 40(1), pp. 45–49.

221. Williams RS., Winandy JE. & Feist WC. (1987). Paint adhesion to weathered wood. Journal of Coatings Technoligy, 59(749), 43–49.

222. Williams RS. (1983). Effect of grafted UV stabilizers on wood surface erosion and clear coating performance. Journal of Applied Polymer Science, 28(6), 2093-2103.

223. Wu ZL. (1984). Chinese fir; China Forestry Publishing House: Beijing, China.

224. Wu ZL. & Hou BX. (1995). Study on natural distribution area of Cunninghamia lanceolate. Forestry science and technology communications (Special issue).

225. Xing D., Wang S. & Li J. (2015). Effect of artificial weathering on the properties of industrial-scale thermally modified wood. BioResources, 10(4), 8238–8252.

226. Xing D. & Li J. (2014). Effects of heat treatment on thermal decomposition and combustion performance of Larix spp. wood. BioResources, 9(3), 4274–4287.

227. Xing JQ., Ikuo M. & Wakako O. (2005). Natural resistance of two plantation woods Populus × canadensis cv. and Cunninghamia lanceolata to decay fungi and termites. Forest Studies in China, 7, 36–39.

228. Yata S. & Tamaru T. (1995). Histological changes of softwood surfaces during outdoor weathering. Journal of the Japan Wood Research Society (Japan), 41(11), 1035–1042.

229. Ye Z., Lin W., Chen W. & Yu X. (2005). Chemical components and antimicrobial activity of essential oils in Cunninghamia lanceolata heartwood. The Journal of Applied Ecology (China), 16(12), 2394–2398.

230. Yildiz S., Tomak ED., Yildiz UC. & Ustaomer D. (2013). Effect of artificial weathering on the properties of heat-treated wood. Polymer Degradation and Stability, 98(8), 1419–1427.

231. Yin Y., Bian M., Song K., Xiao F. & Jiang X. (2011). Influence of microfibril angle on within-tree variations in the mechanical properties of Chinese fir (Cunninghamia Lanceolata). IAWA Journal, 32(4), 431–442.

232. Zborowska M., Stachowiak-Wencek A., Waliszewska B. & Pr ˛adzy´nski W. (2014). Comparative studies of ipe (Tabebuia spp.) wood photodegradation cause by treatment with outdoor and indoor UV-A light irradiation. Forestry and Wood Technology, 88, 292–296.

233. Zhang M., Liu JP., Liu J., Liu P., Xin HL., Zhang L. & Wang YL. (2011). Amentoflavone content of leaves and branches of Cunninghamia lanceolata from different origins. Pharmaceutical Care and Research, 11(2), 149–150.

234. Zhou WF., Huang ZX., Xu P., Zhu JZ. & Liu DL. (2007). Determination of chemical constituents of the essential oil from the root of Cunninghamia lanceolata. Fine Chemicals (China), 24, 1095–1098.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る