リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis and Materials Properties of Spiro-conjugated Carbon-bridged Phenylenevinylenes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis and Materials Properties of Spiro-conjugated Carbon-bridged Phenylenevinylenes

濱田, 拓実 東京大学 DOI:10.15083/0002004753

2022.06.22

概要

1. Introduction
Organic π-conjugated molecules have been attracting much attention because of their potential applications in optoelectronic and semiconducting materials. The properties of organic materials are largely derived from their molecular structure. Hence, the construction of new molecular backbone by molecular design enables the desired properties and opens up the new dimensional materials. Based on this concept, in my doctoral course study, I developed two new π-conjugated scaffolds. The desired materials properties is successfully achieved by the combination of functional structures, which provided the opportunities for further applications.

2. Tetrakis(benzo[b]furyl)ethene (TBFE): Combination of Aggregation-responsive Fluorescent Behaviors
Aggregation-responsive fluorescence is an attractive property because of their potential applications in light-emitting devices and biological probes. Aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) enable aggregation-triggered fluorescent on-off switching behavior. However, three-stage on-off-on switching only upon aggregation has not yet been achieved. Focusing on that both of them are mechanistically derived from molecular structure, I envisioned that ACQ and AIE could be integrated in one molecule through molecular design. Continued through my master and Ph.D. course studied, investigation on tetrakis(benzo[b]furyl)ethene (TBFE) revealed that this compound does show the expected properties. As obtained via hafnium-mediated McMurry coupling, the compound exhibited three-stage two-wavelength on-off-on fluorescence switching behavior. Fluorescence spectra of TBFE in THF/H2O mixed solvents exhibited the on-off and off-on switching behaviors at 360 nm and 510 nm upon addition of H2O. No observation of peak shift at 360 nm suggested ICT process, which attributes to the previous switching systems, is not involved here. Slow nonradiative decay, large and spherical aggregates in 90% H2O suggested the three-stage switching is triggered by aggregation. This study suggested the structure-derived properties could be compatible in one molecule and encouraged the research on spiro-CPV.

3. Synthesis, Optical Resolution, and Materials Properties of Spiro-conjugated Carbon-bridged p-Phenylenevinylene
π-Conjugated compounds bearing spiro-linkage evokes attractive material properties because of their three dimensional structure and electronic interaction between two π-systems via spiroconjugation. Our laboratory has developed carbon-bridged oligo(p-phenylenevinylene)s (COPVs), designed by fixing each units of oligo(p-phenylenevinylene)s. Because of structural flatness and rigidity, COPVs exhibit high fluorescence quantum yields (ΦFL ~1), high photo and thermal stability, and fast charge transfer through the conjugated system, which allow their applications in laser dyes and molecular wires. I noticed that the bridging carbon atom can be utilized as a spiro chiral center, and investigated synthetic feasibility of C2-symmetric spiro-conjugated carbon-bridged p-phenylenevinylene (spiro-CPV), where two COPV units are connected via a spiro-linkage at the bridging carbon atom. This strategy was expected to create a novel spiro-conjugated π-backbone for circularly polarized luminescence (CPL) with high stability, and isotropic carrier transfer ability.

Spiro-CPV was found to show the properties derived from both spiro structure and COPV. Spiro-CPV (A) was successfully obtained via Pd-catalyzed cyclocarbonylation to afford the key ketone intermediate. The spiro backbone undergoes regioselective halogenations in excellent yields to allow further derivatizations. Small Stokes shift of A (64 nm) as well as COPV1 (60 nm) suggested structural rigidity of A upon photoexcitation. Because of its molecular chirality and rigidity, enantiomerically pure A exhibited CD and CPL (|gabs| = 8.4 × 10–4 , |glum| = 6.3 × 10–4 ) with high ΦFL of 0.74 The investigation on molecular orbital energy levels of A suggested the inter-subunit electronic interaction, so-called “spiroconjugation”, between two COPV units. Spiro-CPV showed high stability against thermal and photo stimuli, allowing the applications into optoelectronic device materials.

4. Enhancement of Circularly Polarized Luminescence by Elongation of π-systems of Spiro-CPV
High radiative rate constant kr, and hence, ΦFL are important issues to be focused for the development of light-emitting applications. For example, organic dye laser requires materials possessing kr ≥ ~4 × 108 s –1 for amplified simultaneous emission. Considering that kr is ideally proportional to the integral of extinction coefficient ε over the absorption bands, I envisioned the π-elongation of each COPV units would improve ε to enhance kr and ΦFL. In this work, I decided to install phenyl and phenylethynyl groups on the terminals of each COPV units. For longer conjugated systems, enhanced absorption was observed in the long wavelength region. Thus, kr and ΦFL were successfully enhanced by π-elongation to achieve kr of 4.07 × 108 s –1 for the phenylethynyl derivative as well as ΦFL of 0.99, the highest among organic CPL materials reported thus far.

5. Spiro-conjugated Carbon and Heteroatom-co-bridged p-phenylenevinylenes: Synthesis, Materials Properties, and Solvatochromic CPL
Introduction of heteroatoms to the conjugated systems is an effective strategy for modification of molecular properties. The use of electron donating and withdrawing properties of heteroatom efficiently changes electronic structures. However, it often causes the structural reorganization upon photoexcitation. I envisioned that incorporation of heterocycles to the rigid spiro-CPV backbone would tune their electronic properties without causing the reorganization. Oxygen, nitrogen, sulfur, and sulfur dioxide were incorporated in place of a bridging carbon atom. The electronic properties were affected by the electronic effects of fused heterocycles. Especially, the SO2-bridged one exhibited positive solvatochromic fluorescence because of the inter-subunit intramolecular charge transfer increasing the dipole moment in its excited state, as well as larger |glum| than the other spiro-CPV derivatives.

6. Synthesis and Materials Properties of Spiro-CPV-based Hole Transporting Materials
For the efficient performance in organic semiconducting device, hole-transporting materials (HTMs) require the stability and amorphousness of film as well as high hole mobility (µh). As has been already recognized for a popularly used HTM, spiro-OMeTAD, that possesses two π-systems connected by a spiro carbon atom, spiro compounds have advantages over flat π-systems on the formation of amorphous film and isotropic charge transfer. Considering small reorganization and high stability, in this work, I envisioned these requirements for HTM would be fulfilled in the spiro-CPV system. Diarylamino substituents were selected because of structural isotropy and energy level control. Spiro-CPV based HTMs showed high thermal stability in an amorphous state. Thier high glass transition temperatures (Tg = 134–176 °C), which is much higher than Tg of spiro-OMeTAD (120 °C), are expected to be advantageous for achieving device stability using these materials. Investigation of the oxidation of these compounds revealed that their radical cations have strong inter-subunit electronic interaction via spiroconjugation. It results in µh enhancement, while non-doped ones even exhibit higher µh than spiro-OMeTAD.

7. Conclusion
During my doctoral course study, I focused on connection of flat conjugated systems via an olefinic linkage or a spiro-carbon linkage, and found that the spiro-compounds show materials properties that are more than just a summation of two conjugated systems, as revealed by the following investigations: (1) A combination of ACQ and AIE in one molecule to achieve three-stage on-off-on fluorescence switching. (2) Development of an axially chiral spiro-CPV backbone exhibiting CPL with high ΦFL and high stability due to rigid hydrocarbon moiety. (3) Enhancement of kr and ΦFL by π-elongation. (4) Modification of electronic structure by the incorporation of heterocycles to achieve solvatochromism with small structural reorganization. (5) Application for HTM with high phase stability and enhanced µh in radical cation via spiroconjugation. Further synthetic modification based on this study will open up broader applications of organic π-conjugated materials.

この論文で使われている画像

参考文献

1.3. References

1 (a) Vendrell, M.; Zhai, D.; Er, J. C.; Chang, Y.-T. Chem. Rev. 2012, 112, 4391–4420. (b) Guo, Z.; Park, S.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2014, 43, 16–29. (c) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718–11940.

2 (a) Samuel, I. D.; Turnbull, G. A. Chem. Rev. 2007, 107, 1272–1295. (b) Anthony, J. E. Angew. Chem. Int. Ed. 2008, 47, 452–483.

3 Abe, M. Chem. Rev. 2013, 113, 7011–7088.

4 (a) Scherf, U. J. Mater. Chem. 1999, 9, 1853–1864. (b) Grimsdale, A. C.; Müllen, K. Macromol. Rapid Commun. 2007, 28, 1676–1702. (c) Tsuji, H.; Nakamura, E. Acc. Chem. Res. 2019, 52, 2939– 2949.

5 (a) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. Science 2004, 306, 666−669. (b) Geim, A. K. Science 2009, 324, 1530−1534.

6 (a) Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112, 1463–1535. (b) Rickhaus, M.; Mayor, M.; Juriček, M. Chem. Soc. Rev. 2017, 46, 1643–1660. (c) Saito, M.; Shinokubo, H.; Sakurai, H. Mater. Chem. Front. 2018, 2, 635–661.

7 (a) Bühl, M.; Hirsch, A. Chem. Rev. 2001, 101, 1153–1183. (b) Umeyama, T.; Imahori, H. Acc. Chem. Res. 2019, 52, 2046–2055.

8 (a) Fukazawa, A.; Yamaguchi, S. Chem. Asian J. 2009, 4, 1386–1400. (b) Hirai. M.; Tanaka, N.; Sakai, M.; Yamaguchi, S. Chem. Rev. 2019, 119, 8291–8331. (c) Stępien, M.; Gonḱa, E.; Żyła, M.; Sprutta, N. Chem. Rev. 2017, 117, 3479–3716.

9 Tsuji, H.; Nakamura, E. Acc. Chem. Res. 2017, 50, 396–406.

10 (a) Nishioka, H.; Tsuji, H.; Nakamura, E. Macromolecules 2018, 51, 2961–2968. (b) Morales-Vidal, M.; Quintana, J. A.; Villalvilla, J. M.; Boj, P. G.; Nishioka, H.; Tsuji, H.; Nakamura, E.; Whitworth, G. L.; Turnbull, G. A.; Samuel, I. D. W.; Díaz-García, M. A. Adv. Opt. Mater. 2018, 6, 1800069.

11 (a) Salbeck, J.; Yu, N.; Bauer, J.; Weissörtel, F.; Bestgen, H. Synth. Met. 1997, 91, 209–215. (b) Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007, 107, 1011– 1055.

12 Saragi, T. P. I.; Fuhrmann-Lieker, T.; Salbeck, J. Adv. Funct. Mater. 2006, 16, 966–974.

13 Hoffmann, R.; Imamura, A.; Zeiss, G. D. J. Am. Chem. Soc. 1967, 89, 5215–5220.

14 Simmons, H. E.; Fukunaga, T. J. Am. Chem. Soc. 1967, 89, 5208–5215.

15 (a) Schweig, A.; Weidner, U.; Hill, R. K.; Cullison, D. A. J. Am. Chem. Soc. 1973, 95, 5426–5427. (b) Schweig, A.; Weidner, U.; Hellwinkel, D.; Krapp, W. Angew. Chem. Int. Ed. 1973, 89, 310–311.

16 Sowa, J. K.; Mol, J. A.; Briggs, G. A. D.; Gauger, E. M. J. Phys. Chem. Lett. 2018, 9 1859–1865.

17 Clarkson, R. G.; Gomberg, M. J. Am. Chem. Soc. 1930, 52, 2881–2891.

18 Cheng, X.; Hou, G.-H.; Xie, J.-H.; Zhou, Q.-L. Org. Lett. 2004, 14, 2381–2383.

19 (a) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel, F.; Salbeck, J.; Spereitzer, H.; Grätzel, M. Nature 1998, 395, 583–585. (b) Hawash, Z.; Ono, L. K.; Qi, Y. Adv. Mater. Interfaces, 2018, 5,1700623. (c) Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I. J. Am. Chem. Soc. 2014, 136, 7837–7840. (d) Gao, G.; Liang, N.; Geng, H.; Jiang, W.; Fu, H.; Feng, J.; Hou, J.; Feng, X.; Wang, Z. J. Am. Chem. Soc. 2017, 139, 15914–15920. (e) Urieta-Mora, J.; Garcia-Benito, I.; Molina-Ontoria, A.; Martín N. Chem. Soc. Rev. 2018, 47, 8541–8571.

20 Nakagawa, T.; Ku, S.-Y.; Wong, K.-T.; Adachi, C. Chem. Commun. 2012, 48, 9580–9582.

21 (a) Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Chem. Soc. Rev. 2017, 46, 915–1016. (b) Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931–7958. (c) Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A. ; Yook, K. S.; Lee, J. Y. Chem. Mater. 2017, 29, 1946–1963.

22 Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718– 11940.

23 Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. Acc. Chem. Res. 2013, 46, 1426–1473.

24 (a) Sandoval-Salinas, M. E.; Carreras, A.; Casado, J.; Casanova, D. J. Chem. Phys. 2019, 150, 204306. (b) Kumarasamy, E.; Sanders, S. N.; Tayebjee, M. J. Y.; Asadpoordarvish, A.; Hele, T. J. H.; Fuemmeler, E.G.; Pun, A. B.; Yablon, L. M.; Low, J. Z.; Paley, D. W.; Dean, J. C.; Choi, B.; Scholes, G. D.; Steigerwald, M. L.; Ananth, N.; McCamey, D. R.; Sfeir, M. Y.; Campos, L. M. J. Am. Chem. Soc. 2017, 139, 12488–12494.

25 Xie, J.-H.; Zhou, Q. L. Acc. Chem. Res. 2008, 41, 581–593.

26 von Baeyer, A. P. Ber. Dtsch. Chem. Ger. 1900, 33, 3771–3775.

27 Srivastava, N.; Mital, A.; Kumar, A. Chem. Commun. 1992, 493–494.

28 Alcazar, V.; Diederich, F. Angew. Chem., Int. Ed. Engl. 1992, 31, 1521−1523.

29 (a) Prelog, V.; Bedekovic, D. Helv. Chim. Acta 1979, 62, 2285–2303. (b) Harada, N.; Ono, H.; Nishiwaki, T.; Uda, H. J. Chem. Soc., Chem. Commun. 1991, 1753−1755.

30 Haas, G.; Prelog, V. Helv. Chim. Acta. 1969, 52, 1202−1218.

31 Haas, G.; Hulbert, P. B.; Klyne, W.; Prelog, V.; Snatzke, G. Helv. Chim. Acta, 1971, 54, 491–509.

32 Schadt, M. Annu. Rev. Mater. Sci. 1997, 27, 305–379. (b) Peeters, E; Christiaans, M. P. T.; Janssen, R. A. J.; Schoo, H. F. M.; Dekkers, H. P. J. M.; Jeijer, E. W. J. Am. Chem. Soc. 1997, 119, 9909– 9910. (c) Grell, M.; Oda, M.; Whitehead, K. S.; Asimakis, A.; Neher, D.; Bradley, D. D. C. Adv. Mater. 2001, 13, 577–580.

33 (a) Chen, F.; Gindre, D.; Nunzi, J. M. Opt. Express, 2008, 16, 16746–16753. (b) Furumi, S. Chem. Rec. 2010, 10, 394–408. (c) Cerdán, L.; Moreno, F.; Johnson, M.; Muller, G.; Moya, S. D. L.; Garcia-Moreno, I. Phys. Chem. Chem. Phys. 2017, 19, 22088–22093.

34 (a) Carr, R.; Evans, N. H.; Parker, D. Chem. Soc. Rev. 2012, 41, 7673–7686. (b) Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Chem. Rev. 2014, 114, 4496–4539.

35 (a) Murai, M.; Takeuchi, Y.; Yamauchi, K.; Kuninobu, Y.; Takai, K. Chem. – Eur. J. 2016, 22, 6048– 6058. (b) Shintani, R.; Misawa, N.; Takano, R.; Nozaki, K.; Chem. – Eur. J. 2017, 23, 2660–2665.

36 (a) Takase, K.; Noguchi, K.; Nakano, K. Org. Lett. 2017, 19, 5082–5085. (b) Takase, K.; Noguchi, K.; Nakano, K. J. Org. Chem. 2018, 83, 15057–15065. (c) Takase, K.; Noguchi, K.; Nakano, K. Bull. Chem. Soc. Jpn. 2019, 92, 1008–1017.

37 (a) Strickler, S. J.; Berg, R. A. J. Chem. Phys. 1962, 37, 814–822. (b) Ware, W. R.; Baldwin, B. A. J. Chem. Phys. 1964, 40, 1703–1705.

38 Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel, F.; Salbeck, J.; Spereitzer, H.; Grätzel, M. Nature 1998, 395, 583–585.

2.6. References

1 Luo, J.; Xie, Z.; Lam, J. W. Y.; Chen, L.; Chen, H.; Qui, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740–1741.

2 Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. Adv. Mater. 2014, 26, 5429–5479.

3 Tong, H.; Dong, Y.; Hong, Y.; Häussler, M.; Lam, J. W. Y.; Sung, H. H.-Y.; Yu, X.; Sun, J.; Williams,I. D.; Kwok , H. S.; Tang, B. Z. J. Phys. Chem. C 2007, 111, 2287–2294.

4 Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718– 11940.

5 (a) Ananhakrishnan, S. J.; Varathan, E.; Ravindran, E.; Somanathan, N.; Subramanian, V.: Mandal, A. B.; Sudha, D. J.; Ramakrishnan, R. Chem. Commun. 2013, 49, 10742–10744. (b) Li, Y.; Wu, Y.; Chang, J.; Chen, J.; Liu, L.; Li, F. Chem. Commun. 2013, 49, 11335–11337. Wang, E.; Lam, J. W. Y.; Hu, R.; Zhang, C.; Zhao, Y. S.; Tang, B. Z. J. Mater. Chem. C 2014, 2, 1801–1807. (d) Hu, R.; Lager, E.; Afuilar-Aguilar, A.; Liu, J.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Zhong, Y.; Wong, K. S.; Peña-Cabrera, E.; Tang, B. Z. J. Phys. Chem. C 2009, 113, 15845–15853.

6 Tsuji, H.; Nakamura, E. Acc. Chem. Res. 2017, 50, 396–406.

7 Hiroyoshi, H. Master Thesis 2017.

8 Sanz, R.; Castroviejo, M. P.; Fernández, Y.; Fañanás, F. J. J. Org. Chem. 2005, 70, 6548–6551.

9 Mukaiyama,T.; Sato, T.; Hanna, J. Chem. Lett., 1973, 1041–1044.

10 (a) McMurry, J. E. Chem. Rev., 1989, 89, 1513–1524. (b) Ephritikhine, M. Chem. Commun. 1998, 2549–2554.

11 CRC Handbook of Chemistry and Physics, 97th Edition; Haynes, W. M., Ed.; Boca Raton, CRC Press, 2016.

12 Ren, Y.; Lam, J. W. Y.; Dong, Y.; Tang, B. Z.; Wong, K. S. J. Phys. Chem. B 2005, 109, 1135–1140.

13 Chalikian, T. V. J. Phys. Chem. B 2001, 105, 12566–12578.

14 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925.

15 Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; G. E. Scuseria, ; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr. J. A.; , Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dan nenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.

16 Haydu, W.; Laudie, H.; Smith, O, H. J. Chem. Eng. Data 1973, 18, 373–376.

3.8. References

1 (a) Hoffmann, R.; Imamura, A.; Zeiss, G. D. J. Am. Chem. Soc. 1967, 89, 5215–5220. (b) Simmons, H. E.; Fukunaga, T. J. Am. Chem. Soc. 1967, 89, 5208–5215. (c) Schweig, A.; Weidner, U.; Hellwinkel, D.; Krapp, W. Angew. Chem. Int. Ed. 1973, 89, 310–311.

2 Clarkson, R. G.; Gomberg, M. J. Am. Chem. Soc. 1930, 52, 2881–2891.

3 Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007, 107, 1011– 1055.

4 (a) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel, F.; Salbeck, J.; Spereitzer, H.; Grätzel, M. Nature 1998, 395, 583–585. (b) Hawash, Z.; Ono, L. K.; Qi, Y. Adv. Mater. Interfaces, 2018, 5,1700623. (c) Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I. J. Am. Chem. Soc. 2014, 136, 7837–7840. (d) Gao, G.; Liang, N.; Geng, H.; Jiang, W.; Fu, H.; Feng, J.; Hou, J.; Feng, X.; Wang, Z. J. Am. Chem. Soc. 2017, 139, 15914–15920. (e) Urieta-Mora, J.; Garcia-Benito, I.; Molina-Ontoria, A.; Martín N. Chem. Soc. Rev. 2018, 47, 8541–8571.

5 Sowa, J. K.; Mol, J. A.; Briggs, G. A. D.; Gauger, E. M. J, Phys. Chem. Lett. 2018, 9, 1859–1865.

6 (a) Sandoval-Salinas, M. E.; Carreras, A.; Casado, J.; Casanova, D. J. Chem. Phys. 2019, 150, 204306. (b) Kumarasamy, E.; Sanders, S. N.; Tayebjee, M. J. Y.; Asadpoordarvish, A.; Hele, T. J. H.; Fuemmeler, E.G.; Pun, A. B.; Yablon, L. M.; Low, J. Z.; Paley, D. W.; Dean, J. C.; Choi, B.; Scholes, G. D.; Steigerwald, M. L.; Ananth, N.; McCamey, D. R.; Sfeir, M. Y.; Campos, L. M. J. Am. Chem. Soc. 2017, 139, 12488–12494.

7 (a) Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Chem. Soc. Rev. 2017, 46, 915–1016. (b) Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931–7958. (c) Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A. ; Yook, K. S.; Lee, J. Y. Chem. Mater. 2017, 29, 1946–1963.

8 Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718– 11940.

9 Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. Acc. Chem. Res. 2013, 46, 1426–1473.

10 Xie, J.-H.; Zhou, Q. L. Acc. Chem. Res. 2008, 41, 581–593.

11 von Baeyer, A. P. Ber. Dtsch. Chem. Ger. 1900, 33, 3771–3775.

12 Srivastava, N.; Mital, A.; Kumar, A. Chem. Commun. 1992, 493–494.

13 Alcazar, V.; Diederich, F. Angew. Chem., Int. Ed. Engl. 1992, 31, 1521−1523.

14 (a) Prelog, V.; Bedekovic, D. Helv. Chim. Acta 1979, 62, 2285–2303. (b) Harada, N.; Ono, H.; Nishiwaki, T.; Uda, H. J. Chem. Soc., Chem. Commun. 1991, 1753−1755.

15 Haas, G.; Prelog, V. Helv. Chim. Acta. 1969, 52, 1202−1218.

16 Haas, G.; Hulbert, P. B.; Klyne, W.; Prelog, V.; Snatzke, G. Helv. Chim. Acta, 1971, 54, 491–509.

17 Schadt, M. Annu. Rev. Mater. Sci. 1997, 27, 305–379. (b) Peeters, E; Christiaans, M. P. T.; Janssen, R. A. J.; Schoo, H. F. M.; Dekkers, H. P. J. M.; Jeijer, E. W. J. Am. Chem. Soc. 1997, 119, 9909– 9910. (c) Grell, M.; Oda, M.; Whitehead, K. S.; Asimakis, A.; Neher, D.; Bradley, D. D. C. Adv. Mater. 2001, 13, 577–580.

18 (a) Chen, F.; Gindre, D.; Nunzi, J. M. Opt. Express, 2008, 16, 16746–16753. (b) Furumi, S. Chem. Rec. 2010, 10, 394–408. (c) Cerdán, L.; Moreno, F.; Johnson, M.; Muller, G.; Moya, S. D. L.; Garcia-Moreno, I. Phys. Chem. Chem. Phys. 2017, 19, 22088–22093.

19 (a) Carr, R.; Evans, N. H.; Parker, D. Chem. Soc. Rev. 2012, 41, 7673–7686. (b) Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Chem. Rev. 2014, 114, 4496–4539.

20 (a) Murai, M.; Takeuchi, Y.; Yamauchi, K.; Kuninobu, Y.; Takai, K. Chem. – Eur. J. 2016, 22, 6048– 6058. (b) Shintani, R.; Misawa, N.; Takano, R.; Nozaki, K.; Chem. – Eur. J. 2017, 23, 2660–2665.

21 (a) Takase, K.; Noguchi, K.; Nakano, K. Org. Lett. 2017, 19, 5082–5085. (b) Takase, K.; Noguchi, K.; Nakano, K. J. Org. Chem. 2018, 83, 15057–15065. (c) Takase, K.; Noguchi, K.; Nakano, K. Bull. Chem. Soc. Jpn. 2019, 92, 1008–1017.

22 (a) Anthony, J. E. Angew. Chem. Int. Ed. 2008, 47, 452–485. (b) Mazzio, K. A.; Luscombe, C. K. Chem. Soc. Rev. 2015, 44, 78.

23 (a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402–428. (b) Samuel, I. D.; Turnbull, G. A. Chem. Rev. 2007, 107, 1272–1295.

24 (a) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1977, 16, 578−580. (b) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539–541.

25 Berresheim, A. J.; Müller, M.; Müllen, K. Chem. Rev. 1999, 99, 1747–1785.

26 (a) Scherf, U. J. Mater. Chem. 1999, 9, 1853–1864. (b) Grimsdale, A. C.; Müllen, K. Macromol. Rapid Commun. 2007, 28, 1676–1702. (c) Fukazawa, A.; Yamaguchi, S. Chem. Asian J. 2009, 4, 1386– 1400. (d) Wu, J.-S.; Cheng, S.-W.; Cheng, Y.-J.; Hsu, C.-S. Chem. Soc. Rev. 2015, 44, 1113–1154.

27 (a) Zhu, X.; Mitsui, C.; Tsuji, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 13596–13597. (b) Zhu, X.; Tsuji, H.; Navarrete, J. T. L.; Casado, J.; Nakamura, E. J. Am. Chem. Soc. 2012, 134, 19254–19259. (c) Tsuji, H.; Nakamura, E. Acc. Chem. Res. 2019. 52, 2939–2949.

28 Yan, Q.; Guo, Y.; Ichimura, A.; Tsuji, H.; Nakamura, E. J. Am. Chem. Soc. 2016, 138, 10897–10904.

29 Morales-Vidal, M.; Boj, P. G.; Villalvilla, J. M.; Quintana, J. A.; Yan, Q.; Lin, N.-T.; Zhu, X.; Ruangsupapichat, N.; Casado, J.; Tsuji, H.; Nakamura, E.; Díaz-García, M. A. Nat. Commun. 2015, 6, 8458.

30 Yan, Q. Unpublished data.

31 (a) Campo, M. A.; Larock, R. C. Org. Lett. 2000, 2, 3675–3677. (b) Campo, M. A.; Larock, R. C. J. Org. Chem. 2002, 67, 5616–5620.

32 Kotsuki, H.; Datta, P. K.; Hayakawa, H.; Suenaga, H. Synthesis 1995, 11, 1348–1350.

33 Kodomari, M.; Satoh, H.; Yoshitomi, S. J. Org. Chem. 1988, 53, 2093–2094.

34 Kotagiri, R.; Adepu, R. Eur. J. Org. Chem. 2018, 33, 4556–4564.

35 Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271–280.

36 Espino, G.; Kurbangalieva, A.; Brown, J. M. Chem. Commun. 2007, 17, 1742–1744.

37 (a) Sánchez-Carnerero, E. M.; Agarrabeitia, A. R.; Moreno, F.; Maroto, B. L.; Muller, G.; Ortiz, M. J.; Moya, S. Chem. Eur. J. 2015, 21, 13488–13500. (b) Tanaka, H.; Inoue, Y.; Mori, T. ChemPhotoChem 2018, 2, 386–402.

38 Schweig, A.; Weidner, U.; Hellwinkel, D.; Krapp, W. Angew. Chem. Int. Ed. Engl. 1973, 12, 310– 311.

39 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925.

40 Sheldrick, G. M. Acta Crystallogr A Found Adv. 2015, 71, 3–8.

41 Kabuto, C.; Akine, S.; Nemoto, T.; Kwon, E. J. Cryst. Soc. Jpn., 2009, 51, 218-224.

42 Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; G. E. Scuseria, ; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr. J. A.; , Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dan nenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.

4.7. References

1 Samuel, I. D.; Turnbull, G. A. Chem. Rev. 2007, 107, 1272–1295.

2 Einstein, A. Physik. Z. 1917, 18, 121–128.

3 (a) Perrin, F. J. Phys. Radium 1926, 7, 390–401. (b) Lewis, G. N.; Kasha, M. J. Am. Chem. Soc. 1945, 67, 994–1003.

4 Strickler, S. J.; Berg, R. A. J. Chem. Phys. 1962, 37, 814–822.

5 Peeters, E.; Ramos, A. M.; Meskers, S. C. J.; Janssen, R. A. J. Chem. Phys. 2000, 112, 9445–9454.

6 Harabuchi, Y.; Taketsugu, T.; Maeda, S. Phys. Chem. Chem. Phys. 2015, 17, 22561–22565.

7 (a) Harabuchi, Y.; Taketsugu, T.; Maeda, S. Chem. Lett. 2016, 45, 940–942. (b) Harabuchi, Y.; Saita, K.; Maeda, S. Photochem. Photobiol. Sci. 2018, 17, 317–322. (c) Ikemoto, K.; Tokuhira, T.; Uetani, A.; Harabuchi, Y.; Sato, S.; Maeda, S.; Isobe, H. J. Org. Chem. 2020, 85, 150–157.

8 Aimono, T.; Kawamura, K.; Goushi, K.; Yamamoto, H.; Sasabe, H.; Adachi, C. Appl. Phys. Lett. 2005, 86, 071110.

9 (a) Hanhela, P. J.; Paul, D. B. Aust. J. Chem. 1984, 37, 553–559. (b) Maeda, H.; Maeda, T.; Mizuno, K.; Fujimoto, K.; Shimizu, H.; Inouye, M. Chem. Eur. J. 2006, 12, 824–831. (c) Yamaji, M.; Nanai, Y.; Mizuno, K. ISRN Phys. Chem. 2012, 2012, 103817. (d) Hakoda, Y.; Aoyagi, M.; Irisawa, K.; Kato, S.; Nakamura, Y.; Yamaji, M. Photochem. Photobiol. Sci. 2016, 15, 1586–1593. (e) Abengózar, A.; Sucunza, D.; García-García, P.; Vaquero, J. J. Beilstein J. Org. Chem. 2019, 15, 1257–1261.

10 (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483. (b) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412–443.

11 (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467–4470. (b) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874–922. (c) Chinchilla, R.; Nájera, C. Chem. Soc. Rev. 2011, 40, 5084–5121.

12 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925.

13 Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; G. E. Scuseria, ; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr. J. A.; , Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dan nenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.

6.10. References

1 Tang, C. W. Appl. Phys. Lett. 1986, 48, 183–185.

2 Koezuka, H.; Tsumura, A.; Ando, T. Synth. Met. 1987, 18, 699–704.

3 Tan, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913–915.

4 Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050–6051.

5 Jena, A. K.; Kulkarni, A.; Miyasaka, T. Chem. Rev. 2019, 119, 3036–3103.

6 Hoefler, S. F.; Trimmel, G.; Rath, T. Monatsh. Chem. 2017, 148, 795–826.

7 Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007, 107, 1011– 1065.

8 Pfeiffer, M.; Leo, K.; Zhou, X.; Huang, J. S.; Hofmann, M.; Werner, A.; Blochwits-Nimoth, J. Org. Electron, 2003, 4, 89–103.

9 Saragi, T. P. I.; Fuhrmann-Lieker, T.; Selbeck, J. Adv. Funct. Mater. 2006, 16, 966–974.

10 Saragi, T. P. I.; Pudzich, R.; Fuhrmann-Lieker, T.; Salbeck, J. Appl. Phys. Lett. 2004, 84, 2334–2336.

11 Urieta-Mora, J.; García-Benito, I.; Molina-Ontoria, A.; Martín, N. Chem. Soc. Rev. 2018, 47, 8505– 8970.

12 (a) Marcus, R. A. J. Chem. Phys. 1957, 26, 867– 871. (b) Marcus, R. A. J. Phys. Chem. 1968, 72, 891–899.

13 Wu, C.-C.; Liu, W.-G.; Hung, W.-Y.; Liu, T.-L.; Lin, Y.-T.; Lin, H.-W. Appl. Phys. Lett. 2005, 87, 052103.

14 Kawashima, Y.; Ohkubo, K.; Fukuzumi, S. J. Phys. Chem. A 2013, 117, 6737–6743.

15 Agarwala, P.; Kabra, D. J. Mater. Chem. A 2017, 5, 1348–1373.

16 (a) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature, 1998, 395, 583–585. (b) Hawash, Z.; Ono, L. K.; Qi, Y. Adv. Mater. Interfaces, 2018, 5, 1700623.

17 Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I. J. Am. Chem. Soc. 2014, 136, 7837–7840.

18 Hu, Z.; Fu, W.; Yan, L.; Miao, J.; Yu, H.; He, Y.; Goto, O.; Meng, H.; Chen, H.; Huang, W. Chem. Sci. 2016, 7, 5007–5012.

19 (a) Krüger, J.; Plass, R.; Cevey, L.; Piccirelli, M.; Grätzel, M.; Bach, U. Appl. Phys. Lett. 2001, 79, 2085–2087. (b) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T.; Snaith, H. J. Science, 2012, 338, 643–647.

20 (a) Fang, B.; Zhou, H.; Honma, I. Appl. Phys. Lett. 2005, 86, 261909. (b) Xia, J.; Masaki, N.; Lira-Cantu, M.; Kim, Y.; Jiang, K.; Yanagida, S. J. Am. Chem. Soc. 2008, 130, 1258–1263.

21 Yan, Q.; Guo, Y.; Ichimura, A.; Tsuji, H.; Nakamura, E. J. Am. Chem. Soc. 2016, 138, 10897–10904.

22 Naito, K.; Miura, A. J. Phys. Chem. 1993, 97, 6240–6248.

23 (a) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158– 1174. (b) Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47, 6338–6361. (c) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27–50.

24 (a) Dualeh, A.; Moehl, T.; Nazeeruddin, M. K.; Grätzel, M. ACS Nano 2013, 7, 2292–2301. (b) Minna, T.; Janne, H.; Lauri, P.; Peter, L. Int. J. Photoenergy 2009, 2009, 1–15. (c) Sebastián, P. J.; Olea, A.; Campos, J.; Toledo, J. A.; Gamboa, S. A. Solar Energy Materials & Solar Cells 2004, 81, 349–361.

25 “The Nature of the Chemical Bond” 3rd Ed.; Pauling, L.; Cornell University Press, New York, 1960.

26 Burrezo, P. M.; Lin, N.-T.; Nakabayashi, K.; Ohkoshi, S.; Calzado, E. M.; Boji, P. G.; Garcia, M. A. D.; Franco, C.; Rovira, C.; Veciana, J.; Moos, M.; Lambert, C.; Navarrete, J. T. L.; Tsuji, H.; Nakamura, E.; Casado, J. Angew. Chem. Int. Ed. 2017, 56, 2989–2902.

27 Zhu, X.; Tsuji H.; López Navarrete, J. T.; Casado, J.; Nakamura, E. J. Am. Chem. Soc. 2012, 134, 19254–19259.

28 (a) Matsuo, Y.; Ozu, A.; Obata, N.; Fukuda, N.; Tanaka, H.; Nakamura, E. Chem. Commun. 2012, 48, 3878–3880. (b) Matsuo, Y.; Sato, Y.; Niinomi, T.; Soga, I.; Tanaka, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 16048–16050. (c) Matsuo, Y.; Kawai, J.; Inada, H.; Nakagawa, T.; Ota, H.; Otsubo, S.; Nakamura, E. Adv. Mater. 2013, 25, 6266–6263.

29 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925.

30 Blakesley, J. C.; Castro, F. A.; Kylberg, W.; Dibb, G. F.A; Arantes, C.; Valaski, R.; Cremona, M.; Kim, J. S.; Kim J.-S. Organic Electronics 2014, 15, 1263–1272.

References

1 Jiménez, J.; Cerdán, L.; Moreno, F.; Maroto, B. L.; García-Moreno, I.; Lunkley, J. L.; Muller, G.; de la Moya, S. J. Phys. Chem. C 2017, 121, 5287–5292.

2 (a) Kumarasamy, E.; Sanders, S. N.; Tayebjee, M. J. Y.; Asadpoordarvish, A.; Hele, T. J. H.; Fuemmeler, E.G.; Pun, A. B.; Yablon, L. M.; Low, J. Z.; Paley, D. W.; Dean, J. C.; Choi, B.; Scholes, G. D.; Steigerwald, M. L.; Ananth, N.; McCamey, D. R.; Sfeir, M. Y.; Campos, L. M. J. Am. Chem. Soc. 2017, 139, 12488–12494. (b) Sandoval-Salinas, M. E.; Carreras, A.; Casado, J.; Casanova, D. J. Chem. Phys. 2019, 150, 204306.

3 (a) Farazdel, A.; Dupuis, M.; Clementi, E.; Aviram, A. J. Am. Chem. Soc. 1990, 112, 4206–4214. (b) Sowa, J. K.; Mol, J. A.; Briggs, G. A. D.; Gauger, E. M. J, Phys. Chem. Lett. 2018, 9, 1859–1865.

4 Xie, J.-H.; Zhou, Q. L. Acc. Chem. Res. 2008, 41, 581–593.

5 (a) Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931–7958. (b) Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Chem. Soc. Rev. 2017, 46, 915–1016.

6 Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556–4573.

7 Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40, 2943–2970.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る