リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Aromatic secondary metabolite production from glycerol was enhanced by amino acid addition in Pichia pastoris」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Aromatic secondary metabolite production from glycerol was enhanced by amino acid addition in Pichia pastoris

Kumokita, Ryota Yoshida, Takanobu Shirai, Tomokazu Kondo, Akihiko Hasunuma, Tomohisa 神戸大学

2023.12

概要

Aromatic secondary metabolites are widely used in various industries, including the nutraceutical, dietary supplement, and pharmaceutical industries. Their production currently relies on plant extraction. Microbe-based processes have recently attracted attention as sustainable alternatives to plant-based processes. We previously showed that the yeast Pichia pastoris (Komagataella phaffii) is an optimal host for producing aromatic secondary metabolites. Additionally, titers of resveratrol, an aromatic secondary metabolite, increased by 156 % when glycerol was used as a carbon source instead of glucose. However, the mechanisms by which glycerol resulted in higher production has remained unclear. In this study, we aimed to elucidate how P. pastoris produces higher levels of aromatic secondary metabolites from glycerol than from glucose. Titers of p-coumarate, naringenin, and resveratrol increased by 103 %, 118 %, and 157 %, respectively, in natural complex media containing glycerol compared with that in media containing glucose. However, the titers decreased in minimal synthetic medium without amino acids, indicating that P. pastoris cells used the amino acids only when glycerol was the carbon source. Fermentation with the addition of single amino acids showed that resveratrol titers from glycerol varied depending on the amino acid supplemented. In particular, addition of aspartate or tryptophan into the medium improved resveratrol titers by 146 % and 156 %, respectively. These results suggest that P. pastoris could produce high levels of aromatic secondary metabolites from glycerol with enhanced utilization of specific amino acids. This study provides a basis for achieving high-level production of aromatic secondary metabolites by P. pastoris.

この論文で使われている画像

参考文献

Barone GD, Emmerstorfer-Augustin A, Biundo A, Pisano I, Coccetti

P, Mapelli V, Camattari A (2023) Industrial production of proteins with Pichia pastoris—Komagataella phaffii. Biomolecules

13(3):441. https://​doi.​org/​10.​3390/​biom1​30304​41

Bernauer L, Radkohl A, Lehmayer LGK, Emmerstorfer-Augustin A

(2021) Komagataella phaffii as emerging model organism in fundamental research. Front Microbiol 11:607028. https://d​ oi.o​ rg/1​ 0.​

3389/​fmicb.​2020.​607028

Braga A, Faria N (2022) Biotechnological production of specialty

aromatic and aromatic-derivative compounds. World J Microbiol

Biotechnol 38:80. https://​doi.​org/​10.​1007/​s11274-​022-​03263-y

Braga A, Oliveira J, Silva R, Ferreira P, Rocha I, Kallscheuer N,

Marienhagen J, Faria N (2018) Impact of the cultivation strategy

on resveratrol production from glucose in engineered Corynebacterium glutamicum. J Biotechnol 265:70–75. https://​doi.​org/​10.​

1016/j.​jbiot​ec.​2017.​11.​006

Cao M, Gao M, Suástegui M, Mei Y, Shao Z (2020) Building microbial factories for the production of aromatic amino acid pathway

derivatives: From commodity chemicals to plant-sourced natural

products. Metab Eng 58:94–132. https://d​ oi.o​ rg/1​ 0.1​ 016/j.y​ mben.​

2019.​08.​008

Carneiro CVGC, Serra LA, Pacheco TF, Ferreira LMM, Brandão LTD,

de Freitas MNM, Trichez D, de Almeida JRM (2022) Advances in

Komagataella phaffii engineering for the production of renewable

chemicals and proteins. Fermentation 8(11):575. https://​doi.​org/​

10.​3390/​ferme​ntati​on811​0575

Chrzanowski G (2020) Saccharomyces cerevisiae—An interesting producer of bioactive plant polyphenolic metabolites. Int J Mol Sci

21:7343. https://​doi.​org/​10.​3390/​ijms2​11973​43

Cravens A, Payne J, Smolke CD (2019) Synthetic biology strategies

for microbial biosynthesis of plant natural products. Nat Commun

10:2142. https://​doi.​org/​10.​1038/​s41467-​019-​09848-w

Crépin L, Nidelet T, Sanchez I, Dequin S, Camarasa C (2012) Sequential use of nitrogen compounds by Saccharomyces cerevisiae during wine fermentation: A model based on kinetic and regulation

characteristics of nitrogen permeases. Appl Environ Microbiol

78:8102–8111. https://​doi.​org/​10.​1128/​AEM.​02294-​12

Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page

JE, Ro DK, Sensen CW, Storms R, Martin VJJ (2012) Synthetic

biosystems for the production of high-value plant metabolites.

Trends Biotechnol 30:127–131. https://​doi.​org/​10.​1016/j.​tibte​ch.​

2011.​10.​001

Gong G, Wu B, Liu L, Li J, Zhu Q, He M, Hu G (2022) Metabolic

engineering using acetate as a promising building block for the

production of bio-based chemicals. Eng Microbiol 2:100036.

https://​doi.​org/​10.​1016/j.​engmic.​2022.​100036

Gu Y, Ma J, Zhu Y, Ding X, Xu P (2020) Engineering Yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived

natural products and chemicals. ACS Synth Biol 9:2096–2106.

https://​doi.​org/​10.​1021/​acssy​nbio.​0c001​85

Hsu HH, Araki M, Mochizuki M, Hori Y, Murata M, Kahar P, Yoshida

T, Hasunuma T, Kondo A (2017) A systematic approach to timeseries metabolite profiling and RNA-seq analysis of chinese hamster ovary cell culture. Sci Rep 7:43518. https://​doi.​org/​10.​1038/​

srep4​3518

Applied Microbiology and Biotechnology (2023) 107:7391–7401 Ito Y, Watanabe T, Aikawa S, Nishi T, Nishiyama T, Nakamura Y,

Hasunuma T, Okubo Y, Ishii J, Kondo A (2018) Deletion of DNA

ligase IV homolog confers higher gene targeting efficiency on

homologous recombination in Komagataella phaffii. FEMS Yeast

Res 18. https://​doi.​org/​10.​1093/​femsyr/​foy074

Jang WD, Kim GB, Lee SY (2023) An interactive metabolic map of

bio-based chemicals. Trends Biotechnol 41:10–14. https://d​ oi.o​ rg/​

10.​1016/j.​tibte​ch.​2022.​07.​013

Joshi S, Mishra SD (2022) Recent advances in biofuel production

through metabolic engineering. Bioresour Technol 352:127037.

https://​doi.​org/​10.​1016/j.​biort​ech.​2022.​127037

Kallscheuer N, Classen T, Drepper T, Marienhagen J (2019) Production of plant metabolites with applications in the food industry

using engineered microorganisms. Curr Opin Biotechnol 56:7–17.

https://​doi.​org/​10.​1016/j.​copbio.​2018.​07.​008

Kato H, Izumi Y, Hasunuma T, Matsuda F, Kondo A (2012) Widely targeted metabolic profiling analysis of yeast central metabolites. J Biosci

Bioeng 113:665–673. https://​doi.​org/​10.​1016/j.​jbiosc.​2011.​12.​013

Kobayashi Y, Inokuma K, Matsuda M, Kondo A, Hasunuma T (2021)

Resveratrol production from several types of saccharide sources

by a recombinant Scheffersomyces stipitis strain. Metab Eng Commun 13:e00188. https://​doi.​org/​10.​1016/j.​mec.​2021.​e00188

Kobayashi Y, Inokuma K, Matsuda M, Kondo A, Hasunuma T (2022)

Resveratrol production of a recombinant Scheffersomyces stipitis

strain from molasses. Biotechnol Notes 3:1–7. https://​doi.​org/​10.​

1016/j.​biotno.​2021.​11.​001

Kogure T, Inui M (2018) Recent advances in metabolic engineering of

Corynebacterium glutamicum for bioproduction of value-added

aromatic chemicals and natural products. Appl Microbiol Biotechnol 102:8685–8705. https://​doi.​org/​10.​1007/​s00253-​018-​9289-6

Krivoruchko A, Nielsen J (2015) Production of natural products through

metabolic engineering of Saccharomyces cerevisiae. Curr Opin

Biotechnol 35:7–15. https://​doi.​org/​10.​1016/j.​copbio.​2014.​12.​004

Kumokita R, Bamba T, Inokuma K, Yoshida T, Ito Y, Kondo A, Hasunuma T (2022) Construction of an L-tyrosine chassis in Pichia

pastoris enhances aromatic secondary metabolite production from

glycerol. ACS Synth Biol 11:2098–2107. https://​doi.​org/​10.​1021/​

acssy​nbio.​2c000​47

Larroude M, Nicaud JM, Rossignol T (2021) Yarrowia lipolytica chassis strains engineered to produce aromatic amino acids via the

shikimate pathway. Microb Biotechnol 14:2420–2434. https://d​ oi.​

org/​10.​1111/​1751-​7915.​13745

Libkind D, Brizzio S, Van Broock M (2004) Rhodotorula mucilaginosa,

a carotenoid producing yeast strain from a Patagonian high-altitude

Lake. Folia Microbiol 49:19–25. https://​doi.​org/​10.​1007/​BF029​31640

Libkind D, Van Broock M (2006) Biomass and carotenoid pigment

production by patagonian native yeasts. World J Microbiol Biotechnol 22:687–692. https://​doi.​org/​10.​1007/​s11274-​005-​9091-3

7401

Liu Q, Yu T, Li X, Chen Y, Campbell K, Nielsen J, Chen Y (2019)

Rewiring carbon metabolism in yeast for high level production

of aromatic chemicals. Nat Commun 10:4976. https://​doi.​org/​10.​

1038/​s41467-​019-​12961-5

Patra P, Das M, Kundu P, Ghosh A (2021) Recent advances in systems and synthetic biology approaches for developing novel cellfactories in non-conventional yeasts. Biotechnol Adv 47:107695.

https://​doi.​org/​10.​1016/j.​biote​chadv.​2021.​107695

Pyne ME, Narcross L, Martin VJJ (2019) Engineering plant secondary metabolism in microbial systems. Plant Physiol 179:844–861.

https://​doi.​org/​10.​1104/​pp.​18.​01291

Sáez-Sáez J, Wang G, Marella ER, Sudarsan S, Cernuda Pastor M,

Borodina I (2020) Engineering the oleaginous yeast Yarrowia

lipolytica for high-level resveratrol production. Metab Eng 62:51–

61. https://​doi.​org/​10.​1016/j.​ymben.​2020.​08.​009

Shrivastava A, Pal M, Sharma RK (2023) Pichia as yeast cell factory for production of industrially important bio-products: Current trends, challenges, and future prospects. J Bioresour Bioprod

8:108–124. https://​doi.​org/​10.​1016/j.​jobab.​2023.​01.​007

Stahlhut SG, Siedler S, Malla S, Harrison SJ, Maury J, Neves AR,

Forster J (2015) Assembly of a novel biosynthetic pathway for

production of the plant flavonoid fisetin in Escherichia coli. Metab

Eng 31:84–93. https://​doi.​org/​10.​1016/j.​ymben.​2015.​07.​002

Suástegui M, Shao Z (2016) Yeast factories for the production of

aromatic compounds: from building blocks to plant secondary

metabolites. J Ind Microbiol Biotechnol 43:1611–1624. https://​

doi.​org/​10.​1007/​s10295-​016-​1824-9

Vavricka CJ, Yoshida T, Kuriya Y, Takahashi S, Ogawa T, Ono F,

Agari K, Kiyota H, Li J, Ishii J, Tsuge K, Minami H, Araki M,

Hasunuma T, Kondo A (2019) Mechanism-based tuning of insect

3,4-dihydroxyphenylacetaldehyde synthase for synthetic bioproduction of benzylisoquinoline alkaloids. Nat Commun 10:2015.

https://​doi.​org/​10.​1038/​s41467-​019-​09610-2

Xu P, Marsafari M, Zha J, Koffas M (2020) Microbial coculture for

flavonoid synthesis. Trends Biotechnol 38:686–688. https://​doi.​

org/​10.​1016/j.​tibte​ch.​2020.​01.​008

Yuan SF, Alper HS (2019) Metabolic engineering of microbial cell

factories for production of nutraceuticals. Microb Cell Fact 18:46.

https://​doi.​org/​10.​1186/​s12934-​019-​1096-y

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る