リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Biochemical analysis and genetic engineering of oleaginous fungi for the production of eicosapentaenoic acid and free fatty acid derivatives」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Biochemical analysis and genetic engineering of oleaginous fungi for the production of eicosapentaenoic acid and free fatty acid derivatives

Brian, King Himm Mo 京都大学 DOI:10.14989/doctor.k23253

2021.03.23

概要

The thesis describes biochemical analysis and genetic engineering of oleaginous fungi for the production of functional lipids and oleo-chemicals. ω3-polyunsaturated fatty acids (ω3- PUFAs) and free fatty acid (FFA) derivatives hold great industrial importance as pharmaceutical intermediates and fine oleochemicals, but they are currently obtained from unsustainable sources. For example, eicosapentaenoic acid (EPA) is obtained mainly from depleting marine fisheries, and ricinoleic acid is obtained mainly from castor bean which produces the potentially lethal toxic ricin. Their production from alternative sustainable sources by oleaginous microorganisms is therefore necessary. The results obtained from this thesis can be applied to establishing microbial production of the ω3-PUFA, EPA, and the FFA derivative, 13-hydroxy-cis-9-octadecenoic acid (13-OH LA).

 Chapter 1 describes characterization of ω3 fatty acid desaturases from oomycetes and their application toward EPA production in Mortierella alpina. ω3 desaturases with efficient desaturase activity are vital to produce ω3-PUFAs such as EPA from ω6-PUFAs, but such gene resources are limited. With an aim to isolate efficient ω3 desaturases, oomycetes were selected based on intracellular EPA/arachidonic acid (ARA) ratios. Two oomycetes with the highest EPA/ARA ratios in their respective orders, Pythium sulcatum and Plectospira myriandra, were selected, and the ω3 desaturase genes, psulω3, pmd17c, and pmd17g, were cloned.

 The enzymes were expressed in the oleaginous fungus M. alpina, which produces approx. 70 % of total fatty acids (TFAs) as ω6-PUFAs at 28 °C. Two resulting transformants produced EPA comprising 38 % (psulω3) and 40 % (pmd17g) of TFAs, which are the highest reported EPA/TFA values for M. alpina to date. Compared to the strains expressing pmd17c and pmd17g, the strain expressing psulω3 showed less accumulation of the C18 ω6 byproducts, linoleic acid (LA) and γ-linolenic acid, as they were presumably converted to the C18 ω3 fatty acids, α-linolenic acid (ALA) and stearidonic acid (SDA). In contrast, M. alpina expressing pmd17c and pmd17g accumulated EPA as a major product with minimal accumulation of C18 ω3 byproducts such as ALA and SDA.

 These results show that PSULω3 is a non-specific ω3 desaturase that shows high potential for EPA production through C18 and C20 fatty acids, while PMD17C and PMD17G are of great value for EPA biosynthesis in M. alpina via C20 ω6-PUFAs due to their ability to convert endogenous C20 ω6-PUFAs to C20 ω3-PUFAs with minimal byproducts and high conversion efficiency. These ω3 desaturases should thus facilitate the advent of more sustainable EPA sources.

 Chapter 2 describes development of a platform host microorganism Basidiobolus meristosporus for production of FFA derivative. FFA-derived oleochemicals fermented from biomass are potential alternative sources for various functional lipids and industrial oleochemicals, but no reported organisms possess the metabolic environment to accumulate high levels of FFA without extensive metabolic engineering.

 Section 1 of this chapter describes screening and characterization of oleaginous filamentous fungus B. meristosporus accumulating high levels of FFAs.

 After characterization and optimization of FFA production, a fed-batch fermentation at 300 mL flask scale was conducted. B. meristosporus rapidly grew to a maximum of 60.5 g/L dry cell weight (DCW) after 312 h cultivation at 28 °C. FFAs were produced to high levels from glucose, reaching an FFA titer of 10.0 g/L, a productivity of 61.7 mg/L/h, and a yield of 0.05 g FFA/g glucose (~17 % of the theoretical maximum) after 162 h. These FFA production metrics are the highest reported in any wild type organism to date, with the titer, productivity and yield representing ~500,000-fold, ~100-fold and ~330-fold increases, respectively, compared to the wild types of the current platforms Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica.

 Section 2 of this chapter describes a transformation system for B. meristosporus utilizing a plasmid vector containing a carboxin resistance gene as a selection marker and a β- glucuronidase (GUS) gene as an expression reporter.

 After transformation of the ballistospores by biolistic bombardment, the resulting transformants could be recovered on carboxin selective plates after 72 h and showed stable GUS activity. Transformation efficiency reached approximately 237 transformants/106 ballistospores.

 Lactobacillus acidophilus FA-HY1 catalyzes the hydration of LA to 13-OH LA, with biochemical characterization and homology models strongly suggesting FFAs to be the sole substrate. To demonstrate that endogenously accumulated FFAs in B. meristosporus could be utilized as substrates for FFA derivative production, de novo biosynthesis of the hydroxy fatty acid 13-OH LA from glucose was evaluated with B. meristosporus transformants. The expression vector pBIG_CarR_FA-HY1 was utilized, which contained FA-HY1 in place of GUS. This vector was introduced into B. meristosporus ballistospores. Analysis of the intracellular lipids of a resulting transformant yielded a novel peak with a similar retention time to the 13-OH LA standard. The mass spectrum of the peak produced by the FA-HY1 transformant showed the molecular ions characteristic of 13-OH LA.

 13-OH LA production was then evaluated by fed-batch cultivation of the FA-HY1 transformant at 300 mL flask scale. During fermentation, the wild type strain showed no 13- OH LA production and the LA FFA titer reached 1250 mg/L after 162 h. In comparison, the FA-HY1 transformant showed 13-OH LA production throughout fermentation, reaching a maximum of 311 mg/L 13-OH LA after 186 h.

 Thus, B. meristosporus and the transformation system for the stain facilitate sustainable production of industrially relevant FFA derivatives.

この論文で使われている画像

参考文献

CHAPTER 1

1. P. Willatts, J. S. Forsyth, M. K. Dimodugno, S. Varma, M. Colvin, Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet 352, 688–691 (1998).

2. F. Shahidi, P. Ambigaipalan, Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 9, 345–381 (2018).

3. J. Dyerberg, H. O. Bang, O. Aagaard, α-linolenic acid and eicosapentaenoic acid. Lancet 315, 199 (1980).

4. M. I. Gladyshev, N. N. Sushchik, O. N. Makhutova, Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostaglandins Other Lipid Mediat. 107, 117–126 (2013).

5. F. D. Gunstone, Fatty Acid and Lipid Chemistry (Springer, 1996) https:/doi.org/10.1007/978-1-4615-4131-8.

6. FAO, “The State of World Fisheries and Aquaculture 2018-Meeting the sustainable development goals” (2018).

7. B. Worm, et al., Impacts of biodiversity loss on Ocean Ecosystem Services. Science (80-. ). 314, 787–790 (2006).

8. T. A. Walsh, et al., Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid. Nat. Biotechnol. 34, 881–887 (2016).

9. M. A. Borowitzka, High-value products from microalgae-their development and commercialisation. J. Appl. Phycol. 25, 743–756 (2013).

10. T. Okuda, A. Ando, E. Sakuradani, J. Ogawa, Isolation and characterization of a docosahexaenoic acid-phospholipids producing microorganism Crypthecodinium sp. D31. J. Am. Oil Chem. Soc. 90, 1837–1844 (2013).

11. K. Watanabe, K. Yazawa, K. Kondo, A. Kawaguchi, Fatty acid synthesis of an eicosapentaenoic acid-producing bacterium: De novo synthesis, chain elongation, and desaturation systems. J. Biochem. 122, 467–473 (1997).

12. Z. Cohen, The production potential of eicosapentaenoic and arachidonic acids by the red alga porphyridium cruentum. 67, 916–920 (1990).

13. S. Otles, R. Pire, Fatty acid composition of chlorella and spirulina microalgae species. J. AOAC Int. 84, 1708–1714 (2001).

14. W. Yongmanitchai, O. P. Ward, Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl. Environ. Microbiol. 57, 419–425 (1991).

15. C. K. Tan, M. R. Johns, Screening of diatoms for heterotrophic eicosapentaenoic acid production. J. Appl. Phycol. 8, 59–64 (1996).

16. S. Shimizu, H. Kawashima, Y. Shinmen, K. Akimoto, H. Yamada, Production of eicosapentaenoic acid by Mortierella fungi. J. Am. Oil Chem. Soc. 65, 1455–1459 (1988).

17. Z. Xue, et al., Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol. 31, 734–740 (2013).

18. S. R. Gandhi, J. D. Weete, Production of the polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid by the fungus Pythium ultimum. J. Gen. Microbiol. 137, 1825–1830 (1991).

19. J. L. Gellerman, H. Schlenk, Methyl-directed desaturation of arachidonic to eicosapentaenoic acid in the fungus, Saprolegnia parasitica. Biochim. Biophys. Acta 573, 23–30 (1979).

20. D. J. O’Brien, M. J. Kurantz, R. Kwoczak, Production of eicosapentaenoic acid by the filamentous fungus Pythium irregulare. Appl. Microbiol. Biotechnol. 40, 211–214 (1993).

21. E. E. Stinson, R. Kwoczak, M. J. Kurantz, Effect of cultural conditions on production of eicosapentaenoic acid by Pythium irregulare. J. Ind. Microbiol. 8, 171–178 (1991).

22. B. Qi, et al., Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat. Biotechnol. 22, 739–745 (2004).

23. N. Ruiz-Lopez, R. P. Haslam, J. A. Napier, O. Sayanova, Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 77, 198–208 (2014).

24. Y. Chen, D. Meesapyodsuk, X. Qiu, Transgenic production of omega-3 very long chain polyunsaturated fatty acids in plants: Accomplishment and challenge. Biocatal. Agric. Biotechnol. 3, 38–43 (2014).

25. Y. Shinmen, S. Shimizu, K. Akimoto, H. Kawashima, H. Yamada, Production of arachidonic acid by Mortierella fungi - Selection of a potent producer and optimization of culture conditions for large-scale production. Appl. Microbiol. Biotechnol. 31, 11–16 (1989).

26. E. Sakuradani, A. Ando, J. Ogawa, S. Shimizu, Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl. Microbiol. Biotechnol. 84, 1–10 (2009).

27. S. Takeno, et al., Cloning and sequencing of the ura3 and ura5 genes, and isolation and characterization of uracil auxotrophs of the fungus Mortierella alpina 1S-4. Biosci. Biotechnol. Biochem. 68, 277–285 (2004).

28. A. Ando, E. Sakuradani, K. Horinaka, J. Ogawa, S. Shimizu, Transformation of an oleaginous zygomycete Mortierella alpina 1S-4 with the carboxin resistance gene conferred by mutation of the iron-sulfur subunit of succinate dehydrogenase. Curr. Genet. 55, 349–356 (2009).

29. S. Takeno, et al., Establishment of an overall transformation system for an oil-producing filamentous fungus, Mortierella alpina 1S-4. Appl. Microbiol. Biotechnol. 65, 419–425 (2004).

30. A. Ando, et al., Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding. Appl. Environ. Microbiol. 75, 5529–5535 (2009).

31. T. Okuda, et al., Characterization of galactose-dependent promoters from an oleaginous fungus Mortierella alpina 1S-4. Curr. Genet. 60, 175–182 (2014).

32. T. Okuda, et al., Selection and characterization of promoters based on genomic approach for the molecular breeding of oleaginous fungus Mortierella alpina 1S-4. Curr. Genet. 60, 183–191 (2014).

33. H. Kikukawa, et al., Gene targeting in the oil-producing fungus Mortierella alpina 1S-4 and construction of a strain producing a valuable polyunsaturated fatty acid. Curr. Genet. 61, 579–589 (2015).

34. X. Tang, et al., Characterization of an omega-3 desaturase from Phytophthora parasitica and application for eicosapentaenoic acid production in Mortierella alpina. Front. Microbiol. 9, 1–9 (2018).

35. T. Okuda, et al., Eicosapentaenoic acid (EPA) production by an oleaginous fungus Mortierella alpina expressing heterologous the Δ17-desaturase gene under ordinary temperature. Eur. J. Lipid Sci. Technol. 117, 1919–1927 (2015).

36. C. Ge, et al., Application of a ω-3 desaturase with an arachidonic acid preference to eicosapentaenoic acid production in Mortierella alpina. Front. Bioeng. Biotechnol. 5, 1–10 (2018).

37. D. Meesapyodsuk, et al., Characterization of the regiochemistry and cryptoregiochemistry of a Caenorhabditis elegans fatty acid desaturase (FAT-1) expressed in Saccharomyces cerevisiae. Biochemistry 39, 11948–11954 (2000).

38. T. Oura, S. Kajiwara, Saccharomyces kluyveri FAD3 encodes an ω3 fatty acid desaturase. Microbiology 150, 1983–1990 (2004).

39. E. Sakuradani, T. Abe, K. Iguchi, S. Shimizu, A novel fungal ω3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Appl. Microbiol. Biotechnol. 66, 648–654 (2005).

40. S. L. Pereira, et al., A novel ω3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid. Biochem. J. 378, 665–671 (2004).

41. X. Zhang, M. Li, D. Wei, L. Xing, Identification and characterization of a novel yeast ω3-fatty acid desaturase acting on long-chain n-6 fatty acid substrates from Pichia pastoris. Yeast (2008) https:/doi.org/10.1002/yea.1546.

42. Z. Xue, et al., Identification and characterization of new Δ-17 fatty acid desaturases. Appl. Microbiol. Biotechnol. 97, 1973–1985 (2013).

43. C. Rong, et al., Characterization and molecular docking of new Δ17 fatty acid desaturase genes from: Rhizophagus irregularis and Octopus bimaculoides. RSC Adv. 9, 6871–6880 (2019).

44. P. Sperling, P. Ternes, T. K. Zank, E. Heinz, The evolution of desaturases. Prostaglandins, Leukot. Essent. Fat. Acids 68, 73–95 (2003).

45. M. R. Jackson, T. Nilsson, P. A. Peterson, Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9, 3153– 3162 (1990).

46. K. H. D. Le, F. Lederer, On the presence of a heme-binding domain homologous to cytochrome b 5 in Neurospora crassa assimilatory nitrate reductase. EMBO J. 2, 1909– 1914 (1983).

47. K. Hashimoto, et al., The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J. Lipid Res. 49, 183–191 (2008).

48. H. Shi, et al., Molecular mechanism of substrate specificity for delta 6 desaturase from Mortierella alpina and Micromonas pusilla. J. Lipid Res. 56, 2309–2321 (2015).

49. C. Rong, et al., Molecular mechanism of substrate preference for ω-3 fatty acid desaturase from Mortierella alpina by mutational analysis and molecular docking. Appl. Microbiol. Biotechnol. 102, 9679–9689 (2018).

50. N. Kabeya, et al., Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 4, 1–9 (2018).

51. E. Sakuradani, M. Kobayashi, S. Shimizu, δ9-Fatty acid desaturase from arachidonic acid-producing fungus. Unique gene sequence and its heterologous expression in a fungus, Aspergillus. Eur. J. Biochem. 260, 208–216 (1999).

52. L. Dobson, I. Remenyi, G. E. Tusnady, CCTOP: A consensus constrained TOPology prediction web server. Nucleic Acids Res. 43, W408–W412 (2015).

53. P. Cirpus, J. Bauer, T. Zank, E. Heinz, Method for producing unsaturated omega-3 fatty acids in transgenic organisms (2017).

54. The C. elegans Sequencing Consortium, Genome sequence of the nematode C. elegans: A platform for investigating biology. Science (80-. ). 282, 2012–2018 (1998).

55. L. Wang, et al., Genome Characterization of the Oleaginous Fungus Mortierella alpina. PLoS One 6, e28319 (2011).

56. H. G. Damude, et al., Identification of bifunctional Δ12/ω3 fatty acid desaturases for improving the ratio of ω3 to ω6 fatty acids in microbes and plants. Proc. Natl. Acad. Sci. U. S. A. (2006) https:/doi.org/10.1073/pnas.0511079103.

57. R. C. Edgar, MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

58. S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

59. D. T. Jones, W. R. Taylor, J. M. Thornton, The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8, 275–282 (1992).

CHAPTER 2.1

1. United Nations Environment Programme, “Emissions Gap Report 2019” (2019).

2. IPCC, Climate change 2014: synthesis report (2014).

3. J. D. Keasling, Manufacturing molecules through metabolic engineering. Science (80-. ). 330, 1355–1358 (2010).

4. A. Q. Yu, N. K. Pratomo Juwono, S. S. J. Leong, M. W. Chang, Production of fatty acid-derived valuable chemicals in synthetic microbes. Front. Bioeng. Biotechnol. 2, 1– 12 (2014).

5. X. Lu, H. Vora, C. Khosla, Overproduction of free fatty acids in E. coli: Implications for biodiesel production. Metab. Eng. 10, 333–339 (2008).

6. L. Chen, J. Zhang, J. Lee, W. N. Chen, Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism. Appl. Microbiol. Biotechnol. 98, 6739–6750 (2014).

7. E. Y. Yuzbasheva, et al., A metabolic engineering strategy for producing free fatty acids by the Yarrowia lipolytica yeast based on impairment of glycerol metabolism. Biotechnol. Bioeng. 115, 433–443 (2018).

8. H. J. Janßen, A. Steinbüchel, Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol. Biofuels 7, 1–26 (2014).

9. O. Tehlivets, K. Scheuringer, S. D. Kohlwein, Fatty acid synthesis and elongation in yeast. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1771, 255–270 (2007).

10. M. Dourou, D. Aggeli, S. Papanikolaou, G. Aggelis, Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl. Microbiol. Biotechnol. 102, 2509–2523 (2018).

11. D. Xie, Integrating cellular and bioprocess engineering in the non-conventional yeast Yarrowia lipolytica for biodiesel production: A review. Front. Bioeng. Biotechnol. 5 (2017).

12. Y. Xiao, C. H. Bowen, D. Liu, F. Zhang, Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat. Chem. Biol. 12, 339–344 (2016).

13. T. Yu, et al., Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Cell 174, 1549-1558.e14 (2018).

14. R. Ledesma-Amaro, R. Dulermo, X. Niehus, J. M. Nicaud, Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab. Eng. 38, 38–46 (2016).

15. T. Katayama, et al., An oleaginous bacterium that intrinsically accumulates long-chain free fatty acids in its cytoplasm. Appl. Environ. Microbiol. 80, 1126–1131 (2014).

16. R. Vilela, L. Mendoza, Human pathogenic entomophthorales. Clin. Microbiol. Rev. 31, 1–40 (2018).

17. M. H. F. El-Shabrawi, N. M. Kamal, Gastrointestinal basidiobolomycosis in children: An overlooked emerging infection? J. Med. Microbiol. 60, 871–880 (2011).

18. L. Mendoza, et al., Human fungal pathogens of Mucorales and Entomophthorales. Cold Spring Harb. Perspect. Med. 5, 1–34 (2015).

19. H. C. Gugnani, A review of zygomycosis due to Basidiobolus ranarum. Eur. J. Epidemiol. (1999) https:/doi.org/10.1023/A:1007656818038.

20. M. Anand, S. D. Deshmukh, D. P. Pande, S. Naik, D. P. Ghadage, Subcutaneous zygomycosis due to basidiobolus ranarum: A case report from Maharastra, India. J. Trop. Med. 2010, 10–12 (2010).

21. C. Ratledge, J. P. Wynn, The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51, 1–52 (2002).

22. S. Kishino, et al., Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc. Natl. Acad. Sci. U. S. A. 110, 17808–17813 (2013).

CHAPTER 2.2

1. IPCC, Climate change 2014: synthesis report (2014).

2. United Nations Environment Programme, “Emissions Gap Report 2019” (2019).

3. J. D. Keasling, Manufacturing molecules through metabolic engineering. Science (80-. ). 330, 1355–1358 (2010).

4. Y. Tsuchiya, U. Pham, I. Gout, Methods for measuring CoA and CoA derivatives in biological samples. Biochem. Soc. Trans. 42, 1107–1111 (2014).

5. A. Q. Yu, N. K. Pratomo Juwono, S. S. J. Leong, M. W. Chang, Production of fatty acid-derived valuable chemicals in synthetic microbes. Front. Bioeng. Biotechnol. 2, 1– 12 (2014).

6. H. Furumoto, et al., 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress. Toxicol. Appl. Pharmacol. 296, 1–9 (2016).

7. S. Kishino, et al., Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc. Natl. Acad. Sci. U. S. A. 110, 17808–17813 (2013).

8. J. Miyamoto, et al., A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J. Biol. Chem. 290, 2902–2918 (2015).

9. K. R. Kim, D. K. Oh, Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol. Adv. 31, 1473–1485 (2013).

10. Y. C. Joo, et al., Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia. J. Biotechnol. 158, 17–23 (2012).

11. M. Takeuchi, et al., Efficient enzymatic production of hydroxy fatty acids by linoleic acid Δ9 hydratase from Lactobacillus plantarum AKU 1009a. J. Appl. Microbiol. 120, 1282–1288 (2016).

12. E. Y. Jeon, et al., Bioprocess engineering to produce 10-hydroxystearic acid from oleic acid by recombinant Escherichia coli expressing the oleate hydratase gene of Stenotrophomonas maltophilia. Process Biochem. 47, 941–947 (2012).

13. C. Sung, et al., The production of ω-hydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli. Appl. Microbiol. Biotechnol. 99, 6667– 6676 (2015).

14. X. Wang, et al., Biosynthesis of long chain hydroxyfatty acids from glucose by engineered Escherichia coli. Bioresour. Technol. 114, 561–566 (2012).

15. K. Xiao, et al., Metabolic engineering for enhanced medium chain omega hydroxy fatty acid production in Escherichia coli. Front. Microbiol. 9 (2018).

16. C. H. Bowen, J. Bonin, A. Kogler, C. Barba-Ostria, F. Zhang, Engineering Escherichia coli for conversion of glucose to medium-chain ω-hydroxy fatty acids and α,ω-dicarboxylic acids. ACS Synth. Biol. 5, 200–206 (2016).

17. Y. Cao, et al., Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose. BMC Biotechnol. 16, 1–9 (2016).

18. J. Liu, C. Zhang, W. Lu, Biosynthesis of long-chain ω-hydroxy fatty acids by engineered Saccharomyces cerevisiae. J. Agric. Food Chem. 67, 4545–4552 (2019).

19. H. J. Janßen, A. Steinbüchel, Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol. Biofuels 7, 1–26 (2014).

20. O. Tehlivets, K. Scheuringer, S. D. Kohlwein, Fatty acid synthesis and elongation in yeast. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1771, 255–270 (2007).

21. J. Sheng, X. Feng, Metabolic engineering of yeast to produce fatty acid-derived biofuels: Bottlenecks and solutions. Front. Microbiol. 6 (2015).

22. M. Dourou, D. Aggeli, S. Papanikolaou, G. Aggelis, Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl. Microbiol. Biotechnol. 102, 2509–2523 (2018).

23. D. Xie, Integrating cellular and bioprocess engineering in the non-conventional yeast Yarrowia lipolytica for biodiesel production: A review. Front. Bioeng. Biotechnol. 5 (2017).

24. H. M. Alvarez, et al., Insights into the metabolism of oleaginous Rhodococcus spp. Appl. Environ. Microbiol. 85, e00498-19 (2019).

25. X. Lu, H. Vora, C. Khosla, Overproduction of free fatty acids in E. coli: Implications for biodiesel production. Metab. Eng. 10, 333–339 (2008).

26. L. Chen, J. Zhang, J. Lee, W. N. Chen, Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism. Appl. Microbiol. Biotechnol. 98, 6739–6750 (2014).

27. E. Y. Yuzbasheva, et al., A metabolic engineering strategy for producing free fatty acids by the Yarrowia lipolytica yeast based on impairment of glycerol metabolism. Biotechnol. Bioeng. 115, 433–443 (2018).

28. A. P. Desbois, V. J. Smith, Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85, 1629–1642 (2010).

29. L. Yafetto, et al., The fastest flights in nature: High-speed spore discharge mechanisms among fungi. PLoS One 3, 1–5 (2008).

30. A. Ando, E. Sakuradani, K. Horinaka, J. Ogawa, S. Shimizu, Transformation of an oleaginous zygomycete Mortierella alpina 1S-4 with the carboxin resistance gene conferred by mutation of the iron-sulfur subunit of succinate dehydrogenase. Curr. Genet. 55, 349–356 (2009).

31. P. J. Punt, C. A. M. J. J. van den Hondel, Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers. Methods Enzymol. 216, 447–457 (1992).

32. J. T. Ulrich, D. E. Mathre, Mode of action of oxathiin systemic fungicides. V. Effect on electron transport system of Ustilago maydis and Saccharomyces cerevisiae. J. Bacteriol. 110, 628–632 (1972).

33. W. Skinner, et al., A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicola. Curr. Genet. 34, 393–398 (1998).

34. P. L. E. Broomfield, J. A. Hargreaves, A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Curr. Genet. 22, 117–121 (1992).

35. T. Okuda, et al., Selection and characterization of promoters based on genomic approach for the molecular breeding of oleaginous fungus Mortierella alpina 1S-4. Curr. Genet. 60, 183–191 (2014).

36. R. A. Jefferson, Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Report. 5, 387–405 (1987).

37. A. Hirata, et al., A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus. J. Lipid Res. 56, 1340–1350 (2015).

38. B. E. Eser, et al., Rational engineering of hydratase from Lactobacillus acidophilus reveals critical residues directing substrate specificity and regioselectivity. ChemBioChem 21, 550–563 (2020).

39. D. Li, Y. Tang, J. Lin, W. Cai, Methods for genetic transformation of filamentous fungi. Microb. Cell Fact. 16, 1–13 (2017).

40. M. J. A. de Groot, P. Bundock, P. J. . Hooykaas, A. G. M. Beijersbergen, Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16, 839–842 (1998).

41. A. P. Gryganskyi, et al., Phylogenetic lineages in Entomophthoromycota. Persoonia Mol. Phylogeny Evol. Fungi 30, 94–105 (2013).

42. D. Chandler, Basic and applied research on entomopathogenic fungi (Elsevier Inc., 2017) https:/doi.org/10.1016/B978-0-12-803527-6.00005-6.

43. T. E. F. Quax, N. J. Claassens, D. Söll, J. van der Oost, Codon bias as a means to fine-tune gene expression. Mol. Cell 59, 149–161 (2015).

44. T. C. Walther, R. V. Farese, The life of lipid droplets. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1791, 459–466 (2009).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る