リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of pH on water durability of cellulose nanofiber-reinforced starch film」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of pH on water durability of cellulose nanofiber-reinforced starch film

Haji Abdul Hamid, Izzah Durrati 大阪大学

2023.11.16

概要

Plastic packaging has played an important role in preservation, protection, handling, and consumer convenience in
several industries. Most of the commercial plastic packaging
materials are made from petrochemical polymers, namely
polyolefin, polyester, polyvinyl chloride, and polystyrene
[1–4]. These plastics commonly serve their single-use functions and are thrown out after use [5]. However, because
of their inert nature and very slow degradation, there is a
buildup of these plastics globally, along with the amount of
microplastics worldwide from the plastics’ fragmentation
[6–8]. Extensive studies into the potential replacement of
these conventional polymers have been explored. Biopolymers extracted from renewable biomass resources have
attracted much interest for their use as single-use packaging materials, mainly because of their biodegradability and
renewability [9, 10].
Cellulose and starch-based films are considered suitable
for single-use packaging owing to enzymatic hydrolysis
by cellulase and amylase [11, 12]. On top of cellulose and
starch being the most naturally abundant biomass resources
available, their ability to degrade by bacteria, E. coli, and
fungus pushes their suitability as components for the production of bioplastics [13–16]. However, their application
is limited by their opacity, poor mechanical properties, and
poor freshwater durability.
In a previous study, a water-stable transparent film was
prepared by introducing aldehyde moieties to polysaccharides which prepared environmentally friendly cross
linkers, that have been found to improve the films’ overall properties [17]. Starch films cross-linked by oxidized
sucrose (di-aldehyde sucrose) [18], di-aldehyde starch [19],
and di-aldehyde cellulose (~ 100% oxidized, amorphous)
[20] exhibited water stability from hemiacetal crosslinking
between the polysaccharides. Studies that have used modified starch to blend with (2,2,6,6-tetramethylpiperidin-1-yl)
oxyl (TEMPO)-oxidized cellulose nanofibers (TCNF) produced films with high optical transparency (~ 90%) and a
wet strength of ~ 300 kPa owing to the hemiacetal binding
between the TCNF and starch [21–23]. A study by Soni
et al. [24], showed that through the introduction of aldehyde
moieties on the cellulose nanofiber surface, the films’ wet
strength increased from ~ 2 MPa to ~ 35 MPa after blending
with starch. ...

この論文で使われている画像

参考文献

1. Marsh K, Bugusu B (2007) Food packaging—roles, materials, and

environmental issues. J Food Sci 72(3):R39–R55. https://​doi.​org/​

10.​1111/j.​1750-​3841.​2007.​00301.x

2. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar

Pollut Bull 62(12):2588–2597. https://​doi.​org/​10.​1016/j.​marpo​

lbul.​2011.​09.​025

3. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the

circulatory system of the mussel, Mytilus edulis (L.). Environ Sci

Technol 42(13):5026–5031. https://​doi.​org/​10.​1021/​es800​249a

4. Browne MA et al (2011) Accumulation of microplastic on

shorelines woldwide: sources and sinks. Environ Sci Technol

45(21):9175–9179. https://​doi.​org/​10.​1021/​es201​811s

5. Mathalon A, Hill P (2014) Microplastic fibers in the intertidal

ecosystem surrounding Halifax Harbor, Nova Scotia. Mar Pollut

Bull 81(1):69–79. https://​doi.​org/​10.​1016/j.​marpo​lbul.​2014.​02.​

018

6. Rochman CM et al (2015) Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for

human consumption. Sci Rep 5(1):14340. https://d​ oi.o​ rg/1​ 0.1​ 038/​

srep1​4340

7. Wang J, Tan Z, Peng J, Qiu Q, Li M (2016) The behaviors of

microplastics in the marine environment. Mar Environ Res 113:7–

17. https://​doi.​org/​10.​1016/j.​maren​vres.​2015.​10.​014

8. Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats,

identification of knowledge gaps and prioritisation of research

needs. Water Res 75:63–82. https://d​ oi.o​ rg/1​ 0.1​ 016/j.w

​ atres.2​ 015.​

02.​012

9. Guillaume SM (2022) Sustainable and degradable plastics. Nat Chem 14(3):245–246. https:// ​ d oi. ​ o rg/ ​ 1 0. ​ 1 038/​

s41557-​022-​00901-8

10. Bhargava N, Sharanagat VS, Mor RS, Kumar K (2020) Active

and intelligent biodegradable packaging films using food and food

waste-derived bioactive compounds: a review. Trends Food Sci

Technol 105:385–401. https://​doi.​org/​10.​1016/j.​tifs.​2020.​09.​015

11. Bubner P, Plank H, Nidetzky B (2013) Visualizing cellulase

activity. Biotechnol Bioeng 110(6):1529–1549. https://​doi.​org/​

10.​1002/​bit.​24884

12. Lin X, Wu L, Huang S, Qin Y, Qiu X, Lou H (2019) Effect of

lignin-based amphiphilic polymers on the cellulase adsorption

and enzymatic hydrolysis kinetics of cellulose. Carbohydr Polym

207:52–58. https://​doi.​org/​10.​1016/j.​carbp​ol.​2018.​11.​070

13. Sheldon RA, Norton M (2020) Green chemistry and the plastic

pollution challenge: towards a circular economy. Green Chem

22(19):6310–6322. https://​doi.​org/​10.​1039/​D0GC0​2630A

14. Ahola S, Turon X, Österberg M, Laine J, Rojas OJ (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose

model films: effect of surface structure. Langmuir 24(20):11592–

11599. https://​doi.​org/​10.​1021/​la801​550j

15. Salehudin MH, Salleh E, Mamat SNH, Muhamad II (2014) Starch

based active packaging film reinforced with empty fruit bunch

(EFB) cellulose nanofiber. Procedia Chem 9:23–33. https://​doi.​

org/​10.​1016/j.​proche.​2014.​05.​004

16. Othman SH, Majid NA, Tawakkal ISMA, Basha RK, Nordin N,

Shapi’i RA (2019) Tapioca starch films reinforced with microcrystalline cellulose for potential food packaging application. Food Sci

Technol 39(3):605–612. https://​doi.​org/​10.​1590/​fst.​36017

17. Yu J, Chang PR, Ma X (2010) The preparation and properties of

dialdehyde starch and thermoplastic dialdehyde starch. Carbohydr

Polym 79(2):296–300. https://​doi.​org/​10.​1016/j.​carbp​ol.​2009.​08.​

005

18. Xu H, Canisag H, Mu B, Yang Y (2015) Robust and flexible films

from 100% starch cross-linked by biobased disaccharide derivative. ACS Sustain Chem Eng 3(11):2631–2639. https://​doi.​org/​

10.​1021/​acssu​schem​eng.​5b003​53

19. Rhim JW, Gennadios A, Weller CL, Cezeirat C, Hanna MA (1998)

Soy protein isolate–dialdehyde starch films. Ind Crops Prod

8(3):195–203. https://​doi.​org/​10.​1016/​S0926-​6690(98)​00003-X

20. Plappert SF et al (2018) Transparent, flexible, and strong 2,3-dialdehyde cellulose films with high oxygen barrier properties. Biomacromol 19(7):2969–2978. https://​doi.​org/​10.​1021/​acs.​biomac.​

8b005​36

21. Soni R, Asoh T-A, Uyama H (2020) Cellulose nanofiber reinforced starch membrane with high mechanical strength and durability in water. Carbohydr Polym 238:116203. https://​doi.​org/​10.​

1016/j.​carbp​ol.​2020.​116203

22. Soni R, Asoh T-A, Hsu Y-I, Shimamura M, Uyama H (2020)

Effect of starch retrogradation on wet strength and durability of

cellulose nanofiber reinforced starch film. Polym Degrad Stab

177:109165

23. Soni R, Hsu Y-I, Asoh T-A, Uyama H (2021) Synergistic effect

of hemiacetal crosslinking and crystallinity on wet strength of

cellulose nanofiber-reinforced starch films. Food Hydrocoll

120:106956. https://​doi.​org/​10.​1016/j.​foodh​yd.​2021.​106956

24. Soni R, Asoh T-A, Hsu Y-I, Uyama H (2022) Freshwater-durable

and marine-degradable cellulose nanofiber reinforced starch film.

Cellulose 29(3):1667–1678

25. Soni R, Hsu Y-I, Asoh T-A, Uyama H (2022) Cellulose nanofiber

reinforced starch film with rapid disintegration in marine environments. J Appl Polym Sci 139(32):e52776

26. Soykeabkaew N, Nishino T, Peijs T (2009) All-cellulose composites of regenerated cellulose fibres by surface selective dissolution.

Compos Part A Appl Sci Manuf 40(4):321–328. https://​doi.​org/​

10.​1016/j.​compo​sitesa.​2008.​10.​021

27. Han Q, Gao X, Zhang H, Chen K, Peng L, Jia Q (2019) Preparation and comparative assessment of regenerated cellulose films

from corn (Zea mays) stalk pulp fines in DMAc/LiCl solution.

Carbohydr Polym 218:315–323. https://​doi.​org/​10.​1016/j.​carbp​

ol.​2019.​04.​083

28. Xu Q, Chen C, Rosswurm K, Yao T, Janaswamy S (2016) A

facile route to prepare cellulose-based films. Carbohydr Polym

149:274–281. https://​doi.​org/​10.​1016/j.​carbp​ol.​2016.​04.​114

29. Hietala M, Varrio K, Berglund L, Soini J, Oksman K (2018)

Potential of municipal solid waste paper as raw material for

production of cellulose nanofibres. Waste Manage 80:319–326.

https://​doi.​org/​10.​1016/j.​wasman.​2018.​09.​033

30. Yang W et al (2023) Cellulose nanocrystal preparation via rapid

hydrolysis of wood cellulose fibers using recyclable molten ferric

13

31. 32. 33. 34. 35. 36. 37. 38. 39. Journal of Material Cycles and Waste Management

chloride hexahydrate. ACS Sustain Chem Eng 11(27):10172–

10182. https://​doi.​org/​10.​1021/​acssu​schem​eng.​3c024​60

Cai J et al (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules

41(23):9345–9351. https://​doi.​org/​10.​1021/​ma801​110g

Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea

and NaOH/urea aqueous solutions. Macromol Biosci 5(6):539–

548. https://​doi.​org/​10.​1002/​mabi.​20040​0222

Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H (2004) Novel fibers

prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25(17):1558–1562. https://​doi.​org/​10.​1002/​

marc.​20040​0172

Cao Y, Li H, Zhang Y, Zhang J, He J (2010) Structure and properties of novel regenerated cellulose films prepared from cornhusk

cellulose in room temperature ionic liquids. J Appl Polym Sci

116(1):547–554. https://​doi.​org/​10.​1002/​app.​31273

Sixta H et al (2015) Ion cell-F: a high-strength regenerated cellulose fibre. Nord Pulp Paper Res J 30(1):43–57. https://​doi.​org/​

10.​3183/​npprj-​2015-​30-​01-​p043-​057

Liu G, Yu C, Chen C, Ma W, Ji H, Zhao J (2011) A new type

of covalent-functional graphene donor-acceptor hybrid and its

improved photoelectrochemical performance. Sci China Chem

54(10):1622–1626. https://​doi.​org/​10.​1007/​s11426-​011-​4366-z

Ghasemi M, Alexandridis P, Tsianou M (2018) Dissolution of

cellulosic fibers: impact of crystallinity and fiber diameter. Biomacromol 19(2):640–651. https://​doi.​org/​10.​1021/​acs.​biomac.​

7b017​45

DiFlavio J-L, Pelton R, Leduc M, Champ S, Essig M, Frechen

T (2007) The role of mild TEMPO–NaBr–NaClO oxidation on

the wet adhesion of regenerated cellulose membranes with polyvinylamine. Cellulose 14(3):257–268. https://​doi.​org/​10.​1007/​

s10570-​006-​9104-x

Erlandsson J et al (2018) On the mechanism behind freezinginduced chemical crosslinking in ice-templated cellulose nanofibril aerogels. J Mater Chem A Mater 6(40):19371–19380. https://​

doi.​org/​10.​1039/​C8TA0​6319B

40. Przystas TJ, Fife TH (1981) The mechanism of hemiacetal decomposition. Substituent effects in breakdown of substituted benzaldehyde ethyl hemiacetals. J Am Chem Soc 103(16):4884–4890.

https://​doi.​org/​10.​1021/​ja004​06a036

41. Sorensen PE, Jencks WP (1987) Acid- and base-catalyzed decomposition of acetaldehyde hydrate and hemiacetals in aqueous solution. J Am Chem Soc 109(15):4675–4690. https://​doi.​org/​10.​

1021/​ja002​49a034

42. Azofra LM, Alkorta I, Elguero J, Toro-Labbé A (2012) Mechanisms of formation of hemiacetals: intrinsic reactivity analysis. J

Phys Chem A 116(31):8250–8259. https://​doi.​org/​10.​1021/​jp304​

495f

43. Tsalagkas D, Zhai L, Kim HC, Kim J (2017) Optical and mechanical properties of cellulose nanopaper structures. In: Varadan VK

(eds). https://​doi.​org/​10.​1117/​12.​22598​39.

44. Soni R, Asoh T-A, Hsu Y-I, Uyama H (2022) Freshwater-durable

and marine-degradable cellulose nanofiber reinforced starch film.

Cellulose. https://​doi.​org/​10.​1007/​s10570-​021-​04410-8

45. Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate

groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61(2):183–190. https://​doi.​org/​10.​1016/j.​

carbp​ol.​2005.​04.​009

46. Royer S-J, Wiggin K, Kogler M, Deheyn DD (2021) Degradation

of synthetic and wood-based cellulose fabrics in the marine environment: comparative assessment of field, aquarium, and bioreactor experiments. Sci Total Environ 791:148060. https://d​ oi.o​ rg/1​ 0.​

1016/j.​scito​tenv.​2021.​148060

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Izzah Durrati Haji Abdul Hamid1 · Raghav Soni1 · Yu‑I. Hsu1 · Hiroshi Uyama1

* Yu‑I. Hsu

yuihsu@chem.eng.osaka-u.ac.jp

* Hiroshi Uyama

uyama@chem.eng.osaka-u.ac.jp

13

Department of Applied Chemistry, Graduate School

of Engineering, Osaka University, 2‑1 Yamadaoka, Suita,

Osaka 565‑0871, Japan

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る