リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Structure of the outflow from super-massive black-hole seeds and its impact on the cosmological scales」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Structure of the outflow from super-massive black-hole seeds and its impact on the cosmological scales

Botella Lasaga, Ignacio 京都大学 DOI:10.14989/doctor.k23705

2022.03.23

概要

It is one of the biggest issues in black hole (BH) astrophysics how to precisely evaluate BH feedback to its environments. Previous work attempting to evaluate these phenomena have been limited by lack of observation evidence, computational power or other constrains. Aiming at studying the unique gas dynamics of super-Eddington flow around supermassive black hole (SMBH) seeds at high redshift, the thesis applicant carried out axisymmetric two-dimensional radiation hydrodynamic simulations through the Nested Simulation-Box (NSB) method which he has developed. This novel method consists of dividing the simulation box into individual simulation boxes each covering length scales of around 3 orders of magnitude. This allows the applicant to create a chain of simulations capable of covering any region of space between the cosmological inner boundary and the black hole boundary. In this thesis the applicant used 2 distinct simulation boxes, the first one covering the inner zone at (2 - 3×103) rS (with rS being the Schwarzschild radius) and the second covering the outer zone at (2×103 - 3×106) rS. In order for these 2 boxes to form a single larger simulation one need to create a smooth connection between them. This guarantees a smooth connection of the physical quantities and thus a continuation between the inner and outer zones. One can hence simulate the evolution of gas outflow over a wide spatial range from the BH scale to the cosmological simulation scale.

 In the first (fiducial) model the applicant started the calculation by injecting mass through the outer boundary of the inner zone at a constant rate of 103LEdd/c2, where LEdd is the Eddington luminosity and c is the speed of light, with a small angular momentum. At the center of the simulation box he placed a SMBH seed of mass of MBH = 103Msun. Powerful outflows are generated in the innermost region and they propagate from the inner zone to the outer zone. The outflows are characterized by velocity of 0.02c (or 0.7c) and density of 10-17 (10-19) g cm-3 in the edge-on (face-on) direction. Even in the outer zone the outflow is gradually accelerated as it travels by accepting radiation-pressure force. The final mass outflow rate at the outermost boundary is 60% of the injection rate. By extrapolating the outflow structure to a further larger scale, he found that the momentum and mechanical energy fluxes at r = 0.1 pc are (10 – 100) LEdd/c and (0.1 – 10) LEdd, respectively. Moreover, he found that the impacts are highly anisotropic in the sense that larger impacts are given towards the face-on direction than in the edge-on direction. These results indicate that the BH feedback will more efficiently work on the interstellar medium than that assumed in the cosmological simulations.

 In the second model the applicant reduced the mass injection rate to 500 LEdd/c2, while keeping all other initial values. He then found that the accretion process becomes more efficient, while the outflow rate is less, about 40% of the injected mass rate. As a result, the generated wind is weaker, with velocity of 0.03c (or 0.7c) and density of 10-18 (10-19) g cm-3 in the edge-on (face-on) direction. Doing the extrapolation to the cosmological inner boundary (i.e., 0.1 pc) he obtained in this case the momentum and mechanical energy fluxes values of (1 – 10) LEdd/c and (0.01 – 10) LEdd, respectively. This means again that the cosmological models tend to underestimate the impact from the AGN feedback.

この論文で使われている画像

参考文献

Alexander, Tal and Priyamvada Natarajan (Sept. 2014). “Rapid growth of seed black holes in the early universe by supra-exponential accretion”. In: Science 345.6202, pp. 1330–1333. DOI: 10.1126/science.1251053. arXiv: 1408.1718 [astro-ph.GA]. Bañados, E. et al. (Nov. 2016). “The Pan-STARRS1 Distant z > 5.6 Quasar Survey: More than 100 Quasars within the First Gyr of the Universe”. In: ApJs 227.1, 11, p. 11. DOI: 10.3847/0067-0049/227/1/11. arXiv: 1608.03279 [astro-ph.GA].

Bañados, Eduardo et al. (Jan. 2018). “An 800-million-solar-mass black hole in a sig- nificantly neutral Universe at a redshift of 7.5”. In: Nature 553.7689, pp. 473–476. DOI: 10.1038/nature25180. arXiv: 1712.01860 [astro-ph.GA].

Begelman, Mitchell C. (Feb. 2010). “Evolution of supermassive stars as a pathway to black hole formation”. In: MNRAS 402.1, pp. 673–681. DOI: 10.1111/j.1365- 2966.2009.15916.x. arXiv: 0910.4398 [astro-ph.CO].

Begelman, Mitchell C., Marta Volonteri, and Martin J. Rees (July 2006). “Formation of supermassive black holes by direct collapse in pre-galactic haloes”. In: MNRAS 370.1, pp. 289–298. DOI: 10.1111/j.1365- 2966.2006.10467.x. arXiv: astro- ph/0602363 [astro-ph].

Booth, C. M. and Joop Schaye (Dec. 2009). “Simulations of the Growth of Black Holes and Feedback from Active Galactic Nuclei”. In: The Monster’s Fiery Breath: Feed- back in Galaxies, Groups, and Clusters. Ed. by Sebastian Heinz and Eric Wilcots. Vol. 1201. American Institute of Physics Conference Series, pp. 21–24. DOI: 10. 1063/1.3293041.

Brightman, Murray et al. (May 2019). “Breaking the limit: Super-Eddington accretion onto black holes and neutron stars”. In: BAAS 51.3, 352, p. 352. arXiv: 1903.06844 [astro-ph.HE].

Carnall, A. C. et al. (July 2015). “Two bright z > 6 quasars from VST ATLAS and a new method of optical plus mid-infrared colour selection.” In: MNRAS 451, pp. L16–L20. DOI: 10.1093/mnrasl/slv057. arXiv: 1502.07748 [astro-ph.GA]. Chon, Sunmyon et al. (Dec. 2016). “Cosmological Simulations of Early Black Hole

Formation: Halo Mergers, Tidal Disruption, and the Conditions for Direct Col- lapse”. In: ApJ 832.2, 134, p. 134. DOI: 10.3847/0004- 637X/832/2/134. arXiv: 1603.08923 [astro-ph.GA].

Debuhr, Jackson, Eliot Quataert, and Chung-Pei Ma (Mar. 2012). “Galaxy-scale out- flows driven by active galactic nuclei”. In: MNRAS 420.3, pp. 2221–2231. DOI: 10.1111/j.1365-2966.2011.20187.x. arXiv: 1107.5579 [astro-ph.CO].

Devecchi, B. and M. Volonteri (Mar. 2009). “Formation of the First Nuclear Clusters and Massive Black Holes at High Redshift”. In: ApJ 694.1, pp. 302–313. DOI: 10. 1088/0004-637X/694/1/302. arXiv: 0810.1057 [astro-ph].

Dijkstra, Mark, Andrea Ferrara, and Andrei Mesinger (Aug. 2014). “Feedback-regulated supermassive black hole seed formation”. In: MNRAS 442.3, pp. 2036–2047. DOI: 10.1093/mnras/stu1007. arXiv: 1405.6743 [astro-ph.GA].

Dubois, Yohan et al. (Sept. 2015). “Black hole evolution - I. Supernova-regulated black hole growth”. In: MNRAS 452.2, pp. 1502–1518. DOI: 10 . 1093 / mnras / stv1416. arXiv: 1504.00018 [astro-ph.GA].

Eggum, G. E., F. V. Coroniti, and J. I. Katz (Dec. 1987). “Radiation-Hydrodynamic Calculation of Sub-Eddington Accretion Disks”. In: ApJ 323, p. 634. DOI: 10 . 1086/165859. — (July 1988). “Radiation Hydrodynamic Calculation of Super-Eddington Accre- tion Disks”. In: APJ 330, p. 142. DOI: 10.1086/166462.

Fan, Xiaohui et al. (Apr. 2003). “A Survey of z>5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z>6”. In: AJ 125.4, pp. 1649– 1659. DOI: 10.1086/368246. arXiv: astro-ph/0301135 [astro-ph].

Ferrara, A. et al. (Sept. 2014). “Initial mass function of intermediate-mass black hole seeds”. In: MNRAS 443.3, pp. 2410–2425. DOI: 10.1093/mnras/stu1280. arXiv: 1406.6685 [astro-ph.GA].

Fujita, Mitsutaka and Toru Okuda (Dec. 1998). “Two-Dimensional Accretion Disks at Subcritical Luminosity”. In: PASJ 50, pp. 639–652. DOI: 10.1093/pasj/50.6.639. Gaspari, M., M. Ruszkowski, and P. Sharma (Feb. 2012). “Cause and Effect of Feed- back: Multiphase Gas in Cluster Cores Heated by AGN Jets”. In: ApJ 746.1, 94, p. 94. DOI: 10.1088/0004-637X/746/1/94. arXiv: 1110.6063 [astro-ph.CO].

Graham, Alister W. (Jan. 2016). “Galaxy Bulges and Their Massive Black Holes: A Review”. In: Galactic Bulges. Ed. by Eija Laurikainen, Reynier Peletier, and Dim- itri Gadotti. Vol. 418. Astrophysics and Space Science Library, p. 263. DOI: 10 . 1007/978-3-319-19378-6\_11. arXiv: 1501.02937 [astro-ph.GA].

Habouzit, Mélanie et al. (Apr. 2019). “Linking galaxy structural properties and star formation activity to black hole activity with IllustrisTNG”. In: MNRAS 484.4, pp. 4413–4443. DOI: 10.1093/mnras/stz102. arXiv: 1809.05588 [astro-ph.GA].

Harrison, Fiona A. et al. (June 2013). “The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-Ray Mission”. In: ApJ 770.2, 103, p. 103. DOI: 10.1088/ 0004-637X/770/2/103. arXiv: 1301.7307 [astro-ph.IM].

Hawley, Scott H. and Matthew W. Choptuik (Nov. 2000). “Boson stars driven to the brink of black hole formation”. In: Physical Review D 62.10, 104024, p. 104024. DOI: 10.1103/PhysRevD.62.104024. arXiv: gr-qc/0007039 [gr-qc].

Hayashi, M. R., K. Shibata, and R. Matsumoto (Sept. 1996). “X-Ray Flares and Mass Outflows Driven by Magnetic Interaction between a Protostar and Its Surround- ing Disk”. In: ApJ 468, p. L37. DOI: 10.1086/310222. arXiv: astro- ph/9606157 [astro-ph].

Heger, A. et al. (July 2003). “How Massive Single Stars End Their Life”. In: ApJ 591.1, pp. 288–300. DOI: 10.1086/375341. arXiv: astro-ph/0212469 [astro-ph]. Hirose, Shigenobu, Julian H. Krolik, and James M. Stone (Apr. 2006). “Vertical Struc- ture of Gas Pressure-dominated Accretion Disks with Local Dissipation of Turbu- lence and Radiative Transport”. In: ApJ 640.2, pp. 901–917. DOI: 10.1086/499153. arXiv: astro-ph/0510741 [astro-ph].

Ho, Luis C. Washington) (Jan. 2004). “Black Hole Demography from Nearby Active Galactic Nuclei”. In: Coevolution of Black Holes and Galaxies. Ed. by Luis C. Ho, p. 292. arXiv: astro-ph/0401527 [astro-ph].

Hopkins, Philip F., Gordon T. Richards, and Lars Hernquist (Jan. 2007). “An Obser- vational Determination of the Bolometric Quasar Luminosity Function”. In: ApJ 654.2, pp. 731–753. DOI: 10.1086/509629. arXiv: astro-ph/0605678 [astro-ph].

Inayoshi, Kohei, Zoltán Haiman, and Jeremiah P. Ostriker (July 2016). “Hyper-Eddington accretion flows on to massive black holes”. In: MNRAS 459.4, pp. 3738–3755. DOI: 10.1093/mnras/stw836. arXiv: 1511.02116 [astro-ph.HE].

Inayoshi, Kohei, Eli Visbal, and Zoltán Haiman (Aug. 2020). “The Assembly of the First Massive Black Holes”. In: ARA&A 58, pp. 27–97. DOI: 10.1146/annurev- astro-120419-014455. arXiv: 1911.05791 [astro-ph.GA].

Jiang, Linhua et al. (Dec. 2016). “The Final SDSS High-redshift Quasar Sample of 52 Quasars at z>5.7”. In: ApJ 833.2, 222, p. 222. DOI: 10.3847/1538-4357/833/2/222. arXiv: 1610.05369 [astro-ph.GA].

Jiang, Yan-Fei, James M. Stone, and Shane W. Davis (Dec. 2014). “A Global Three- dimensional Radiation Magneto-hydrodynamic Simulation of Super-Eddington Accretion Disks”. In: ApJ 796.2, 106, p. 106. DOI: 10.1088/0004-637X/796/2/106. arXiv: 1410.0678 [astro-ph.HE]. — (Aug. 2019). “Super-Eddington Accretion Disks around Supermassive Black Holes”.

In: ApJ 880.2, 67, p. 67. DOI: 10 . 3847 / 1538 - 4357 / ab29ff. arXiv: 1709 . 02845 [astro-ph.HE].

Kato, Nanako et al. (Oct. 2020). “Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). IX. Identification of two red quasars at z > 5.6”. In: PASJ 72.5, 84, p. 84. DOI: 10.1093/pasj/psaa074. arXiv: 2007.08685 [astro-ph.GA].

Kawashima, Tomohisa et al. (Aug. 2009). “New Spectral State of Supercritical Accre- tion Flow with Comptonizing Outflow”. In: PASJ 61, p. 769. DOI: 10.1093/pasj/ 61.4.769. arXiv: 0904.4123 [astro-ph.HE].

King, A. R., J. E. Pringle, and J. A. Hofmann (Apr. 2008). “The evolution of black hole mass and spin in active galactic nuclei”. In: MNRAS 385.3, pp. 1621–1627. DOI: 10.1111/j.1365-2966.2008.12943.x. arXiv: 0801.1564 [astro-ph].

Kitaki, Takaaki et al. (Dec. 2017). “Theoretical modeling of Comptonized X-ray spec- tra of super-Eddington accretion flow: Origin of hard excess in ultraluminous X-ray sources”. In: PASJ 69.6, 92, p. 92. DOI: 10.1093/pasj/psx101. arXiv: 1709. 01531 [astro-ph.HE]. — (Jan. 2021). “Outflow from super-Eddington flow: where it originates from and how much impact it gives?” In: arXiv e-prints, arXiv:2101.11028, arXiv:2101.11028. DOI: 10.1093/pasj/psab011. arXiv: 2101.11028 [astro-ph.HE].

Kley, W. (Sept. 1989). “Radiation hydrodynamics of the boundary layer in accretion disks. II.Optically thick models.” In: A&A 222, pp. 141–149.

Kley, W. and D. N. C. Lin (June 1999). “Evolution of FU Orionis Outbursts in Proto- stellar Disks”. In: ApJ 518.2, pp. 833–847. DOI: 10.1086/307296.

Konoplya, R. A., J. Kunz, and A. Zhidenko (Feb. 2021). “Blandford-Znajek mecha- nism in the general axially-symmetric black-hole spacetime”. In: arXiv e-prints, arXiv:2102.10649, arXiv:2102.10649. arXiv: 2102.10649 [gr-qc].

Kormendy, John and Luis C. Ho (Aug. 2013). “Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies”. In: ARA&A 51.1, pp. 511–653. DOI: 10 .1146 / annurev-astro-082708-101811. arXiv: 1304.7762 [astro-ph.CO].

Levermore, C. D. and G. C. Pomraning (Aug. 1981). “A flux-limited diffusion the- ory”. In: ApJ 248, pp. 321–334. DOI: 10.1086/159157.

Loeb, Abraham and Frederic A. Rasio (Sept. 1994). “Collapse of Primordial Gas Clouds and the Formation of Quasar Black Holes”. In: ApJ 432, p. 52. DOI: 10. 1086/174548. arXiv: astro-ph/9401026 [astro-ph].

Machida, Mami and Ryoji Matsumoto (Sept. 2000). “Three-Dimensional Magnetohy- drodynamical Accretion Flows into Black Holes”. In: arXiv e-prints, astro-ph/0009004, astro–ph/0009004. arXiv: astro-ph/0009004 [astro-ph].

Madau, Piero and Martin J. Rees (Apr. 2001). “Massive Black Holes as Population III Remnants”. In: ApJ 551.1, pp. L27–L30. DOI: 10.1086/319848. arXiv: astro- ph/0101223 [astro-ph].

Mathews, William G. and Fabrizio Brighenti (Jan. 2003). “Hot Gas in and around Elliptical Galaxies”. In: ARA&A 41, pp. 191–239. DOI: 10.1146/annurev.astro. 41.090401.094542. arXiv: astro-ph/0309553 [astro-ph].

Matsumoto, R. (Jan. 1999). “Three-dimensional Global MHD Simulations of Accre- tion Disks Advection Viscosity, and Fluctuations”. In: Disk Instabilities in Close Binary Systems. Ed. by S. Mineshige and J. C. Wheeler, p. 303.

Matsuoka, Yoshiki et al. (Sept. 2016). “Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). I. Discovery of 15 Quasars and Bright Galaxies at 5.7 < z < 6.9”. In: ApJ 828.1, 26, p. 26. DOI: 10 . 3847 / 0004 - 637X / 828 / 1 / 26. arXiv: 1603.02281 [astro-ph.GA].

Matsuoka, Yoshiki et al. (Jan. 2018). “Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7 < z ≤ 6.8”. In: PASJ 70, S35, S35. DOI: 10.1093/pasj/psx046. arXiv: 1704.05854 [astro-ph.GA].

Matsuoka, Yoshiki et al. (Oct. 2019). “Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 7.0”. In: ApJ 883.2, 183, p. 183. DOI: 10.3847/1538- 4357/ab3c60. arXiv: 1908.07910 [astro-ph.GA].

Mazzucchelli, C. et al. (Nov. 2017). “Physical Properties of 15 Quasars at z & 6.5”. In: ApJ 849.2, 91, p. 91. DOI: 10 . 3847 / 1538 - 4357 / aa9185. arXiv: 1710 . 01251 [astro-ph.GA].

McKinney, Jonathan C. et al. (July 2014). “Three-dimensional general relativistic ra- diation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure”. In: MNRAS 441.4, pp. 3177–3208. DOI: 10.1093/mnras/stu762. arXiv: 1312.6127 [astro-ph.CO].

Merloni, Andrea and Sebastian Heinz (2013). “Evolution of Active Galactic Nuclei”. In: Planets, Stars and Stellar Systems. Volume 6: Extragalactic Astronomy and Cosmol- ogy. Ed. by Terry D. Oswalt and William C. Keel. Vol. 6, p. 503. DOI: 10.1007/978- 94-007-5609-0\_11.

Narayan, Ramesh, Aleksander Sa¸dowski, and Roberto Soria (Aug. 2017). “Spectra of black hole accretion models of ultraluminous X-ray sources”. In: MNRAS 469.3, pp. 2997–3014. DOI: 10.1093/mnras/stx1027. arXiv: 1702.01158 [astro-ph.HE]. Natarajan, Priyamvada (Mar. 2011). “The formation and evolution of massive black hole seeds in the early Universe”. In: Bulletin of the Astronomical Society of India 39, pp. 145–161. arXiv: 1104.4797 [astro-ph.CO].

Nomura, Mariko et al. (Feb. 2016). “Radiation hydrodynamic simulations of line- driven disk winds for ultra-fast outflows”. In: PASJ 68.1, 16, p. 16. DOI: 10.1093/ pasj/psv124. arXiv: 1511.08815 [astro-ph.HE].

Ohsuga, Ken and Shin Mineshige (July 2011). “Global Structure of Three Distinct Ac- cretion Flows and Outflows around Black Holes from Two-dimensional Radiation- magnetohydrodynamic Simulations”. In: ApJ 736.1, 2, p. 2. DOI: 10.1088/0004- 637X/736/1/2. arXiv: 1105.5474 [astro-ph.HE].

Ohsuga, Ken et al. (July 2005). “Supercritical Accretion Flows around Black Holes: Two-dimensional, Radiation Pressure-dominated Disks with Photon Trapping”. In: ApJ 628.1, pp. 368–381. DOI: 10 . 1086 / 430728. arXiv: astro - ph / 0504168 [astro-ph].

Ohsuga, Ken et al. (June 2009). “Global Radiation-Magnetohydrodynamic Simula- tions of Black-Hole Accretion Flow and Outflow: Unified Model of Three States”. In: PASJ 61.3, pp. L7–L11. DOI: 10 . 1093 / pasj / 61 . 3 . L7. arXiv: 0903 . 5364 [astro-ph.HE].

Okuda, Toru and Mitsutaka Fujita (Apr. 2000). “Super-Eddington Accretion-Disk Models for SS 433”. In: PASJ 52, p. L5. DOI: 10.1093/pasj/52.2.L5.

Okuda, Toru, Mitsutaka Fujita, and Shiro Sakashita (Dec. 1997). “Two-Dimensional Accretion Disk Models: Inner Accretion Disks of FU Orionis Objects”. In: PASJ 49, pp. 679–697. DOI: 10.1093/pasj/49.6.679.

Onoue, Masafusa et al. (Aug. 2019). “Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). VI. Black Hole Mass Measurements of Six Quasars at 6.1 ≤ z ≤ 6.7”. In: ApJ 880.2, 77, p. 77. DOI: 10 . 3847 / 1538 - 4357 / ab29e9. arXiv: 1904.07278 [astro-ph.GA].

Pacucci, Fabio, Marta Volonteri, and Andrea Ferrara (Sept. 2015). “The growth effi- ciency of high-redshift black holes”. In: MNRAS 452.2, pp. 1922–1933. DOI: 10. 1093/mnras/stv1465. arXiv: 1506.04750 [astro-ph.GA].

Paczyn´sky, B. and P. J. Wiita (Aug. 1980). “Thick accretion disks and supercritical luminosities.” In: A&A 500, pp. 203–211.

Paliya, Vaidehi S. et al. (Mar. 2019). “Supermassive black holes at high redshifts”. In: arXiv e-prints, arXiv:1903.06106, arXiv:1903.06106. arXiv: 1903.06106 [astro-ph.HE].

Pillepich, Annalisa et al. (Jan. 2018). “Simulating galaxy formation with the Illus- trisTNG model”. In: MNRAS 473.3, pp. 4077–4106. DOI: 10.1093/mnras/stx2656. arXiv: 1703.02970 [astro-ph.GA].

Portegies Zwart, Simon F. and Stephen L. W. McMillan (Sept. 2002). “The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters”. In: ApJ 576.2, pp. 899–907. DOI: 10.1086/341798. arXiv: astro-ph/0201055 [astro-ph].

Portegies Zwart, Simon F. et al. (Apr. 2004). “Formation of massive black holes through runaway collisions in dense young star clusters”. In: Nature 428.6984, pp. 724– 726. DOI: 10.1038/nature02448. arXiv: astro-ph/0402622 [astro-ph].

Reed, S. L. et al. (July 2017). “Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations”. In: MNRAS 468.4, pp. 4702–4718. DOI: 10.1093/mnras/stx728. arXiv: 1701.04852 [astro-ph.GA].

Reed, S. L. et al. (Aug. 2019). “Three new VHS-DES quasars at 6.7 < z < 6.9 and emission line properties at z > 6.5”. In: MNRAS 487.2, pp. 1874–1885. DOI: 10. 1093/mnras/stz1341. arXiv: 1901.07456 [astro-ph.GA].

Rees, Martin J. (Jan. 1984). “Black Hole Models for Active Galactic Nuclei”. In: An- nual Review of Astron and Astrophys 22, pp. 471–506. DOI: 10.1146/annurev.aa. 22.090184.002351.

Regan, John A. and Martin G. Haehnelt (June 2009). “Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures >~10000K”. In: MNRAS 396.1, pp. 343–353. DOI: 10.1111/j.1365-2966.2009.14579.x. arXiv: 0810.2802 [astro-ph].

Ressler, S. M., E. Quataert, and J. M. Stone (Mar. 2020). “The surprisingly small im- pact of magnetic fields on the inner accretion flow of Sagittarius A* fueled by stellar winds”. In: MNRAS 492.3, pp. 3272–3293. DOI: 10.1093/mnras/stz3605. arXiv: 2001.04469 [astro-ph.HE].

Richard-Laferrière, A. et al. (Dec. 2020). “On the relation between mini-halos and AGN feedback in clusters of galaxies”. In: MNRAS 499.2, pp. 2934–2958. DOI: 10.1093/mnras/staa2877. arXiv: 2007.01306 [astro-ph.GA].

Ross, Nicholas P. and Nicholas J. G. Cross (May 2020). “The near and mid-infrared photometric properties of known redshift z ≥ 5 quasars”. In: MNRAS 494.1, pp. 789–803. DOI: 10.1093/mnras/staa544. arXiv: 1906.06974 [astro-ph.GA].

Ruszkowski, Mateusz et al. (May 2019). “Supermassive Black Hole Feedback”. In: BAAS 51.3, 326, p. 326. arXiv: 1903.09686 [astro-ph.HE].

Rybicki, George B. and Alan P. Lightman (1986). Radiative Processes in Astrophysics.

Sakurai, Yuya, Kohei Inayoshi, and Zoltán Haiman (Oct. 2016). “Hyper-Eddington mass accretion on to a black hole with super-Eddington luminosity”. In: MN- RAS 461.4, pp. 4496–4504. DOI: 10 . 1093 / mnras / stw1652. arXiv: 1605 . 09105 [astro-ph.HE].

Shakura, N. I. and R. A. Sunyaev (June 1973). “Reprint of 1973A&A. 24..337S. Black holes in binary systems. Observational appearance.” In: A&A 500, pp. 33–51.

Shlosman, Isaac et al. (Feb. 2016). “Supermassive black hole seed formation at high redshifts: long-term evolution of the direct collapse”. In: MNRAS 456.1, pp. 500–511. DOI: 10.1093/mnras/stv2700. arXiv: 1508.05098 [astro-ph.GA]. Sa˛dowski, Aleksander and Ramesh Narayan (Mar. 2016). “Three-dimensional simu-lations of supercritical black hole accretion discs - luminosities, photon trapping and variability”. In: MNRAS 456.4, pp. 3929–3947. DOI: 10.1093/mnras/stv2941. arXiv: 1509.03168 [astro-ph.HE].

Sa˛dowski, Aleksander et al. (Feb. 2015). “Global simulations of axisymmetric radia- tive black hole accretion discs in general relativity with a mean-field magnetic dynamo”. In: MNRAS 447.1, pp. 49–71. DOI: 10 . 1093 / mnras / stu2387. arXiv: 1407.4421 [astro-ph.HE].

Stone, James M., James E. Pringle, and Mitchell C. Begelman (Dec. 1999). “Hydro- dynamical non-radiative accretion flows in two dimensions”. In: MNRAS 310.4, pp. 1002–1016. DOI: 10.1046/j.1365- 8711.1999.03024.x. arXiv: astro- ph/ 9908185 [astro-ph].

Takahashi, Hiroyuki R. et al. (July 2016). “Formation of Overheated Regions and Truncated Disks around Black Holes: Three-dimensional General Relativistic Radiation- magnetohydrodynamics Simulations”. In: ApJ 826.1, 23, p. 23. DOI: 10 . 3847 / 0004-637X/826/1/23. arXiv: 1605.04992 [astro-ph.GA].

Takeo, Eishun, Kohei Inayoshi, and Shin Mineshige (Sept. 2020). “Hyper-Eddington accretion flows on to black holes accompanied by powerful outflows”. In: MN- RAS 497.1, pp. 302–317. DOI: 10 . 1093 / mnras / staa1906. arXiv: 2002 . 07187[astro-ph.HE].

Takeo, Eishun et al. (May 2018). “Rapid growth of black holes accompanied with hot or warm outflows exposed to anisotropic super-Eddington radiation”. In: MNRAS 476.1, pp. 673–682. DOI: 10 . 1093 / mnras / sty264. arXiv: 1705 . 05382 [astro-ph.HE].— (Sept. 2019). “Super-Eddington growth of black holes in the early universe: ef- fects of disc radiation spectra”. In: MNRAS 488.2, pp. 2689–2700. DOI: 10.1093/ mnras/stz1899. arXiv: 1901.04514 [astro-ph.HE].

Tremmel, M. et al. (Mar. 2019). “Introducing ROMULUSC: a cosmological simula- tion of a galaxy cluster with an unprecedented resolution”. In: MNRAS 483.3, pp. 3336–3362. DOI: 10.1093/mnras/sty3336. arXiv: 1806.01282 [astro-ph.GA]. Turner, N. J. and J. M. Stone (July 2001). “A Module for Radiation Hydrodynamic Calculations with ZEUS-2D Using Flux-limited Diffusion”. In: ApJs 135.1, pp. 95–107. DOI: 10.1086/321779. arXiv: astro-ph/0102145 [astro-ph].

Turner, N. J. et al. (Aug. 2003). “Local Three-dimensional Simulations of Magne- torotational Instability in Radiation-dominated Accretion Disks”. In: ApJ 593.2, pp. 992–1006. DOI: 10.1086/376615. arXiv: astro-ph/0304511 [astro-ph]. Valiante, Rosa et al. (July 2017). “On the Formation of the First Quasars”. In: PASA 34, e031, e031. DOI: 10.1017/pasa.2017.25. arXiv: 1703.03808 [astro-ph.GA].

Vito, F. et al. (Oct. 2019). “The X-ray properties of z > 6 quasars: no evident evolution of accretion physics in the first Gyr of the Universe”. In: A&A 630, A118, A118. DOI: 10.1051/0004-6361/201936217. arXiv: 1908.09849 [astro-ph.GA].

Vogelsberger, Mark et al. (Apr. 2019). “Evaporating the Milky Way halo and its satel- lites with inelastic self-interacting dark matter”. In: MNRAS 484.4, pp. 5437–5452. DOI: 10.1093/mnras/stz340. arXiv: 1805.03203 [astro-ph.GA].

Volonteri, Marta (July 2010). “Formation of supermassive black holes”. In: A&AR 18.3, pp. 279–315. DOI: 10.1007/s00159-010-0029-x. arXiv: 1003.4404 [astro-ph.CO].

Volonteri, Marta and Mitchell C. Begelman (Dec. 2010). “Quasi-stars and the cosmic evolution of massive black holes”. In: MNRAS 409.3, pp. 1022–1032. DOI: 10 . 1111/j.1365-2966.2010.17359.x. arXiv: 1003.5220 [astro-ph.HE].

Wang, Feige et al. (Mar. 2016). “A Survey of Luminous High-redshift Quasars with SDSS and WISE. I. Target Selection and Optical Spectroscopy”. In: ApJ 819.1, 24, p. 24. DOI: 10.3847/0004-637X/819/1/24. arXiv: 1602.04659 [astro-ph.GA].

Wang, Feige et al. (Oct. 2019). “Exploring Reionization-era Quasars. III. Discovery of 16 Quasars at 6.4 . z . 6.9 with DESI Legacy Imaging Surveys and the UKIRT Hemisphere Survey and Quasar Luminosity Function at z ~ 6.7”. In: ApJ 884.1, 30, p. 30. DOI: 10.3847/1538-4357/ab2be5. arXiv: 1810.11926 [astro-ph.GA].

Watarai, Ken-ya, Tsunefumi Mizuno, and Shin Mineshige (Mar. 2001). “Slim-Disk Model for Ultraluminous X-Ray Sources”. In: ApJL 549.1, pp. L77–L80. DOI: 10. 1086/319125. arXiv: astro-ph/0011434 [astro-ph].

Willott, Chris J. et al. (Mar. 2010). “The Canada-France High-z Quasar Survey: Nine New Quasars and the Luminosity Function at Redshift 6”. In: AJ 139.3, pp. 906– 918. DOI: 10.1088/0004-6256/139/3/906. arXiv: 0912.0281 [astro-ph.CO].

Wise, John H. et al. (Jan. 2019). “Formation of massive black holes in rapidly growing pre-galactic gas clouds”. In: Nature 566.7742, pp. 85–88. DOI: 10.1038/s41586- 019-0873-4. arXiv: 1901.07563 [astro-ph.GA].

Yang, Jinyi et al. (Oct. 2018). “Filling in the Quasar Redshift Gap at z ∼ 5.5 II: A Com- plete Survey of Luminous Quasars in the Post-Reionization Universe”. In: arXiv e-prints, arXiv:1810.11927, arXiv:1810.11927. arXiv: 1810.11927 [astro-ph.GA]. Yang, Jinyi et al. (July 2020). “Po¯ niua¯’ena: A Luminous z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole”. In: ApJ 897.1, L14, p. L14. DOI: 10.3847/2041- 8213/ab9c26. arXiv: 2006.13452 [astro-ph.GA].

Yuan, Feng, Maochun Wu, and Defu Bu (Dec. 2012). “Numerical Simulation of Hot Accretion Flows. I. A Large Radial Dynamical Range and the Density Profile of Accretion Flow”. In: ApJ 761.2, 129, p. 129. DOI: 10.1088/0004-637X/761/2/129. arXiv: 1206.4157 [astro-ph.HE].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る