リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「3D Radiation-hydrodynamic Simulations Resolving Interior of Rapidly Accreting Primordial Protostar」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

3D Radiation-hydrodynamic Simulations Resolving Interior of Rapidly Accreting Primordial Protostar

Kimura, Kazutaka Hosokawa, Takashi Sugimura, Kazuyuki Fukushima, Hajime 京都大学 DOI:10.3847/1538-4357/acda8e

2023.06.20

概要

Direct collapse of supermassive stars is a possible pathway to form supermassive black hole seeds at high redshifts. Whereas previous three-dimensional (3D) simulations demonstrate that supermassive stars form via rapid mass accretion, those resolving the stellar interior have been limited. Here, we report 3D radiation-hydrodynamic (RHD) simulations following the evolution of rapidly accreting protostars resolving the stellar interior. We use an adaptive mesh refinement code with our newly developed RHD solver employing an explicit M1 closure method. We follow the early evolution until the stellar mass reaches ∼10 M⊙ from two different initial configurations of spherical and turbulent clouds. We demonstrate that, in both cases, a swollen protostar whose radius is 100–1000 R⊙ appears, as predicted by the stellar evolution calculations. Its effective temperature remains a few thousand Kelvin, and the radiative feedback by ionizing photons is too weak to disturb the accretion flow up to the epoch examined in this work. In the turbulent case, the protostar rotates rapidly at more than 0.4 times the Keplerian velocity owing to the angular momentum provided by the initial turbulence. The protostar approximates an oblate spheroid, and its equatorial radius is more than twice the polar radius. Our results suggest that we need to consider the rapid stellar rotation to elucidate the realistic 3D protostellar evolution in the supermassive star formation.

この論文で使われている画像

参考文献

In this paper, we have studied the protostellar evolution

under very rapid accretion supposed for the DC, performing 3D

RHD simulations resolving the stellar interior structure. We

have used the AMR code SFUMATO-RT, in which we have

implemented a newly developed RHD solver employing an

explicit M1 closure method. We follow the evolution for about

10 yr after the protostar formation, during which the stellar

mass increases to ∼10 Me.

In one case starting from a spherical cloud, a swollen protostar

forms as expected by previous 1D stellar evolution calculations.

At the end of the simulation when M* ∼ 10 Me, the stellar

radius is ;1000 Re, the luminosity is ∼105 Le, and the effective

temperature is ;4000 K. Such protostars with a cool atmosphere

emit a negligible amount of ionizing photons, and the resulting

radiative feedback is too weak to disturb the accretion.

In the other case starting from a turbulent cloud, a rapidly

rotating swollen protostar appears with some different properties from the counterpart in the spherical case. The protostar

rotates at more than about 0.4 times the Keplerian velocity

everywhere in the interior due to the angular momentum

brought by the accreting gas. As a result, the equatorial radius

is more than twice as large as the polar one. Also in this case,

the effective temperature remains several thousand Kelvin and

the radiative feedback is ineffective.

We have followed the protostellar birth and subsequent

evolution for ∼10 yr expected in the DC. This is only the

beginning of the evolution until the formation of the seed BH

after approximately a megayear. Our 3D RHD simulations

have the potential to reveal the realistic protostellar evolution in

the later stage, for which only 1D modeling has been applied

so far.

Becerra, F., Greif, T. H., Springel, V., & Hernquist, L. E. 2015, MNRAS,

446, 2380

Bonnar, W. 1956, MNRAS, 116, 351

Bromm, V., & Loeb, A. 2003, ApJ, 596, 34

Chon, S., Hosokawa, T., & Yoshida, N. 2018, MNRAS, 475, 4104

Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R., & Klessen, R. S.

2011, ApJ, 731, 62

Fukushima, H., & Yajima, H. 2021, MNRAS, 506, 5512

Gnedin, N. Y., & Abel, T. 2001, NewA, 6, 437

Greif, T. H., Bromm, V., Clark, P. C., et al. 2012, MNRAS, 424, 399

Haemmerlé, L. 2021, A&A, 650, A204

Haemmerlé, L., Woods, T. E., Klessen, R. S., Heger, A., & Whalen, D. J.

2018a, MNRAS, 474, 2757

Haemmerlé, L., Woods, T. E., Klessen, R. S., Heger, A., & Whalen, D. J.

2018b, ApJL, 853, L3

Higashi, S., Susa, H., & Chiaki, G. 2021, ApJ, 915, 107

Hosokawa, T., & Omukai, K. 2009, ApJ, 703, 1810

Hosokawa, T., Omukai, K., Yoshida, N., & Yorke, H. W. 2011, Sci,

334, 1250

Hosokawa, T., Yorke, H. W., Inayoshi, K., Omukai, K., & Yoshida, N. 2013,

ApJ, 778, 178

Hosokawa, T., Yoshida, N., Omukai, K., & Yorke, H. W. 2012, ApJL,

760, L37

Inayoshi, K., Visbal, E., & Haiman, Z. 2020, ARA&A, 58, 27

Kershaw, D. S. 1976, Flux Limiting Nature`s Own Way: A New Method for

Numerical Solution of the Transport Equation UCRL-78378; ON:

DE95017708; TRN: 95:006936, Lawrence Livermore National Laboratory

Kimura, K., Hosokawa, T., & Sugimura, K. 2021, ApJ, 911, 52

Larson, R. B. 1981, MNRAS, 194, 809

Latif, M. A., Schleicher, D. R. G., Schmidt, W., & Niemeyer, J. 2013,

MNRAS, 433, 1607

Lee, H., & Yoon, S.-C. 2016, ApJ, 820, 135

Levermore, C. D. 1984, JQSRT, 31, 149

Luo, Y., Ardaneh, K., Shlosman, I., et al. 2018, MNRAS, 476, 3523

Maeder, A., & Meynet, G. 2000, A&A, 361, 159

Matsukoba, R., Takahashi, S. Z., Sugimura, K., & Omukai, K. 2019, MNRAS,

484, 2605

Matsumoto, T. 2007, PASJ, 59, 905

Matsumoto, T., Dobashi, K., & Shimoikura, T. 2015, ApJ, 801, 77

McKee, C. F., & Tan, J. C. 2008, ApJ, 681, 771

Omukai, K. 2001, ApJ, 546, 635

Omukai, K., & Nishi, R. 1998, ApJ, 508, 141

Pomraning, G. C. 1969, JQSRT, 9, 407

Rosdahl, J., & Teyssier, R. 2015, MNRAS, 449, 4380

Sadanari, K. E., Omukai, K., Sugimura, K., Matsumoto, T., & Tomida, K.

2021, MNRAS, 505, 4197

Sakurai, Y., Vorobyov, E. I., Hosokawa, T., et al. 2016, MNRAS,

459, 1137

Schleicher, D. R. G., Palla, F., Ferrara, A., Galli, D., & Latif, M. 2013, A&A,

558, A59

Shapiro, S. L., & Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and

Neutron Stars: The Physics of Compact Objects (New York: Wiley)

Shibata, M., & Shapiro, S. L. 2002, ApJL, 572, L39

Skinner, M. A., & Ostriker, E. C. 2013, ApJS, 206, 21

Stacy, A., Greif, T. H., Klessen, R. S., Bromm, V., & Loeb, A. 2013, MNRAS,

431, 1470

Stahler, S. W., Shu, F. H., & Taam, R. E. 1980, ApJ, 241, 637

Sugimura, K., Matsumoto, T., Hosokawa, T., Hirano, S., & Omukai, K. 2020,

ApJL, 892, L14

Takahashi, S. Z., & Omukai, K. 2017, MNRAS, 472, 532

Umeda, H., Hosokawa, T., Omukai, K., & Yoshida, N. 2016, ApJL,

830, L34

Volonteri, M. 2010, A&ARv, 18, 279

Woods, T. E., Agarwal, B., Bromm, V., et al. 2019, PASA, 36, e027

Zeldovich, Y. B., & Novikov, I. D. 1971, Relativistic Astrophysics: Stars and

Relativity, Vol. 1 (Chicago, IL: Univ. Chicago Press)

Acknowledgments

We are grateful to Tomoaki Matsumoto, Kazuyuki Omukai,

Kunihito Ioka, Ryoki Matsukoba, Shinsuke Takasao, Kengo

Tomida, and Takahiro Tanaka for fruitful discussions and

comments. The numerical simulations were carried out on

XC50 Aterui II at the Center for Computational Astrophysics (CfCA) of the National Astronomical Observatory of

Japan, and Yukawa-21 at Yukawa Institute for Theoretical

Physics of Kyoto University. This research could never be

accomplished without the support of Grants-in-Aid for

Scientific Research (T.H.: Nos. 19H01934, 21H00041; K.S.:

No. 21K20373) from the Japan Society for the Promotion of

Science. This work is also supported by JST SPRING, grant

No. JPMJSP2110 (K.K.), the ANRI Fellowship (K.K.), and the

Hakubi Project Funding of Kyoto University (K.S.).

ORCID iDs

Kazutaka Kimura https://orcid.org/0000-0001-8382-3966

Takashi Hosokawa https://orcid.org/0000-0003-3127-5982

Kazuyuki Sugimura https://orcid.org/0000-0001-7842-5488

Hajime Fukushima https://orcid.org/0000-0002-0547-3208

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る