リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High-Density Linkage Maps from Japanese Rice japonica Recombinant Inbred Lines Using Genotyping by Random Amplicon Sequencing-Direct (GRAS-Di)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High-Density Linkage Maps from Japanese Rice japonica Recombinant Inbred Lines Using Genotyping by Random Amplicon Sequencing-Direct (GRAS-Di)

Fekih, Rym Ishimaru, Yohei Okada, Satoshi Maeda, Michihiro Miyagi, Ryutaro Obana, Takahiro Suzuki, Kazuyo Inamori, Minoru Enoki, Hiroyuki Yamasaki, Masanori 神戸大学

2023.02

概要

The genetic dissection of agronomically important traits in closely related Japanese rice cultivars is still in its infancy mainly because of the narrow genetic diversity within japonica rice cultivars. In an attempt to unveil potential polymorphism between closely related Japanese rice cultivars, we used a next-generation-sequencing-based genotyping method: genotyping by random amplicon sequencing-direct (GRAS-Di) to develop genetic linkage maps. In this study, four recombinant inbred line (RIL) populations and their parents were used. A final RIL number of 190 for RIL71, 96 for RIL98, 95 for RIL16, and 94 for RIL91 derived from crosses between a common leading Japanese rice cultivar Koshihikari and Yamadanishiki, Taichung 65, Fujisaka 5, and Futaba, respectively, and the parent plants were subjected to GRAS-Di library construction and sequencing. Approximately 438.7 Mbp, 440 Mbp, 403.1 Mbp, and 392 Mbp called bases covering 97.5%, 97.3%, 98.3%, and 96.1%, respectively, of the estimated rice genome sequence at average depth of 1× were generated. Analysis of genotypic data identified 1050, 1285, 1708, and 1704 markers for each of the above RIL populations, respectively. Markers generated by GRAS-Di were organized into linkage maps and compared with those generated by GoldenGate SNP assay of the same RIL populations; the average genetic distance between markers showed a clear decrease in the four RIL populations when we integrated markers of both linkage maps. Genetic studies using these markers successfully localized five QTLs associated with heading date on chromosomes 3, 6, and 7 and which previously were identified as Hd1, Hd2, Hd6, Hd16, and Hd17. Therefore, GRAS-Di technology provided a low cost and efficient genotyping to overcome the narrow genetic diversity in closely related Japanese rice cultivars and enabled us to generate a high density linkage map in this germplasm.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

Jiang, W.; Struik, P.C.; Lingna, J.; Van Keulen, H.; Ming, Z.; Stomph, T.J. Uptake and distribution of root-applied or foliar-applied

65Zn after flowering in aerobic rice. Ann. Appl. Biol. 2007, 150, 383–391. [CrossRef]

Ahn, S.; Anderson, J.A.; Sorrells, M.E.; Tanksley, S.D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol.

Gen. Genet. 1993, 241, 483–490. [CrossRef]

Kurata, N.; Moore, G.; Nagamura, Y.; Foote, T.; Yano, M.; Minobe, Y.; Gale, M. Conservation of genome structure between rice

and wheat. Nat. Biotechnol. 1994, 12, 276–278. [CrossRef]

Buell, C.R.; Yuan, Q.; Ouyang, S.; Liu, J.; Zhu, W.; Wang, A.; Maiti, R.; Haas, B.; Wortman, J.; Pertea, M.; et al. Sequence, annotation,

and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Res. 2005, 15, 1284–1291. [CrossRef]

[PubMed]

Goff, S.A.; Ricke, D.; Lan, T.-H.; Presting, G.; Wang, R.; Dunn, M.; Glazebrook, J.; Sessions, A.; Oeller, P.; Varma, H.; et al. A draft

sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296, 92–100. [CrossRef]

Yu, J.; Hu, S.; Wang, J.; Wong, G.K.S.; Li, S.; Liu, B.; Deng, Y.; Dai, L.; Zhou, Y.; Zhang, X.; et al. A draft sequence of the rice

genome (Oryza sativa L. ssp. indica). Science 2002, 296, 79–92. [CrossRef]

Abe, A.; Kosugi, S.; Yoshida, K.; Natsume, S.; Takagi, H.; Kanzaki, H.; Matsumura, H.; Yoshida, K.; Mitsuoka, C.; Tamiru, M.; et al.

Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol. 2012, 30, 174–178. [CrossRef]

Fekih, R.; Takagi, H.; Tamiru, M.; Abe, A.; Natsume, S.; Yaegashi, H.; Sharma, S.; Sharma, S.; Kanzaki, H.; Matsumura, H.; et al.

MutMap+: Genetic mapping and mutant identification without crossing in rice. PLoS ONE 2013, 8, e68529. [CrossRef]

Plants 2023, 12, 929

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

22 of 23

Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; et al.

QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations.

Plant J. 2013, 74, 174–183. [CrossRef]

Varshney, R.K.; Terauchi, R.; McCouch, S.R. Harvesting the promising fruits of genomics: Applying genome sequencing

technologies to crop breeding. PLoS Biol. 2014, 12, e1001883. [CrossRef]

Yamamoto, T.; Nagasaki, H.; Yonemaru, J.-I.; Ebana, K.; Nakajima, M.; Shibaya, T.; Yano, M. Fine definition of the pedigree

haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genom.

2010, 11, 267. [CrossRef] [PubMed]

Enoki, H.; Takeuchi, Y. New genotyping technology, GRAS-Di, using next generation sequencer. In Proceedings of the Plant and

Animal genome conference XXVI, San Diego, CA, USA, 13–17 January 2018. Available online: https://pag.confex.com/pag/

xxvi/meetingapp.cgi/Paper/29067 (accessed on 10 January 2023).

Hosoya, S.; Hirase, S.; Kikuchi, K.; Nanjo, K.; Nakamura, Y.; Kohno, H.; Sano, M. Random PCR-based genotyping by sequencing

technology GRAS-Di (genotyping by random amplicon sequencing-direct) reveals genetic structure of mangrove fishes. Mol. Ecol.

Resour. 2019, 19, 1153–1163. [CrossRef] [PubMed]

Enoki, H. The construction of pseudomolecules of a commercial strawberry by DeNovoMAGIC and new genotyping technology,

GRAS-Di. In Proceedings of the Plant and Animal genome conference XXVII, San Diego, CA, USA, 12–16 January 2019. Available

online: https://pag.confex.com/pag/xxvii/meetingapp.cgi/Paper/37002 (accessed on 10 January 2023).

Zhang, Q.; Maroof, M.A.S.; Lu, T.Y.; Shen, B.Z. Genetic diversity and differentiation of indica and japonica rice detected by RFLP

analysis. Theor. Appl. Genet. 1992, 83, 495–499. [CrossRef] [PubMed]

Gupta, P.K.; Rustgi, S.; Kulwal, P.L. Linkage disequilibrium and association studies in higher plants: Present status and prospects.

Plant Mol. Biol. 2005, 57, 461–485. [CrossRef] [PubMed]

Terauchi, R.; Abe, A.; Takagi, H.; Tamiru, M.; Fekih, R.; Natsume, S.; Yaegashi, H.; Kosugi, S.; Kanzaki, H.; Matsumura, H.; et al.

Whole genome sequencing to identify genes and QTL in rice. In Advances in the Understanding of Biological Sciences Using Next

Generation Sequencing (NGS) Approaches; Springer: Berlin/Heidelberg, Germany, 2015; pp. 33–42. ISBN 9783319171579.

Fekih, R.; Tamiru, M.; Kanzaki, H.; Abe, A.; Yoshida, K.; Kanzaki, E.; Saitoh, H.; Takagi, H.; Natsume, S.; Undan, J.R.; et al. The

rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response.

Mol. Genet. Genom. 2015, 290, 611–622. [CrossRef]

Nagata, K.; Ando, T.; Nonoue, Y.; Mizubayashi, T.; Kitazawa, N.; Shomura, A.; Matsubara, K.; Ono, N.; Mizobuchi, R.; Shibaya, T.;

et al. Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica × indica cross. Breed.

Sci. 2015, 65, 308–318. [CrossRef]

Tamiru, M.; Takagi, H.; Abe, A.; Yokota, T.; Kanzaki, H.; Okamoto, H.; Saitoh, H.; Takahashi, H.; Fujisaki, K.; Oikawa, K.; et al.

A chloroplast-localized protein lesion and lamina bending affects defence and growth responses in rice. New Phytol. 2016,

210, 1282–1297. [CrossRef]

Yamasaki, M.; Ideta, O. Population structure in Japanese rice population. Breed Sci. 2013, 63, 49–57. [CrossRef]

Yokoo, M.; Hirao, M.; Imai, T. Annual change in leading rice varieties between 1956 and 2000 in Japan. Bull. Natl. Inst. Crop Sci.

2005, 7, 19–125.

Kobayashi, A.; Hori, K.; Yamamoto, T.; Yano, M. Koshihikari: A premium short-grain rice cultivar - its expansion and breeding in

Japan. Rice 2018, 11, 15. [CrossRef]

Hori, K.; Ogiso-Tanaka, E.; Matsubara, K.; Yamanouchi, U.; Ebana, K.; Yano, M. Hd16, a gene for casein kinase I, is involved in

the control of rice flowering time by modulating the day-length response. Plant J. 2013, 76, 36–46. [CrossRef] [PubMed]

Yu, J.; Holland, J.B.; McMullen, M.D.; Buckler, E.S. Genetic design and statistical power of nested association mapping in maize.

Genetics 2008, 178, 539–551. [CrossRef] [PubMed]

McMullen, M.D.; Kresovich, S.; Villeda, H.S.; Bradbury, P.; Li, H.; Sun, Q.; Flint-Garcia, S.; Thornsberry, J.; Acharya, C.;

Bottoms, C.; et al. Genetic properties of the maize nested association mapping population. Science 2009, 325, 737–740. [CrossRef]

[PubMed]

Bajgain, P.; Rouse, M.N.; Tsilo, T.J.; Macharia, G.K.; Bhavani, S.; Jin, Y.; Anderson, J.A. Nested association mapping of stem rust

resistance in wheat using genotyping by sequencing. PLoS ONE 2016, 11, e0155760. [CrossRef]

Maurer, A.; Draba, V.; Jiang, Y.; Schnaithmann, F.; Sharma, R.; Schumann, E.; Kilian, B.; Reif, J.C.; Pillen, K. Modelling the genetic

architecture of flowering time control in barley through nested association mapping. BMC Genom. 2015, 16, 290. [CrossRef]

Takita, T.; Solis, R.O. Rice Breeding at the National Agricultural Research Center for the Tohoku Region (NARCT) and Rice

Varietal Recommendation Process in Japan. Bull. Natl. Agric. Res. Cent. Tohoku Reg. 2002, 100, 93–117. (in Japanese).

Saka, N. A Rice (Oryza sativa L.) Breeding for Field Resistance to Blast Disease (Pyricularia oryzae) in Mountainous Region

Agricultural Research Institute, Aichi Agricultural Research Center of Japan. Plant Prod. Sci. 2006, 9, 3–9. [CrossRef]

Okada, S.; Suehiro, M.; Ebana, K.; Hori, K.; Onogi, A.; Iwata, H.; Yamasaki, M. Genetic dissection of grain traits in Yamadanishiki,

an excellent sake-brewing rice cultivar. Theor. Appl. Genet. 2017, 130, 2567–2585. [CrossRef]

Inoue, H.; Nishida, H.; Okumoto, Y.; Tanisaka, T. Identification of an early heading time gene found in the Taiwanese rice cultivar

Taichung 65. Breed. Sci. 1998, 48, 103–108. [CrossRef]

Ebana, K.; Kojima, Y.; Fukuoka, S.; Nagamine, T.; Kawase, M. Development of mini core collection of Japanese rice landrace.

Breed. Sci. 2008, 58, 281–291. [CrossRef]

Plants 2023, 12, 929

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

23 of 23

Redoña, E.D.; Mackill, D.J. Mapping quantitative trait loci for seedling vigor in rice using RFLPs. Theoret. Appl. Genet. 1996,

92, 395–402. [CrossRef] [PubMed]

McCouch, S.R.; Zhao, K.; Wright, M.; Tung, C.-W.; Ebana, K.; Thomson, M.; Reynolds, A.; Wang, D.; DeClerck, G.; Ali, L.; et al.

Development of genome-wide SNP assays for rice. Breed. Sci. 2010, 60, 524–535. [CrossRef]

Nagasaki, H.; Ebana, K.; Shibaya, T.; Yonemaru, J.I.; Yano, M. Core single-nucleotide polymorphism —A tool for genetic analysis

of the Japanese rice populationn. Breed. Sci. 2010, 60, 648–655. [CrossRef]

Okumoto, Y.; Yoshimura, A.; Tanisaka, T.; Yamagata, H. Analysis of a rice variety Taichung 65 and its Isogenic early-heading lines

for late-heading genes E1, E2 and E3. Jpn. J. Breed. 1992, 42, 415–429, (in Japanese with English summary). [CrossRef]

Wang, L.; Hao, L.; Li, X.; Hu, S.; Ge, S.; Yu, J. SNP deserts of Asian cultivated rice: Genomic regions under domestication. J. Evol.

Biol. 2009, 22, 751–761. [CrossRef] [PubMed]

Takahashi, Y.; Shomura, A.; Sasaki, T.; Yano, M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes

the alpha subunit of protein kinase CK2. Proc. Natl. Acad. Sci. USA 2001, 98, 7922–7927. [CrossRef]

Matsubara, K.; Kono, I.; Hori, K.; Nonoue, Y.; Ono, N.; Shomura, A.; Mizubayashi, T.; Yamamoto, S.; Yamanouchi,

U.; Shirasawa, K.A.; et al. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from

crosses between japonica rice cultivars. Theor. Appl. Genet. 2008, 117, 935–945. [CrossRef]

Yano, M.; Katayose, Y.; Ashikari, M.; Yamanouchi, U.; Monna, L.; Fuse, T.; Baba, T.; Yamamoto, K.; Umehara, Y.; Nagamura, Y.;

et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time

gene CONSTANS. Plant Cell. 2000, 12, 2473–2484. [CrossRef]

Yano, M.; Harushima, Y.; Nagamura, Y.; Kurata, N.; Minobe, Y.; Sasaki, T. Identification of quantitative trait loci controlling

heading date in rice using a high-density linkage map. Theor. Appl. Genet. 1997, 95, 1025–1032. [CrossRef]

Doyle, J.J.; Doyle, J.J. A rapid procedure for DNA purification from small quantities of fresh leaf tissue. Phytochem. Bull. 1987,

19, 11–15.

International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 2005, 436, 793–800. [CrossRef]

Kosambi, D.D. The estimation of map distances from recombination values. Ann. Hum. Genet. 1943, 12, 172–175. [CrossRef]

´ Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890.

Broman, K.W.; Wu, H.; Sen, S.;

[PubMed]

Zeng, Z.B. A composite interval mapping method for locating multiple QTLs. In Proceedings of the 5th World Congress on

Genetics Applied to Livestock Production, Guelph, ON, Canada, 7–12 August 1994; University of Guelph: Guelph, ON, Canada,

1994; Volume 7.

Churchill, G.A.; Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994, 138, 963–971. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る