リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Rocuronium action can be affected by hyperventilation: a case report and computational simulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Rocuronium action can be affected by hyperventilation: a case report and computational simulation

Taguchi, Shinya Fujimoto, Daichi Shiga, Moe Obata, Norihiko Mizobuchi, Satoshi 神戸大学

2023.08

概要

The neuromuscular blocking potency of rocuronium varies with respiratory pH changes, increasing at lower pH and decreasing at higher pH; thus, hyperventilation-induced respiratory alkalosis is expected to decrease the potency of rocuronium. We report a case of anesthetic management of modified electroconvulsive therapy (m-ECT) for a patient monitored with electromyography-based neuromuscular monitoring during two patterns of ventilation to elucidate their relationship and propose the possible mechanisms underlying the effects by computational simulations. Case presentation: The patient was a 25-year-old man with schizophrenia. In m-ECT, hyperventilation may be used to produce longer seizures. We compared the neuromuscular monitoring data recorded during hyperventilation and during normal ventilation while receiving the same dose of rocuronium. Despite receiving the same dose of rocuronium, the time required for the first twitch to decrease to 80% of the control value was delayed in hyperventilation compared to normal ventilation. Conclusions: This case report and computational simulation suggest that respiratory alkalosis might delay the action of rocuronium. It is necessary to consider the delayed action of rocuronium when hyperventilation is performed.

この論文で使われている画像

参考文献

1. Kerner N, Prudic J. Current electroconvulsive therapy practice and research in the

geriatric population. Neuropsychiatry (London). 2014;4:33–54.

2. Gómez-Arnau J, de Arriba-Arnau A, Correas-Lauffer J, Urretavizcaya M.

Hyperventilation and electroconvulsive therapy: A literature review. Gen Hosp

Psychiatry. 2018;50:54–62.

3. Aziz L, Ono K, Ohta Y, Morita K, Hirakawa M. The effect of CO2-induced acid-base

changes on the potencies of muscle relaxants and antagonism of neuromuscular block

by neostigmine in rat in vitro. Anesth Analg. 1994;78:322–7.

4. Taguchi S, Ono K, Hidaka H, Koyama Y. Effect of lung-protective ventilationinduced respiratory acidosis on the duration of neuromuscular blockade by rocuronium.

J Anesth. 2016;30:994–8.

5. Ono K, Ohta Y, Morita K, Kosaka F. The influence of respiratory-induced acid-base

changes on the action of non-depolarizing muscle relaxants in rats. Anesthesiology.

1988;68:357–62.

6. Ono K, Nagano O, Ohta Y, Kosaka F. Neuromuscular effects of respiratory and

metabolic acid-base changes in vitro with and without nondepolarizing muscle

relaxants. Anesthesiology. 1990;73:710–6.

7. Dougherty DA. Cation-pi interactions in chemistry and biology: a new view of

benzene, Phe, Tyr, and Trp. Science. 1996;271:163–8.

8. Czajkowski C, Kaufmann C, Karlin A. Negatively charged amino acid residues in the

nicotinic receptor delta subunit that contribute to the binding of acetylcholine. Proc Natl

Acad Sci U S A. 1993;90:6285–9.

9. Sine SM, Quiram P, Papanikolaou F, Kreienkamp HJ, Taylor P. Conserved tyrosines

in the alpha subunit of the nicotinic acetylcholine receptor stabilize quaternary

ammonium groups of agonists and curariform antagonists. J Biol Chem.

1994;269:8808–16.

10. Celie PHN, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK.

Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in

AChBP crystal structures. Neuron. 2004;41:907–14.

16

11. Dilger JP, Vidal AM, Liu M, Mettewie C, Suzuki T, Pham A, et al. Roles of amino

acids and subunits in determining the inhibition of nicotinic acetylcholine receptors by

competitive antagonists. Anesthesiology. 2007;106:1186–95.

12. Rahman MM, Basta T, Teng J, Lee M, Worrell BT, Stowell MHB, et al. Structural

mechanism of muscle nicotinic receptor desensitization and block by curare. Nat Struct

Mol Biol. 2022;29:386–94.

13. Ribeiro AR, Schmidt TC. Determination of acid dissociation constants (pKa) of

cephalosporin antibiotics: Computational and experimental approaches. Chemosphere.

2017;169:524–33.

14. Manchester J, Walkup G, Rivin O, You Z. Evaluation of pKa estimation methods on

211 druglike compounds. J Chem Inf Model. 2010;50:565–71.

15. Yosefy C, Hay E, Nasri Y, Magen E, Reisin L. End tidal carbon dioxide as a

predictor of the arterial PCO2 in the emergency department setting. Emerg Med J.

2004;21:557–9.

16. Paton WD, Waud DR. The margin of safety of neuromuscular transmission. J

Physiol. 1967;191:59–90.

17. Shiraishi N, Aono M, Kameyama Y, Yamamoto M, Kitajima O, Suzuki T. Effects

of cardiac output on the onset of rocuronium-induced neuromuscular block in elderly

patients. J Anesth. 2018;32:547–50.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る