リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Endothelial cell malfunction in unruptured intracranial aneurysm lesions revealed using a 3D-casted mold」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Endothelial cell malfunction in unruptured intracranial aneurysm lesions revealed using a 3D-casted mold

Ono, Isao 京都大学 DOI:10.14989/doctor.k24789

2023.05.23

概要

Intracranial aneurysms (IAs) are lesions characterized morphologically by regional
bulging of intracranial arteries, mainly at bifurcation sites. Histopathologically, they can
be distinguished by degenerative changes in the arterial wall, typically a loss of medial
smooth muscle cells and inflammatory infiltrates. IA affects 1 % ~ 5 % of the general
population and is the primary cause of subarachnoid hemorrhage, the most severe form
of stroke with a mortality rate of up to 50 % [1-5]. Given the poor prognosis after the
onset of subarachnoid hemorrhage, preventing IA is important. However, no drug therapy
is currently available to prevent its progression and rupture; therefore, many patients
cannot receive effective treatment [6]. Understanding IA pathogenesis will help to
identify novel therapeutic targets, allow the development of therapies against identified
targets, and improve public health.
Because of the nature of vascular diseases and the unique morphological character of
arterial bifurcations where IAs are formed, the pathophysiology of IAs is greatly
influenced by the hemodynamic force exerted by blood flow and the heartbeats. Many
studies using computational fluid dynamics (CFD) support this notion. Thus, IA is
currently considered a hemodynamic force-mediated disease [7-16]. ...

この論文で使われている画像

参考文献

1.

Wiebers D.O., Piepgras D.G., Brown R.D., Jr., et al. Unruptured aneurysms. J

Neurosurg 2002;96:50-1; discussion 58-60

2.

van Gijn J., Kerr R.S., Rinkel G.J. Subarachnoid haemorrhage. Lancet 2007;369:30618

3.

Rinkel G.J., Djibuti M., Algra A., et al. Prevalence and risk of rupture of intracranial

aneurysms: a systematic review. Stroke 1998;29:251-6

4.

Lawton M.T., Vates G.E. Subarachnoid Hemorrhage. N Engl J Med 2017;377:257-66

5.

Brisman J.L., Song J.K., Newell D.W. Cerebral aneurysms. N Engl J Med

2006;355:928-39

6.

Morita A., Kirino T., Hashi K., et al. The natural course of unruptured cerebral

aneurysms in a Japanese cohort. N Engl J Med 2012;366:2474-82

7.

Aoki T., Nishimura M., Matsuoka T., et al. PGE(2) -EP(2) signalling in endothelium

is activated by haemodynamic stress and induces cerebral aneurysm through an

amplifying loop via NF-kappaB. Br J Pharmacol 2011;163:1237-49

8.

Aoki T., Yamamoto K., Fukuda M., et al. Sustained expression of MCP-1 by low wall

shear stress loading concomitant with turbulent flow on endothelial cells of

intracranial aneurysm. Acta Neuropathol Commun 2016;4:48

9.

Dolan J.M., Kolega J., Meng H. High wall shear stress and spatial gradients in

vascular pathology: a review. Ann Biomed Eng 2013;41:1411-27

10.

Frosen J., Cebral J., Robertson A.M., et al. Flow-induced, inflammation-mediated

arterial wall remodeling in the formation and progression of intracranial aneurysms.

Neurosurg Focus 2019;47:E21

11.

Jou L.D., Lee D.H., Morsi H., et al. Wall shear stress on ruptured and unruptured

intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol

2008;29:1761-7

12.

Shojima M., Oshima M., Takagi K., et al. Magnitude and role of wall shear stress on

cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery

aneurysms. Stroke 2004;35:2500-5

13.

Turjman A.S., Turjman F., Edelman E.R. Role of fluid dynamics and inflammation in

intracranial aneurysm formation. Circulation 2014;129:373-82

14.

Ishida F., Tsuji M., Tanioka S., et al. Computational Fluid Dynamics for Cerebral

Aneurysms in Clinical Settings. Acta Neurochir Suppl 2021;132:27-32

15.

Soldozy S., Norat P., Elsarrag M., et al. The biophysical role of hemodynamics in the

pathogenesis of cerebral aneurysm formation and rupture. Neurosurg Focus

21

2019;47:E11

16.

Murayama Y., Fujimura S., Suzuki T., et al. Computational fluid dynamics as a risk

assessment tool for aneurysm rupture. Neurosurg Focus 2019;47:E12

17.

Aoki T., Miyata H., Abekura Y., et al. Rat Model of Intracranial Aneurysm: Variations,

Usefulness, and Limitations of the Hashimoto Model. Acta Neurochir Suppl

2020;127:35-41

18.

Scanarini M., Mingrino S., Zuccarello M., et al. Scanning electron microscopy (s.e.m.)

of biopsy specimens of ruptured intracranial saccular aneurysms. Acta Neuropathol

1978;44:131-4

19.

Yamamoto R., Aoki T., Koseki H., et al. A sphingosine-1-phosphate receptor type 1

agonist, ASP4058, suppresses intracranial aneurysm through promoting endothelial

integrity and blocking macrophage transmigration. Br J Pharmacol 2017;174:2085101

20.

Koseki H., Miyata H., Shimo S., et al. Two Diverse Hemodynamic Forces, a

Mechanical Stretch and a High Wall Shear Stress, Determine Intracranial Aneurysm

Formation. Transl Stroke Res 2020;11:80-92

21.

Jamous M.A., Nagahiro S., Kitazato K.T., et al. Endothelial injury and inflammatory

response induced by hemodynamic changes preceding intracranial aneurysm

formation: experimental study in rats. J Neurosurg 2007;107:405-11

22.

Tamura T., Jamous M.A., Kitazato K.T., et al. Endothelial damage due to impaired

nitric oxide bioavailability triggers cerebral aneurysm formation in female rats. J

Hypertens 2009;27:1284-92

23.

Sheinberg D.L., McCarthy D.J., Elwardany O., et al. Endothelial dysfunction in

cerebral aneurysms. Neurosurg Focus 2019;47:E3

24.

Levitt M.R., Mandrycky C., Abel A., et al. Genetic correlates of wall shear stress in a

patient-specific 3D-printed cerebral aneurysm model. J Neurointerv Surg

2019;11:999-1003

25.

Aoki T., Kataoka H., Shimamura M., et al. NF-kappaB is a key mediator of cerebral

aneurysm formation. Circulation 2007;116:2830-40

26.

Aoki T., Frosen J., Fukuda M., et al. Prostaglandin E2-EP2-NF-kappaB signaling in

macrophages as a potential therapeutic target for intracranial aneurysms. Sci Signal

2017;10:eaah6037

27.

Aoki T., Kataoka H., Ishibashi R., et al. Impact of monocyte chemoattractant protein1 deficiency on cerebral aneurysm formation. Stroke 2009;40:942-51

28.

Kanematsu Y., Kanematsu M., Kurihara C., et al. Critical roles of macrophages in

the formation of intracranial aneurysm. Stroke 2011;42:173-8

22

29.

Aoki T., Narumiya S. Prostaglandins and chronic inflammation. Trends Pharmacol

Sci 2012;33:304-11

30.

Chyatte D., Bruno G., Desai S., et al. Inflammation and intracranial aneurysms.

Neurosurgery 1999;45:1137-46; discussion 46-7

31.

Frosen J., Piippo A., Paetau A., et al. Remodeling of saccular cerebral artery

aneurysm wall is associated with rupture: histological analysis of 24 unruptured and

42 ruptured cases. Stroke 2004;35:2287-93

32.

Fukuda M., Aoki T. Molecular basis for intracranial aneurysm formation. Acta

Neurochir Suppl 2015;120:13-5

33.

Shimizu K., Kushamae M., Mizutani T., et al. Intracranial Aneurysm as a

Macrophage-mediated Inflammatory Disease. Neurol Med Chir (Tokyo) 2019;59:12632

23

Figure 1

A 3D -rotational angiography

3D-casted mold

CD31 VE-Cadherin DAPI

Primary

antibody (-)

Culture of HUAECs on the surface E

before

after

Merged

0 50 100 150 200

PC1: 89 % variance

-50

60

Aneurysm

Artery

20

Aneurysm 1

Aneurysm 2

Aneurysm 4

Aneurysm 3

Aneurysm 5

Artery 2

Artery 1

Artery 3

40

PC2: 7 % variance

Figure 2

NDUFA4

RAN

SAT1

YWHAE

COL4A1

CALR

EPAS1

PDGFB

HSPB1

HSP90B1

LMNA

HSPD1

VIM

RPL10A

YBX3

HSPA5

RAB7A

NDUFV2

EIF4H

EIF4A1

CALM1

PPP1R14B

PFN1

RPL23

NR3C1

ATP1A1

BRI3

RPS18

CLTA

YWHAQ

DNAJVB1

CAP1

NAA50

VEGFA

ETS1

MAGED2

Figure 3

Day 0

EC

Day 14

EC

EC

Figure 4

Intracranial Superficial

aneurysm temporal

artery

CD31

DAPI

Merged

Intracranial

aneurysm

Superficial

temporal

artery

DAPI

Merged

DAPI

Primary

antibody

(-)

DAPI

Superficial

Intracranial

temporal

aneurysm

artery

Primary

antibody

(-)

Phosphorated-eNOS

DAPI

Merged

DAPI

VE-cadherin

Primary

antibody

(-)

Table 1. Down-represented terms in gene ontology analysis (Biological Process).

GO term

P-value

Cellular response to stress

2.60E-08

Establishment of localization in cell

1.30E-07

Cellular macromolecule catabolic process

1.30E-06

Intracellular transport

1.50E-06

Macromolecule catabolic process

2.80E-06

Cellular protein-containing complex assembly

2.80E-06

Protein-containing complex subunit organization

2.80E-06

MRNA metabolic process

5.30E-06

Ubiquitin-dependent protein catabolic process

7.60E-06

Apoptotic process

7.60E-06

Response to organic substance

7.60E-06

Protein catabolic process

7.60E-06

Modification-dependent macromolecule catabolic process

8.80E-06

Modification-dependent protein catabolic process

1.10E-05

Proteasomal protein catabolic process

1.20E-05

Table 2. Down-represented terms in gene ontology analysis (Cellular Component).

Go term

P-value

Nucleoplasm

4.60E-10

Nuclear lumen

4.50E-09

Vesicle

1.10E-07

Extracellular exosome

1.10E-07

Extracellular organelle

1.50E-07

Inner mitochondrial membrane protein complex

7.20E-07

Respiratory chain complex

3.60E-06

Mitochondrial respirasome

5.40E-06

Catalytic complex

9.70E-06

Mitochondrial protein-containing complex

1.10E-05

Organelle membrane

1.70E-05

Organelle envelope

2.00E-05

Respirasome

2.00E-05

Table 3. Down-represented terms in gene ontology analysis (Molecular Function).

Go term

P-value

RNA binding

1.00E-08

Enzyme binding

3.40E-06

Cadherin binding

7.90E-06

Nucleic acid binding

8.40E-05

NAD(P)H dehydrogenase (quinone) activity

2.00E-04

Electron transfer activity

2.00E-04

NADH dehydrogenase activity

2.40E-04

Oxidoreductase activity, acting on NAD(P)H, quinone or

2.40E-04

similar compound as acceptor

NADH dehydrogenase (quinone) activity

2.40E-04

NADH dehydrogenase (ubiquinone) activity

6.80E-04

Cell adhesion molecule binding

6.80E-04

Proton transmembrane transporter activity

7.30E-04

Oxidoreductase activity, acting on NAD(P)H

8.10E-04

ATPase activity, coupled to transmembrane movement of

4.00E-03

ions, rotational mechanism

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る