リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The ACTN3 577XX Null Genotype Is Associated with Low Left Ventricular Dilation-Free Survival Rate in Patients with Duchenne Muscular Dystrophy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The ACTN3 577XX Null Genotype Is Associated with Low Left Ventricular Dilation-Free Survival Rate in Patients with Duchenne Muscular Dystrophy

Nagai, Masashi Awano, Hiroyuki Yamamoto, Tetsushi Bo, Ryosuke Matsuo, Masafumi Iijima, Kazumoto 神戸大学

2020.10.19

概要

Background: Duchenne muscular dystrophy (DMD) is a fatal progressive muscle-wasting disease caused by mutations in the DMD gene. Dilated cardiomyopathy is the leading cause of death in DMD; therefore, further understanding of this complication is essential to reduce morbidity and mortality. Methods: A common null variant (R577X) in the ACTN3 gene, which encodes α-actinin-3, has been studied in association with muscle function in healthy individuals; however it has not yet been examined in relationship to the cardiac phenotype in DMD. In this study, we determined the ACTN3 genotype in 163 patients with DMD and examined the correlation between ACTN3 genotypes and echocardiographic findings in 77 of the 163 patients. Results: The genotypes 577RR(RR), 577RX(RX) and 577XX(XX) were identified in 13 (17%), 44 (57%) and 20 (26%) of 77 patients, respectively. We estimated cardiac involvement-free survival rate analyses using Kaplan-Meier curves. Remarkably, the left ventricular dilation (> 55 mm)-free survival rate was significantly lower in patients with the XX null genotype (P < 0.01). The XX null genotype showed a higher risk for LV dilation (hazard ratio 9.04). Conclusions: This study revealed that the ACTN3 XX null genotype was associated with a lower left ventricular dilation-free survival rate in patients with DMD. These results suggest that the ACTN3 genotype should be determined at the time of diagnosis of DMD to improve patients’ cardiac outcomes.

この論文で使われている画像

参考文献

1. Mah JK, Korngut L, Dykeman J, Day L, Pringsheim T, Jette N. A systematic review and metaanalysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord

2014;24:482-91.

2. Gatheridge MA, Kwon JM, Mendell JM, Scheuerbrandt G, Moat SJ, Eyskens F, et al. Identifying

non-Duchenne muscular dystrophy-positive and false negative results in prior Duchenne muscular

dystrophy newborn screening programs: A Review. JAMA Neurol 2016;73:111-6.

3. King WM, Ruttencutter R, Nagaraja HN, Matkovic V, Landoll J, Hoyle C, et al. Orthopedic

outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology

2007;68:1607-13.

4. Bello L, Gordish-Dressman H, Morgenroth LP, Henricson EK, Duong T, Hoffman EP, et al.

Prednisone/prednisolone and deflazacort regimens in the CINRG Duchenne Natural History Study.

Neurology 2015;85:1048-55.

5. Feingold B, Mahle WT, Auerbach S, Clemens P, Domenighetti AA, Jefferies JL, et al. American

Heart Association Pediatric Heart Failure Committee of the Council on Cardiovascular Disease in the

Young, Council on Clinical Cardiology, Council on Cardiovascular Radiology and Intervention,

Council on Functional Genomics and Translational Biology, Stroke Council. Management of cardiac

involvement associated with neuromuscular diseases: A Scientific Statement from the American Heart

22

Association. Circulation 2017;136:e200-e231.

6. Hor KN, Mah ML, Johnston P, Cripe TP, Cripe LH. Advances in the diagnosis and management of

cardiomyopathy in Duchenne muscular dystrophy. Neuromuscul Disord 2018;28:711-6.

7. Nigro G, Comi LI, Politano L, Bain RJ. The incidence and evolution of cardiomyopathy in

Duchenne muscular dystrophy. Int J Cardiol 1990;26:271-7.

8. Barp A, Bello L, Politano L, Melacini P, Calore C, Polo A, et al. Genetic modifiers of Duchenne

muscular dystrophy and dilated cardiomyopathy. PloS One 2015;10:e0141240.

9. Yamamoto T, Awano H, Zhang Z, Sakuma M, Kitaaki S, Matsumoto M, et al. Cardiac dysfunction

in Duchenne muscular dystrophy is less frequent in patients with mutations in the Dystrophin Dp116

coding region than in other regions. Circ Genom Precis Med 2018;11:e001782.

10. Papa AA, D’Ambrosio P, Petillo R, Palladino A, Politano L. Heart transplantation in patients with

dystrophinopathic cardiomyopathy: Review of the literature and personal series. Intractable Rare Dis

Res 2017;6:95-101.

11. de Kermadec JM, Bécane HM, Chénard A, Tertrain F, Weiss Y. Prevalence of left ventricular

systolic dysfunction in Duchenne muscular dystrophy: An echocardiographic study. Am Heart J

1994;127:618-23.

12. Birnkrant DJ, Bushby K, Bann CM, Alman BA, Apkon SD, Blackwell A, et al. Diagnosis and

management of Duchenne muscular dystrophy, part 2: Respiratory, cardiac, bone health, and

23

orthopaedic management. Lancet Neurol 2018;17:347-61.

13. Beggs AH, Byers TJ, Knoll JH, Boyce FM, Bruns GA, Kunkel LM. Cloning and characterization

of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem

1992;267:9281-8.

14. MacArthur DG, North KN. ACTN3: A genetic influence on muscle function and athletic

performance. Exerc Sport Sci Rev 2007;35:30-4.

15. Amorim CE, Acuna-Alonzo V, Salzano FM, Bortolini MC, Hunemeier T. Differing evolutionary

histories of the ACTN3*R577X polymorphism among the major human geographic groups. PloS One

2015;10:e0115449.

16. Hogarth MW, Garton FC, Houweling PJ, Tukiainen T, Lek M, Macarthur DG, et al. Analysis of

the ACTN3 heterozygous genotype suggests that alpha-actinin-3 controls sarcomeric composition and

muscle function in a dose-dependent fashion. Hum Mol Genet 2016;25:866-77.

17. Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, et al.

ACTN3 genotype is associated with increases in muscle strength in response to resistance training in

women. J Appl Physiol (1985) 2005;99:154-63.

18. Norman B, Esbjornsson M, Rundqvist H, Osterlund T, von Walden F, Tesch PA. Strength, power,

fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes.

J Appl Physiol (1985) 2009;106:959-65.

24

19. Suminaga R, Matsuo M, Takeshima Y, Nakamura H, Wada H. Nonsense mutation of the alphaactinin-3 gene is not associated with dystrophinopathy. Am J Med Genet 2000;92:77-8.

20. Hogarth MW, Houweling PJ, Thomas KC, Gordish-Dressman H, Bello L, Cooperative

International Neuromuscular Research Group (CINRG), et al. Evidence for ACTN3 as a genetic

modifier of Duchenne muscular dystrophy. Nat Commun 2017;8:14143.

21. Bernardez-Pereira S, Santos PC, Krieger JE, Mansur AJ, Pereira AC. ACTN3 R577X

polymorphism and long-term survival in patients with chronic heart failure. BMC Cardiovasc Disord

2014;14:90.

22. Takeshima Y, Yagi M, Okizuka Y, Awano H, Zhang Z, Yamauchi Y, et al. Mutation spectrum of the

dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center.

J Hum Genet 2010;55:379-88.

23. Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the

phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics

1988;2:90-5.

24. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for

cardiac chamber quantification by echocardiography in adults: an update from the American Society

of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc

Echocardiogr 2015;28:1-39 e14.

25

25. Kim JH, Jung ES, Kim CH, Youn H, Kim HR. Genetic associations of body composition,

flexibility and injury risk with ACE, ACTN3 and COL5A1 polymorphisms in Korean ballerinas. J

Exerc Nutrition Biochem 2014;18:205-14.

26. Davis AH, Jianhua W, Tsang TC, Harris DT. Direct sequencing is more accurate and feasible in

detecting single nucleotide polymorphisms than RFLP: using human vascular endothelial growth

factor gene as a model. Biol Res Nurs 2007;9:170-8.

27. Slomka M, Sobalska-Kwapis M, Wachulec M, Bartosz G, Strapagiel D. High resolution melting

(HRM) for high-throughput genotyping-limitations and caveats in practical case studies. Int J Mol Sci

2017;18.

28. Deng J, Huang H, Yu X, Jin J, Lin W, Li F, et al. DiSNPindel: improved intra-individual SNP and

inDel detection in direct amplicon sequencing of a diploid. BMC Bioinformatics 2015;16:343.

29. Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, et al. Differential

expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for

the evolution of functional redundancy. Hum Mol Genet 2001;10:1335-46.

30. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, et al. A draft map of the

human proteome. Nature 2014;509:575-81.

31. Deschamps CL, Connors KE, Klein MS, Johnsen VL, Shearer J, Vogel HJ, et al. The ACTN3

R577X polymorphism is associated with cardiometabolic fitness in healthy young adults. PloS One

26

2015;10:e0130644.

32. Lee FX, Houweling PJ, North KN, Quinlan KG. How does alpha-actinin-3 deficiency alter muscle

function? Mechanistic insights into ACTN3, the ‘gene for speed’. Biochim Biophys Acta

2016;1863:686-93.

33. Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, et al. Mutations in

Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll

Cardiol 2003;42:2014-27.

34. LeWinter MM, Granzier HL. Cardiac titin and heart disease. J Cardiovasc Pharmacol 2014;63:20712.

35. Wells QS, Ausborn NL, Funke BH, Pfotenhauer JP, Fredi JL, Baxter S, et al. Familial dilated

cardiomyopathy associated with congenital defects in the setting of a novel VCL mutation

(Lys815Arg) in conjunction with a known MYPBC3 variant. Cardiogenetics 2011;1.

36. Costas JM, Nye DJ, Henley JB, Plochocki JH. Voluntary exercise induces structural remodeling

in the hearts of dystrophin-deficient mice. Muscle Nerve 2010;42:881-5.

37. Hourde C, Joanne P, Medja F, Mougenot N, Jacquet A, Mouisel E, et al. Voluntary physical

activity protects from susceptibility to skeletal muscle contraction-induced injury but worsens heart

function in mdx mice. Am J Pathol 2013; 5:1509-18.

38. Barbin IC, Pereira JA, Bersan Rovere M, de Oliveira Moreira D, Marques MJ, Santo Neto H.

27

Diaphragm degeneration and cardiac structure in mdx mouse: potential clinical implications for

Duchenne muscular dystrophy. J Anat 2016;228:784-91.

39. McNally EM, Kaltman JR, Benson DW, Canter CE, Cripe LH, Duan D, et al. Contemporary

cardiac issues in Duchenne muscular dystrophy. Circulation 2015;131:1590-8.

40. Pettygrove S, Lu Z, Andrews JG, Meaney FJ, Sheehan DW, Price ET, et al. Sibling concordance

for clinical features of Duchenne and Becker muscular dystrophies. Muscle Nerve 2014;49:814-21

a.FANTOM5, https://fantom.gsc.riken.jp/5/,

hg19.cage_peak_phase1and2combined_tpm_ann.osc.txt.gz, accecced at Feb/20/2020

b. GEO profiles, https://www.ncbi.nlm.nih.gov/geoprofiles, ID27912914, accecced at Feb/20/2020

28

Table 1. Clinical characteristics of ACTN3 genotypes

RR

RX

XX

Participants

13

44

20

Initial echocardiographic examination age

8.8

9.5

9.2

(7.4 – 12.2)

(7.9 – 12.4)

(7.9-11.5)

14.7±3.8

15.6±5.1

13.6±4.2

0.28

Oral prednisolone use (%)

7 (53.9)

14 (31.8)

8 (40.0)

0.34

ACE inhibitor use (%)

6 (46.2)

19 (43.2)

11 (55.0)

0.77

Beta-blocker use (%)

6 (46.2)

16(34.0)

9 (45.0)

0.59

10

11

0.19*

(Median, inter-quartile range, years)

Final echocardiographic examination age

0.69

(Mean±SD, years)

Median age at loss of ambulation (years)

RR, Patient with wild type c.1729C (p.577R) variant in two alleles; RX, Patient with a single

nucleotide variant of C.1729C>T (p. R577X); XX, Patient with a single nucleotide variant in both

alleles. *Compared by log-rank test.

29

Table 2. Clinical characteristics of ACTN3 positive and null genotypes

ACTN3 positive genotype

ACTN3 null genotype

Participants

57

20

Initial echocardiographic examination age

9.3

9.15

(Median, inter-quartile range, years)

(7.8 - 12.2)

(7.9 – 11.5)

Final echocardiographic examination age

15.4±4.8

13.6±4.2

0.14

Oral prednisolone use (%)

21 (36.8)

8 (40.0)

0.80

ACE inhibitor use (%)

25 (43.9)

11 (55.0)

0.44

Beta-blocker use (%)

22 (38.6)

9 (45.0)

0.79

11

0.21*

0.66

(Mean±SD, years)

Median age at loss of ambulation (years)

*Compared by log-rank test

30

Supplementary Table 1

List of identified mutations the DMD gene and polymorphisms in the ACTN3 gene.

KUCG

ACTN3

DMD mutation

Predicted effect of DMD mutation

30

c.6283C>T

nonsense mutation in exon 7

RX

145

c.8218-?_8390+?dup

duplication of exon 56

RX

147

c.6423C>A

nonsense mutation in exon 44

RX

170

c.7661-?_8027+?del

deletion of exons 53 to 54

RX

181

c.6615-?_7098+?del

deletion of exons 46 to 48

XX

201

c.531-?_4071+?del

deletion of exons 7 to 29

RX

202

c.6615-?_7542+?del

deletion of exons 46 to 51

XX

213

c.6291-?_6438+?del

deletion of exon 44

XX

214

c.6439-?_7309+?del

deletion of exons 45 to 50

RX

225

c.5899C>T

nonsense mutation in exon 41

XX

245

c.3959delC

1bp deletion in exon 29

RX

258

c.6439-?_7660+?del

deletion of exons 45 to 52

RX

263

c.6291-?_6438+?del

deletion of exon 44

RX

277

c.1773delA

1bp deletion in exon 15

RX

294

c.2168+1G>C

splicing mutation at exon 17

RX

327

c.6615-?_7912+?del

deletion of exons 46 to 47

XX

342

c.7654delG

1bp deletion in exon 52

RR

348

c.6615-?_7200+?del

deletion of exons 46 to 49

RX

376

c.2169-?_5326+?del

deletion of exons 18 to 37

RX

377

c.1062G>A

nonsense mutation in exon 10

RX

382

c.94-?_2169+?del

deletion of exons 3 to 17

RX

394

c.7661-?_8027+?del

deletion of exons 53 to 54

RR

395

c.7543-?_7660+?del

deletion of exon 52

RR

399

c.6615-?_7098+?del

deletion of exons 46 to 48

RX

427

c.6615-?_7098+?del

deletion of exons 46 to 48

XX

434

c.3347_3350delAGAA

4bp deletion in exon 25

XX

435

c.7310-?_7542+?del

deletion of exon 51

RR

436

c.5561delT

1bp deletion in exon 39

XX

Number

31

polymorphism

441

c.10498_10499delAG

2bp deletion in exon 74

RX

447

c.8218-?_9224+?dup

duplication of exons 56 to 62

RX

449

c.961-?_1602+?del

deletion of exons 10 to 13

RR

456

c.7817G>A

nonsense mutation in exon 53

RX

472

c.2804-?_6438+?dup

duplication of exons 22 to 44

RX

474

c.6913-?_7309+?del

deletion of exons 48 to 50

RX

478

c.9913G>T

nonsense mutation in exon 68

RX

501

c.5899C>T

nonsense mutation in exon 41

XX

505

c.4729delC

1bp deletion in exon 34

XX

512

c.6613dupA

1bp insertion in exon 45

RR

559

c.6805C>T

nonsense mutation in exon 47

RX

571

c.355C>T

nonsense mutation in exon 5

XX

577

c.5551C>T

nonsense mutation in exon 39

RX

581

c.6615-?_7542+?del

deletion of exons 46 to 51

RX

603

c.7310-?_9084+?dup

duplication of exons 51 to 60

RX

610

c.6439-?_7309+?del

deletion of exons 48 to 50

RX

623

c.6439-?_6614+?del

deletion of exon 45

RX

630

c.6291-?_6912+?del

deletion of exons 44 to 47

RX

643

c.8460G>A

nonsense mutation in exon 57

RX

651

c.5899C>T

nonsense mutation in exon 41

RX

656

c.6913-?_7660+?del

deletion of exons 48 to 52

RX

664

c.650-?_1602+?del

deletion of exons 8 to 13

XX

681

c.7099-?_7660+?del

deletion of exons 49 to 52

RX

689

c.650-?_3276+?del

deletion of exons 8 to 24

RX

708

c.94-?_649+?del

duplication of exons 10 to 11

RX

712

c.1329_1331+5delCAAGTAAG

splicing mutation at exon 11

RR

726

c.783dupT

1bp insertion in exon 8

XX

740

c.961-?_1331+?dup

duplication of exons 10 to 11

RR

763

c.6291-?_6438+?del

deletion of exon 44

RX

767

c.650-?_1992+?dup

duplication of exons 8 to 16

XX

791

c.7543-?_7660+?del

deletion of exon 52

XX

795

c.4536_4540delGAGTG

5bp deletion in exon 33

XX

809

c.2677C>T

nonsense mutation in exon21

RX

810

c.650-?_2292+?del

deletion of exons 8 to 18

RX

815

c.961-?_2169+?del

deletion of exons 10 to 17

XX

818

c.3908_3909delCT

2bp deletion in exon 28

RX

32

847

c.2419C>T

nonsense mutation in exon20

RX

851

c.650-?_2292+?del

deletion of exons 8 to 18

RR

857

c.9807+2714C>T

deep intronic mutation in intron 67

RR

865

c.6615-?_6912+?del

deletion of exons 46 to 47

RR

877

c.4414C>T

nonsense mutation in exon32

RX

879

c.7657C>T

nonsense mutation in exon52

RX

898

c.10108 C>T

nonsense mutation in exon70

RR

907

c.724C>T

nonsense mutation in exon8

RX

915

c.6615-?_7872+?del

deletion of exons 46 to 53

RR

921

c.9851G>A

nonsense mutation in exon68

RX

923

c.7780C>T

nonsense mutation in exon53

XX

926

c.6439-?_6614+?del

deletion of exon 45

XX

939

c.6291-?_6438+?del

deletion of exon 44

XX

KUCG; Kobe University Clinical Genetics

33

Highlights

ACTN3 genotype is a genetic modifier for Duchene muscular dystrophy

ACTN3 genotype with risk of dilated cardiomyopathy in patients was studied

ACTN3 577XX null genotype has low left ventricular dilation-free survival rate

ACTN3 577XX null genotype is a risk factor for left ventricular dilation

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る