リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Utilization of UAV remote sensing in plant-based field experiments: a case study of the evaluation of LAI in small-scale sweetcorn experiment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Utilization of UAV remote sensing in plant-based field experiments: a case study of the evaluation of LAI in small-scale sweetcorn experiment

Jung-Hyun, Jin 東北大学

2023.04.13

概要

The LAI (Leaf Area Index), defined as the total one-sided leaf area per unit ground
area, is a crucial factor in climatic, ecological, and agronomical studies [11,12]. Also,
LAI is considered a crucial factor that represent the bioprocess of crops. It is essential
to exact estimate the LAI for accurate simulations of transpiration, dry matter, and
biomass accumulation; therefore, it has a large influence on crop growth and yield
[13,14]. Important botanical metabolism such as photosynthesis are directly correlated
with LAI and provide information on crop growth dynamics [15]. Since LAI is a
representative indicator of all characteristics of crops, it has been used to evaluate stress,
monitor growth status, and predict yield of crops. [16-19].
There are two ways to measure the LAI in crop field : ground LAI measurement and
LAI estimation by remote sensing. In case of the ground LAI measurement,
Measurement is carried out using a portable device, and there are methods of calculating
the leaf area by scanning the leaves of crops directly and measuring plant canopy using
canopy analyzer that is one of the most widely used optical instruments for LAI
estimation as indirect way [20]. This approach is labor intensive and time consuming
and has the disadvantage of having to deal only with partial data from crop cultivation
areas. Many cases directly sample leaves and measure the leaf area or indirectly
measure LAI using a canopy analyzer like mentioned above, but several studies have
tried to estimate the LAI with comparing the ground-based LAI through remote sensing. ...

この論文で使われている画像

参考文献

1.

Hamid Abbasdokht, and A. G. The Effect of Seed Inoculation ( Pseudomonas

Putida + Bacillus Lentus ) and Different Levels of Fertilizers on Yield and Yield

Components Of. World Acad. Sci. Eng. Technol. 2010, 989–993.

2.

Pyakurel, A.; Dahal, B. R.; Rijal, S. Effect of Molasses and Organic Fertilizer in

Soil Fertility and Yield of Spinach in Khotang, Nepal. Int. J. Appl. Sci. Biotechnol.

2019, 7 (1), 49–53.

3.

Sher, A.; Hassan, F. U.; Ali, H.; Hussain, M.; Sattar, A. Enhancing Forage Quality

through Appropriate Nitrogen Dose, Seed Rate and Harvest Stage, in Sorghum

Cultivars Grown in Pakistan. Grassl. Sci. 2017, 63 (1), 15–22.

4.

B.Idso, S.; D.Jackson, R.; J.Reginato, R. Remote Sensing for Agricultural Water

Management and Crop Yield Prediction. Agric. Water Manag. 1977, 1 (4), 299–

310.

5.

Toscano, P.; Castrignanò, A.; Di Gennaro, S. F.; Vonella, A. V.; Ventrella, D.;

Matese, A. A Precision Agriculture Approach for Durum Wheat Yield Assessment

Using Remote Sensing Data and Yield Mapping. Agronomy 2019, 9 (8).

6.

Lobell, D. B. The Use of Satellite Data for Crop Yield Gap Analysis. F. Crop. Res.

2013, 143, 56–64.

7.

Matese, A.; Toscano, P.; Di Gennaro, S. F.; Genesio, L.; Vaccari, F. P.; Primicerio,

J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft

and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens.

2015, 7 (3), 2971–2990.

63

8.

Frazier, R. J.; Coops, N. C.; Wulder, M. A.; Kennedy, R. Characterization of

Aboveground Biomass in an Unmanaged Boreal Forest Using Landsat Temporal

Segmentation Metrics. ISPRS J. Photogramm. Remote Sens. 2014, 92, 137–146.

9.

Hassan, M. A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.;

He, Z. A Rapid Monitoring of NDVI across the Wheat Growth Cycle for Grain

Yield Prediction Using a Multi-Spectral UAV Platform. Plant Sci. 2019, 282

(October 2018), 95–103.

10.

Messina, G.; Peña, J.M.; Vizzari, M.; Modica, G. A Comparison of UAV and

Satellites Multispectral Imagery in Monitoring Onion Crop. An Application in the

‘Cipolla Rossa Di Tropea’ (Italy). Remote Sens. 2020, 12, 3424.

11.

Watson, D. J. Comparative Physiological Studies on the Growth of Field Crops: II.

The Effect of Varying Nutrient Supply on Net Assimilation Rate and Leaf Area.

Ann. Bot. 1947, 11 (4), 375–407.

12.

Ewert, F. Modelling Plant Responses to Elevated CO2: How Important Is Leaf Area

Index? Ann. Bot. 2004, 93 (6), 619–627.

13.

Birch, C. J.; Hammer, G. L.; Rickert, K. G. Improved Methods for Predicting

Individual Leaf Area and Leaf Senescence in Maize (Zea Mays). Aust. J. Agric.

Res. 1998, 49 (2), 249–262.

14.

Dwyer, L. M.; Stewart, D. W. Effect of Leaf Age and Position on Net

Photosynthetic Rates in Maize (Zea Mays L.). Agric. For. Meteorol. 1986, 37 (1),

29–46.

64

15.

Venkateswarlu, B.; Rao, P.K.; Rao, A.V. Canopy analysis on the relationships

between leaf area index and productivity in lowland rice, Oryza sativa L. Plant Soil

1976, 45, 49–56.

16.

Atzberger, C. Advances in remote sensing of agriculture: Context description,

existing operational monitoring systems and major information needs. Remote Sens.

Environ. 2013, 5, 949–981.

17.

Thorp, K.R.; Gore, M.A.; Andrade-Sanchez, P.; Carmo-Silva, A.E.; Welch, S.M.;

White, J.W.; French, A.N. Proximal hyperspectral sensing and data analysis

approaches for field-based plant phenomics. Comput. Electron. Agric. 2015, 118,

225–236.

18.

Mokhtari, A.; Noory, H.; Vazifedoust, M. Improving crop yield estimation by

assimilating LAI and inputting satellite-based surface incoming solar radiation into

SWAP model. Agric. For. Meteorol. 2018, 159–170.

19.

Vaesen, K.; Gilliams, S.; Nackaerts, K.; Coppin, P. Ground-measured spectral

signatures as indicators of ground cover and leaf area index: The case of paddy rice.

Field Crops Res. 2001, 69, 13–25.

20.

Behera, S. K.; Srivastava, P.; Pathre, U. V.; Tuli, R. An Indirect Method of

Estimating Leaf Area Index in Jatropha Curcas L. Using LAI-2000 Plant Canopy

Analyzer. Agric. For. Meteorol. 2010, 150 (2), 307–311.

21.

Ali, M.; Montzka, C.; Stadler, A.; Menz, G.; Thonfeld, F.; Vereecken, H.

Estimation and Validation of RapidEye-Based Time-Series of Leaf Area Index for

Winter Wheat in the Rur Catchment (Germany). Remote Sens. 2015, 7, 2808–2831.

65

22.

Campos-Taberner, M.; García-Haro, F.J.; Camps-Valls, G.; Grau-Muedra, G.; Nutini,

F.; Crema, A.; Boschetti, M. Multitemporal and multiresolution leaf area index retrieval

for operational local rice crop monitoring. Remote Sens. Environ. 2016, 187, 102–118.

23.

Ogawa, S.; Makino, I.; Fukuo, A.; Saito, G. Seasonal Profiles of NDVI for Paddy

Fields and their Leaf Area Index Estimates. J. Remote Sens. Soc. Jpn. 2000, 20, 17–

26.

24.

Goswami, S.; Gamon, J.; Vargas, S.; Tweedie, C. Relationships of NDVI, Biomass,

and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska. PeerJ. 2015,

3, e911v–e913v.

25.

Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Duc, H.N.; Nguyen, L.D.

Prediction of Rice Crop Yield Using MODIS EVI− LAI Data in the Mekong Delta,

Vietnam. Int. J. Remote Sens. 2013, 34, 7275–7292.

26.

Brown, L.; Chen, J.M.; Leblanc, S.G.; Cihlar, J. A Shortwave Infrared Modification

to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image and Model

Analysis. Remote Sens. Environ. 2000, 71, 16–25.

27.

Yao, X.; Wang, N.; Liu, Y.; Cheng, T.; Tian, Y.; Chen, Q.; Zhu, Y. Estimation of

Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband

Multispectral Imagery. Remote Sens. 2017, 9, 1304 .

28.

Tavakoli, H.; Mohtasebi, S.S.; Alimardani, R.; Gebbers, R. Evaluation of Different

Sensing Approaches Concerning to Nondestructive Estimation of Leaf Area Index

(LAI) for Winter Wheat. Int. J. Smart Sens. Intell. Syst. 2014, 7, 337–359.

29.

Lee, H.-S.; Lee, K.-S. Effect of Red-Edge Band to Estimate Leaf Area Index in

Close Canopy Forest. Korean J. Remote Sens. 2017, 33, 571–585.

66

30.

Moon, H.-G.; Choi, T.-Y.; Kang, D.-I.; Cha, J.-G. Study on the Estimation of Leaf

Area Index (LAI) of Using UAV Vegetation Index and Tree Height Data. J. Korean

Assoc. Geogr. Inf. Stud. 2018, 21, 158–174.

31.

Liu, S.; Zeng, W.; Wu, L.; Lei, G.; Chen, H.; Gaiser, T.; Srivastava, A.K.

Simulating the Leaf Area Index of Rice from Multispectral Images. Remote Sens.

2021, 13, 3663.

32.

Gong, Y.; Yang, K.; Lin, Z.; Fang, S.; Wu, X.; Zhu, R.; Peng, Y. Remote Estimation

of Leaf Area Index (LAI) with Unmanned Aerial Vehicle (UAV) Imaging for

Different Rice Cultivars throughout the Entire Growing Season. Plant Methods

2021, 17, 88 .

33.

Qi, H.; Zhu, B.; Wu, Z.; Liang, Y.; Li, J.; Wang, L.; Chen, T.; Lan, Y.; Zhang, L.

Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle

Multispectral Images. Sensors 2020, 20, 6732.

34.

Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.;

Cao, W.X.; Tian, Y.C. Predicting Grain Yield in Rice Using Multi-Temporal

Vegetation Indices from UAV-Based Multispectral and Digital Imagery. ISPRS J.

Photogramm. Remote Sens. 2017, 130, 246–255.

35.

Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the Relationship of NDVI with

Leaf Area Index in a Deciduous Forest Site. Remote Sens. Environ. 2005, 94 (2),

244–255.

36.

Fan, L.; Gao, Y.; Brück, H.; Bernhofer, C. Investigating the Relationship between

NDVI and LAI in Semi-Arid Grassland in Inner Mongolia Using in-Situ

Measurements. Theor. Appl. Climatol. 2009, 95 (1–2), 151–156.

67

37.

Son, N. T.; Chen, C. F.; Chen, C. R.; Chang, L. Y.; Duc, H. N.; Nguyen, L. D.

Prediction of Rice Crop Yield Using MODIS EVI− LAI Data in the Mekong Delta,

Vietnam. Int. J. Remote Sens. 2013, 34 (20), 7275–7292.

38.

Brown, L.; Chen, J. M.; Leblanc, S. G.; Cihlar, J. A Shortwave Infrared

Modification to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image

and Model Analysis. Remote Sens. Environ. 2000, 71 (1), 16–25.

39.

Chaurasia, S.; Nigam, R.; Bhattacharya, B. K.; Sridhar, N. V.; Mallick, K.; Vyas,

S. P.; Patel, N. K.; Mukherjee, J.; Shekhar, C.; Kumar, D.; Singh, K. R. P.; Bairagi,

G. D.; Purohit, N. L.; Parihar, J. S. Development of Regional Wheat VI-LAI Models

Using Resourcesat-1 AWiFS Data. J. Earth Syst. Sci. 2011, 120 (6), 1113–1125.

40.

Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J. M.; Walters, D.; Jiao, X.;

Geng, X.; Shi, Y. Assessment of Red-Edge Vegetation Indices for Crop Leaf Area

Index Estimation. Remote Sens. Environ. 2019, 222 (May 2018), 133–143.

41.

Duan, B.; Liu, Y.; Gong, Y.; Peng, Y.; Wu, X.; Zhu, R.; Fang, S. Remote Estimation

of Rice LAI Based on Fourier Spectrum Texture from UAV Image. Plant Methods

2019, 15 (1), 1–12.

42.

Rouse, J. W.; Haas, R. H.; Schell, J. A.; Deering, D. W.; Harlan, J. C. Monitoring

the Vernal Advancements and Retrogradation of Natural Vegetation. NASA/GSFC,

Final Report, Greenbelt, MD, USA 1974, No. September 1972, 1–137.

43.

Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the Relationship of NDVI with

Leaf Area Index in a Deciduous Forest Site. Remote Sens. Environ. 2005, 94 (2),

244–255.

68

44.

Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C. M. Retrieval of Leaf Area

Index in Different Vegetation Types Using High Resolution Satellite Data. Remote

Sens. Environ. 2003, 86 (1), 120–131.

45.

Lu, L.; Li, X.; Ma, M. G.; Che, T.; Huang, C. L.; Veroustraete, F.; Dong, Q. H.;

Bogaert, J.; Ceulemans, R. Investigating Relationship between Landsat ETM+ Data

and LAI in a Semi-Arid Grassland of Northwest China. Int. Geosci. Remote Sens.

Symp. 2004, 6 (c), 3622–3625.

46.

Van Wijk, M. T.; Williams, M. Optical Instruments for Measuring Leaf Area Index

in Low Vegetation: Application in Arctic Ecosystems. Ecol. Appl. 2005, 15 (4),

1462–1470.

47.

Asrar, G.; Fuchs, M.; Kanemasu, E. T.; Hatfield, J. L.

Estimating Absorbed

Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat

1 . Agron. J. 1984, 76 (2), 300–306.

48.

Asner, G. P.; Scurlock, J. M. O.; Hicke, J. a. Global Synthesis of Leaf Area Index

Observations : Glob. Ecol. Biogeogr. 2003, 12 (2003), 191–205.

49.

Chen, P.-Y.; Fedosejevs, G.; Tiscareño-LóPez, M.; Arnold, J.G. Assessment of

MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI Composite Data Using

Agricultural Measurements: An Example at Corn Fields in Western Mexico.

Environ. Monit. Assess. 2006, 119, 69–82.

50.

Huete, A.; Justice, C.; Van Leeuwen,W. MODIS vegetation index (MOD13).

Algorithm Theor. Basis Doc. 1999, 3, 295–309.

51.

Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K.;

Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen

69

concentration, and photosynthetic efficiency in agriculture. Remote Sensing of

Environment 2002, 81, 179-193.

52.

Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B.

Satellite-based modeling of gross primary production in an evergreen needleleaf

forest. Remote Sens. Environ. 2004, 89, 519–534.

53.

Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation

indices. Remote Sens. Environ. 1996, 55, 95–107.

54.

Qi, J.; Huete, A.R.; Moran, M.S.; Chehbouni, A.; Jackson, R.D. Interpretation of

vegetation indices derived from multi-temporal SPOT images. Remote Sens.

Environ. 1993, 44, 89–101.

55.

Lu, H.; Cao, Z.; Xiao, Y.; Fang, Z.; Zhu, Y.; Xian, K. Fine-Grained Maize Tassel

Trait Characterization with Multi-View Representations. Comput. Electron. Agric.

2015, 118, 143–158.

56.

Kumar, A.; Taparia, M.; Rajalakshmi, P.; Guo, W.; Balaji Naik, B.; Marathi, B.;

Desai, U. B. UAV Based Remote Sensing for Tassel Detection and Growth Stage

Estimation of Maize Crop Using Multispectral Images. Int. Geosci. Remote Sens.

Symp. 2020, 1588–1591.

57.

Zan, X.; Zhang, X.; Xing, Z.; Liu, W.; Zhang, X.; Su, W.; Liu, Z.; Zhao, Y.; Li, S.

Automatic Detection of Maize Tassels from UAV Images by Combining Random

Forest Classifier and VGG16. Remote Sens. 2020, 12 (18), 1–17.

58.

de Souza, R.; Buchhart, C.; Heil, K.; Plass, J.; Padilla, F.M.; Schmidhalter, U. Effect

of Time of Day and Sky Conditions on Different Vegetation Indices Calculated

70

from Active and Passive Sensors and Images Taken from Uav. Remote Sens. 2021,

13, 1691.

59.

Erdle, K.; Mistele, B.; Schmidhalter, U. Comparison of Active and Passive Spectral

Sensors in Discriminating Biomass Parameters and Nitrogen Status in Wheat

Cultivars. Field Crops Res. 2011, 124, 74–84.

60.

Ali, M.; Montzka, C.; Stadler, A.; Menz, G.; Thonfeld, F.; Vereecken, H.

Estimation and Validation of RapidEye-Based Time-Series of Leaf Area Index for

Winter Wheat in the Rur Catchment (Germany). Remote Sens. 2015, 7 (3), 2808–

2831.

61.

Campos-Taberner, M.; García-Haro, F. J.; Camps-Valls, G.; Grau-Muedra, G.;

Nutini, F.; Crema, A.; Boschetti, M. Multitemporal and Multiresolution Leaf Area

Index Retrieval for Operational Local Rice Crop Monitoring. Remote Sens. Environ.

2016, 187, 102–118.

62.

Ogawa, S.; Makino, I.; Fukuo, A.; Saito, G. Seasonal Profiles of NDVI for Paddy

Fields and Their Leaf Area Index Estimates. Rssj 2000, 20 (2), 17–26.

63.

Na, S.-I.; Hong, S.Y.; Kim, Y.-H.; Lee, K.-D.; Jang, S.-Y. Estimating Leaf Area

Index of Paddy Rice from RapidEye Imagery to Assess Evapotranspiration in

Korean Paddy Fields. Korean J. Soil Sci. Fertil. 2013, 46, 245–252.

64.

Fukuda, S.; Koba, K.; Okamura, M.; Watanabe, Y.; Hosoi, J.; Nakagomi, K.; Maeda,

H.; Kondo, M.; Sugiura, D. Novel Technique for Non-Destructive LAI Estimation

by Continuous Measurement of NIR and PAR in Rice Canopy. Field Crops Res.

2021, 263, 108070.

71

65.

Jiang, Z.; Huete, A. R.; Didan, K.; Miura, T. Development of a Two-Band

Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112

(10), 3833–3845.

66.

Liu, J.; Pattey, E.; Jégo, G. Assessment of Vegetation Indices for Regional Crop

Green LAI Estimation from Landsat Images over Multiple Growing Seasons.

Remote Sens. Environ. 2012, 123, 347–358.

67.

Rocha, A. V.; Shaver, G. R. Advantages of a Two Band EVI Calculated from Solar

and Photosynthetically Active Radiation Fluxes. Agric. For. Meteorol. 2009, 149

(9), 1560–1563.

68.

Kang, Y.; Özdoğan, M.; Zipper, S. C.; Román, M. O.; Walker, J.; Hong, S. Y.;

Marshall, M.; Magliulo, V.; Moreno, J.; Alonso, L.; Miyata, A.; Kimball, B.;

Loheide, S. P. How Universal Is the Relationship between Remotely Sensed

Vegetation Indices and Crop Leaf Area Index? A Global Assessment. Remote Sens.

2016, 8 (7), 597.

69.

Huete, A.R.; Tucker, C.J. Investigation of Soil Influences in AVHRR Red and

Near- Infrared Vegetation Index Imagery. Int. J. Remote Sens. 2007, 12, 1223–1242.

70.

Sun, Y.; Ren, H.; Zhang, T.; Zhang, C.; Qin, Q. Crop leaf area index retrieval based

on inverted difference vegetation index and NDVI. IEEE Geosci. Remote 2018, 15,

1662–1666.

71.

Hashimoto, N.; Saito, Y.; Maki, M.; Homma, K. Simulation of Reflectance and

Vegetation Indices for Unmanned Aerial Vehicle (UAV) Monitoring of Paddy

Fields. Remote Sens. 2019, 11 (18), 1–13.

72

72.

Kanoe, S.; Kiyoshi, T. An Analysis of the Border Effect in the Rice Paddy Fields.

Japanese J. Crop Sci. 1983, 2 (52), 168–176.

73.

Wang, K.; Zhou, H.; Wang, B.; Jian, Z.; Wang, F.; Huang, J.; Nie, L.; Cui, K.; Peng,

S. Quantification of Border Effect on Grain Yield Measurement of Hybrid Rice. F.

Crop. Res. 2013, 141, 47–54.

74.

Gou, F.; van Ittersum, M.K.; Wang, G.; van der Putten, P.E.; van der Werf, W.

Yield and yield components of wheat and maize in wheat–maize intercropping in

the Netherlands. Eur. J. Agron. 2016, 76, 17–27.

75.

Arnqvist, G. Mixed Models Offer No Freedom from Degrees of Freedom. Trends

Ecol. Evol. 2020, 35, 329–335

76.

Baayen, R. H.; Davidson, D. J.; Bates, D. M. Mixed-Effects Modeling with Crossed

Random Effects for Subjects and Items. J. Mem. Lang. 2008, 59 (4), 390–412.

77.

Laird, N.M.;Ware, J.H. Random-effects models for longitudinal data. Biometrics

1982, 38, 963–974.

78.

Pinheiro, J.C.; Bates, D.M. Linear Mixed-E_ects Models: Basic Concepts and

Examples. In: Mixed-effects models in S and S-Plus. Stat. Comput. 2000, 3–56.

79.

Bates, D.; Maechler, M.; Bolker, B.;Walker, S. Fitting linear mixed-effects models

using lme4. J. Stat. Softw. 2015, 67, 1–48.

80.

Bazzoli, C.; Letué, F.; Martinez, M.-J. Modelling Finger Force Produced from

Different Tasks Using Linear Mixed Models with Lme R Function. J. Case Stud.

Business, Ind. Gov. Stat. 2015, 6 (1), 16–36.

81.

Kuznetsova, A.; Brockho , P.B.; Christensen, R.H.B. lmerTest Package: Tests in

Linear Mixed Effects Models.J. Stat. Softw. 2017, 82, 26.

73

82.

Baayen, H.; Davidson, D.; Bates, D. Mixed-effects modeling with crossed random

effects for subjects and items. J. Mem. Lang.2008, 59, 390–412.

83.

Von Toussaint, U. Bayesian inference in physics. Rev. Mod. Phys. 2011, 83, 943–

999.

84.

Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY,

USA, 2007; ISBN 978-0-387-31073-2.

85.

Gelman, A.; Hwang, J.; Vehtari, A. Understanding Predictive Information Criteria

for Bayesian Models. Stat. Comput. 2014, 24, 997–1016

86.

Robert, C.P.; Casella, G. The Metropolis—Hastings Algorithm. In Monte Carlo

Statistical Methods; Springer: New York, NY, USA, 2004; pp. 267–320.

87.

Neal, R.M. MCMC Using Hamiltonian Dynamics. In Handbook of Markov Chain

Monte Carlo; Chapman and Hall/CRC: New York,NY, USA, 2011; pp. 113–162.

88.

Carpenter, B.; Gelman, A.; Ho_man, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.;

Brubaker, M.; Guo, J.; Li, P.;Riddell, A. Stan: A probabilistic programming

language. J. Stat. Softw. 2017, 76, 1–32.

89.

Kucukelbir, A.; Ranganath, R.; Gelman, A.; Blei, D. Automatic variational

inference in Stan. In Advances in Neural Information Processing Systems; Curran

Associates, Inc.: Red Hook, NY, USA, 2015; pp. 568–576.

90.

Tremmel, D.C.; Bazzaz, F.A. How Neighbor Canopy Architecture Affects Target

Plant Performance. Ecology 1993, 74, 2114–2124.

91.

Peng, Y.; Gitelson, A. A. Application of Chlorophyll-Related Vegetation Indices

for Remote Estimation of Maize Productivity. Agric. For. Meteorol. 2011, 151 (9),

1267–1276.

74

92.

Kross, A.; Znoj, E.; Callegari, D.; Kaur, G.; Sunohara, M.; van Vliet, L.; Rudy, H.;

Lapen, D.; McNairn, H. Evaluation of an Artificial Neural Network Approach for

Prediction of Corn and Soybean Yield. Proc. 14th Int. Conf. Precis. Agric. Montr.

QC, Canada 2018, 24–27.

75

Acknowledgement

本研究を遂行するにあたり、今まで渡って御助言、御指導をしてくださった東北大学

大学院農学研究科作物学分野の本間香貴教授に、心より感謝申し上げます。また、

研究生活を送るなかで、御助言、支援を賜りました同研究室 中島孝幸先生に深く

感謝申し上げます。論文作成とデータ分析の過程でご指導と支援をしてくださった

田嶋亮介先生にも深く感謝申し上げます。

本研究の基本を磨いてくださった高知大学の橋本直之先生をはじめ、実際の実験

にあたり協力してくれた葉さん、Lokiさんにも感謝いたします。 いつもそばで話しな

がら笑える時間を共にしてくれたZEIさんとSUNさんにも感謝の挨拶を伝えます。外

国人である私を偏見なく一緒に研究して、サポートしてくれた作物研究室の皆さんお

世話になりました。ありがとうございました。

紙面に通じていちいち言及を果たせなかったですが、私の留学生活全般にわたっ

て助けをくれたすべての人々にもう一度心より感謝申し上げます。

마지막으로, 지금까지 늘 믿어 주시고 응원해 주신 가족들에 감사드립니다.

오랜 학위과정 기간 동안 물심양면으로 저를 응원해주시고 믿어 주신 덕분

에 학위과정을 마칠 수 있었습니다. 저의 5년간의 일본 유학 생활의 결실

인 이 논문을 바칩니다.

앞으로 위에 언급한 모든 분들의 은혜에 조금이나마 보답할 수 있는 사람

이 되도록 노력하겠습니다.

76

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る