リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「NMR based serum metabolomics for monitoring newborn preterm calves’health」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

NMR based serum metabolomics for monitoring newborn preterm calves’health

Abdullah, Basoglu Nuri, Baspinar Cristina, Licari Leonardo, Tenori Amir, Naseri 北海道大学

2020.05

概要

It was aimed to detect the novel future biomarkers using a metabolomics approach in premature calves. Calves born previous to 270 days' pregnancy are at risk, and the earlier the calving is, the higher the risk. More trials are needed in neonatology field as it little known almost the generally metabolic status of preterm neonates. To date, this is the first NMR (nuclear magnetic resonance) based study on serum metabolomics at set intervals in premature calves. Biochemical health profiles and NMR based metabolomic analysis were performed in twenty-five premature dairy calves. The whole animals partly recovered following 72h. Clinical data were compatible with those of premature animals. Increased levels of AST and CPK may be attributed to subclinic trauma at birth. Alterations in metabolites, increases in 3-hydroxybutyrate, citrate, leucine and isoleucine at 48th and 72h; choline, formate, fatty acids and polyunsaturated fatty acids at 72h, and valine at 48h; and decreases in myo-inositol at 48h and 72h were meaningful for monitoring the recovery at a molecular level in premature calves. Metabolomics became an important tool for identification of premature calves’ clinical pathology and monitoring therapeutic picture.

この論文で使われている画像

参考文献

1) Aydogdu U, Yildiz R, Guzelbektes H, Coskun A, Sen I. Cardiac biomarkers in premature calves with respiratory distress syndrome. Acta Vet Hung 64, 38-46, 2016.

2) Aytug N, Basbugan Y. Premature calves. Turkiye Klinikleri J Vet Sci 4, 53-61, 2013.

3) Basoglu A, Baspinar N, Tenori L, Vignoli A, Yildiz R. Plasma metabolomics in calves with acute bronchopneumonia. Metabolomics 12, 1-10, 2016.

4) Basoglu A, Sen I, Meoni G, Tenori L, Naseri A. NMR based plasma metabolomics at set intervals in newborn dairy calves with severe sepsis. Mediators of Inflammation 2018.doi:10.1155/2018/8016510.

5) Bernhard W, Poets CF, Franz AR. Choline and choline-related nutrients in regular and preterm infant growth. Eur J Nutr 8, 1834- 1837, 2018.

6) Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 289–300, 1995.

7) Blanco C, McGill-Vargas L, Li C, Winter L, Nathanielsz P. High branched-chain amino acid concentrations are found in preterm baboons receiving intravenous amino acid solutions and mimic alterations found in preterm infants. JPEN 7, 1507, 2019.

8) Brosnan ME, Brosnan JT. Formate: the neglected member of one-carbon metabolism. The Annual Review of Nutrition 17, 369-388, 2016.

9) Capasso L, Vento C, Loddo C, Iavarone F, Raimondi F, Dani C, Fanos V. Oxidative stress and bronchopulmonary dysplasia: evidences from microbiomics, metabolomics, and proteomics. Frontiers in Pediatrics 13, 30, 2019.

10) Croze ML, Soulage CO. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 95, 1811–1827,2013.

11) Diaz SO, Pinto J, Barros AS, Morais E, Duarte D, Negrão F, Pita C, Almeida Mdo C, Carreira IM, Spraul M, Gil AM. Newborn urinary metabolic signatures of prematurity and other disorders: a case control study. J Proteome Res 4, 311-325, 2016.

12) Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics, Analytical Chemistry 78, 4281–4290, 2006.

13) Fanos V. Pediatric and neonatal individualized medicine. JPNIM 1, 7–10,2018.

14) Gil AM, Duarte D. Biofluid metabolomics in preterm birth research. Reproductive Sciences 25, 967-977, 2018.

15) Haggarty P. Fatty acid supply to the human fetus. Annual Review of Nutrition 30, 237– 255, 2010.

16) Holmes E, Foxall PJ, Nicholson JK, Neild GH, Brown SM, Beddell CR, Sweatman BC, Rahr E, Lindon JC, Spraul M. Automatic data reduction and pattern recognition methods for analysis of 1H nuclear magnetic resonance spectra of human urine from normal and pathological states. Analytical Biochemistry 220, 284–296, 1994.

17) Ihaka R, Gentleman RR. A language for data analysis and graphics. The Journal of Compu- tational and Graphical Statistics 5, 299–314,1996.

18) Maas C, Franz AR, Shunova A, Mathes M, Bleeker C, Poets CF, Schleicher E, Bernhard W. Choline and polyunsaturated fatty acids in preterm infants' maternal milk. European Journal of Nutrition 56, 1733–1742, 2017.

19) Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29, 688–691, 1958.

20) Mimmi MC, Ballico M, Nakib G, Calcaterra V, Peiro JL, Marotta M, Pelizzo G. Altered metabolic profile in congenital lung lesions revealed by 1H nuclear magnetic resonance spectroscopy. Analytical Chemistry 391836, 2014.

21) Noto A, Fanos V, Dessì A. Metabolomics in newborns. Adv Clin Chem 74, 35–61, 2016.

22) Oltman SP, Rogers EE, Baer RJ, Anderson JG, Steurer MA, Pantell MS, Partridge JC, Rand L, Ryckman KK, Jelliffe-Pawlowski LL. Initial metabolic profiles are associated with 7-day survival among infants born at 22-25 weeks of gestation. J Pediatr 198, 194–200, 2018.

23) Parfieniuk E, Zbucka-Kretowska M, Ciborowski M, Kretowski A, Barbas C. Untargeted metabolomics: an overview of its usefulness and future potential in prenatal diagnosis. Expert Rev Proteomics 15, 809–816, 2018.

24) Pearson JM, Homerosky ER, Caulkett NA, Campbell JR, Levy M, Pajor EA, Windeyer MC. Quantifying subclinical trauma associated with calving difficulty, vigour, and passive im-munity in newborn beef calves. Vet Rec Open 6, e000325, 2019.

25) Piersigilli F, Lam TT, Ver nocc h i P, Quagliariello A, Putignani L, Aghai ZH, Bhandari V. Identification of new biomarkers of bronchopulmonary dysplasia using metabolomics. Metabolomics 15, 2, 20, 2019.

26) Stringer KA, Serkova NJ, Karnovsky A, Guire K, Paine R, Standifor TJ. Metabolic conse- quences of sepsis induced acute lung injury revealed by plasma 1H-nuclear magnetic resonance quantitative metabolomics and computational analysis. Am J Physiol Lung Cell Mol Physiol 300, L4–L11, 2011.

27) Vignoli A, Ghini V, Meoni G, Licari C, Takis PG, Tenori L, Turano P, Luchinat C. High- throughput metabolomics by 1D NMR. Angew Chem Int Ed Engl 58, 968–994, 2019.

28) Westerhuis JA, van Velzen EJ, Hoefsloo HC, Smilde AK. Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics 6, 119–128, 2010.

29) Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids 37, 1–17, 2009.

30) Yildiz R, Aydogdu U, Guzelbektes H, Coskun A, Sen I. Venous lactate, pH and partial pressure of carbondioxide levels as prognostic indicators in 110 premature calves with res- piratory distress syndrome. Vet Rec 180, 611, 2017.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る