リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「熱-水力直接エネルギー変換システムの開発に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

熱-水力直接エネルギー変換システムの開発に関する研究

ヤマナブラハン, タデッサ, アブラハム TADESSE ABIRHAM, YEMANEBIRHAN 九州大学

2022.09.22

概要

The majority of the global primary energy demand is lost after conversion, which contributes to the abundance of lowgrade heat. While the generation of electricity is one of the common approaches to the low-grade heat utilizations, the investigation of direct energy conversion systems is also worthy of an investigation. For applications where the required final output form of energy is hydraulic work, a class of devices called thermally driven pumps (TDP) would be attractive to consider. The transportationof salt water in salt farms, the desalination of brackish water, the transport of water for agricultural applications over low elevations, are among some of the applications where direct use of low-grade heat can be converted to hydraulic work. The current study primarily focuses on the possible utilization of waste heat generated from renewable energy based microgrid system that are being investigated for the electrification of rural communities in developing countries, where the population density is lower, the national grid extension cost is high and hence microgrid systems are possible alternatives. Waste heat generated by the components of the microgrid systems, such as the biogas driven generators (BDG), presents the potential of utilizing the low-grade heat in a way that can contribute to the sustainability of such energy systems. From the points of view of affordability, local manufacturability, and applicability for agriculture, thermally driven pumps may be attractive for coupling with such microgrid systems. Therefore, the current study has focused on the development of a new type of thermally driven pumping system as a potential waste heat utilization component for microgrid applications in rural areas.

The scope of the study is mainly centered on the investigation of the technical challenges of TDPs which limits their applicability. Therefore, emphasis is given on the performance limits from thermodynamic perspective. Thus, as the initial step of the study, a thermodynamic assessment on the thermodynamic cycles related to TDP systems have been considered. Through the assessment, major limitation on the performance of unconventional cycle based TDPs was observed, and the Thermal Power Pump (TPP) cycle was observed to have yielded relatively higher performances. Therefore, the study continued with the investigation of the TPP cycle. An investigation on the TPP cycle using nine potential working fluids for cycle performance and the system size requirements, which is affected by heat transfer capabilities. The heat source temperature of the range 50 – 150 ºC, was considered. It was found that working fluids with stronger molecular forces seem to approach the properties of an ideal working fluid for better performance of a TDP system. Among the working fluids, cyclopentane exhibits as an attractive choice of working fluid, due to its superior cycle performance over the wide range of heat source temperatures with moderate system size requirements.

Then, an attempt was made to develop a new thermally driven pumping system that is potentially simple, reliable, and low-cost for coupled operation with microgrid systems for rural communities in developing countries. A proof-of-concept prototype was developed, and parametric experimental investigations were carried out. It was found that the system performance strongly depends on the heat addition rate and delivery capacity of the system. For the heat source temperature of 60 ºC, delivery pressures in the range of 119 – 174 kPa were attained and the thermal efficiencies were in the range of 0.51 - 0.68%. The performance values are higher than the literature, however, to put the results into the perspective of the intended application, the capability of the proposed TDP when it is driven by the waste heat from the engine coolant of a BDG unit was estimated. The experimental data were used to estimate whether the proposed system can pump enough water that needs to be supplied for the biogas production to supply a 10 kW BDG unit of a microgrid. It was found that 87 – 93% of the total pumped water (13 – 27 m3 ) would be available for agricultural and other purposes while only 6 – 13% would need to be fed to the biogas digester. Generally, the results seem to be promising, and yet there are potentials for the optimization and improvement of the proposed system, hence they have been pointed out.

Porous mesh that is made up of thin copper filaments was introduced as an economical method of passive heat transfer enhancement for the developed TDP system. The enhancement method resulted in 47 – 144 % increment of the heat transfer rate and 38 - 186% increment in the delivery flow rate of the system in comparison to the case where no porous mesh was used.Thus, the results suggest that the enhancement method could be promising for the intended application.

Finally, to extend the performance limitation of TDPs for general applications, a hybrid approach was introduced by developing the concept of a variable force transmission mechanism VFTM. Results of the simulation that was conducted on the proposed hybrid system show that the hybrid approach has the potential to enhance the performance of low-grade heat to hydraulic work conversion.

Further studies on the proposed conversionsystem are necessary, specially,the area specific techno-economic investigation of the proposed thermally driven pumping system for the coupled operation with waste heat sources would be necessary.

この論文で使われている画像

参考文献

[1] A. Pal, K. Uddin, K. Thu, B.B. Saha, Environmental assessment and characteristics of next generation refrigerants, Evergreen. 5 (2018) 58–66. https://doi.org/10.5109/1936218.

[2] S.M. Ali, A. Chakraborty, Performance study of adsorption cooling cycle for automotive airconditioning, Evergreen. 2 (2015) 12–22. https://doi.org/10.5109/1500423.

[3] F. Jerai, T. Miyazaki, B.B. Saha, S. Koyama, Overview of adsorption cooling system based on activated carbon - alcohol pair, Evergreen. 2 (2015) 30–40. https://doi.org/10.5109/1500425.

[4] K.G. Cassman, P. Grassini, Can there be a green revolution in Sub-Saharan Africa without large expansion of irrigated crop production?, Glob. Food Sec. 2 (2013) 203–209. https://doi.org/10.1016/j.gfs.2013.08.004.

[5] R.E. Namara, G. Gebregziabher, M. Giordano, C. De Fraiture, Small pumps and poor farmers in Sub-Saharan Africa: An assessment of current extent of use and poverty outreach, Water Int. 38 (2013) 827–839. https://doi.org/10.1080/02508060.2014.847777.

[6] A. latha K. V., M. Gopinath, A.R.S. Bhat, Impact of Climate Change on Rainfed Agriculture in India: A Case Study of Dharwad, Int. J. Environ. Sci. Dev. 3 (2012) 368–371. https://doi.org/10.7763/ijesd.2012.v3.249.

[7] K. Marzia, M.F. Hasan, T. Miyazaki, B.B. Saha, S. Koyama, Key factors of solar energy progress in Bangladesh until 2017, Evergreen. 5 (2018) 78–85. https://doi.org/10.5109/1936220.

[8] S.M. Wazed, B.R. Hughes, D.O. Connor, J.K. Calautit, A review of sustainable solar irrigation systems for Sub-Saharan Africa, Renew. Sustain. Energy Rev. 81 (2018) 1206–1225. https://doi.org/10.1016/j.rser.2017.08.039.

[9] R.R. Mankbadi, S.S. Ayad, Small-scale solar pumping: The technology, Energy Convers. Manag. 28 (1988) 171–184. https://doi.org/10.1016/0196-8904(88)90043-X.

[10] W. Wong, Y, K. Sumathy, Solar thermal water pumping systems: a review, Renew. Sustain. Energy Rev. 3 (1999) 185–217. https://doi.org/10.1016/S1364-0321(98)00018-5.

[11] A.M. Delgado-Torres, Solar thermal heat engines for water pumping: An update, Renew. Sustain. Energy Rev. 13 (2009) 462–472. https://doi.org/10.1016/j.rser.2007.11.004.

[12] A.M. Delgado-Torres, Solar thermal heat engines for water pumping: An update, Renew. Sustain. Energy Rev. 13 (2009) 462–472. https://doi.org/10.1016/j.rser.2007.11.004.

[13] C. Gopal, M. Mohanraj, P. Chandramohan, P. Chandrasekar, Renewable energy source water pumping systems - A literature review, Renew. Sustain. Energy Rev. 25 (2013) 351–370. https://doi.org/10.1016/j.rser.2013.04.012.

[14] E.S. Richardson, Thermodynamic performance of new thermofluidic feed pumps for Organic Rankine Cycle applications, Appl. Energy. 161 (2016) 75–84. https://doi.org/10.1016/j.apenergy.2015.10.004.

[15] G. Shu, Z. Yu, P. Liu, Z. Xu, R. Sun, Potential of a thermofluidic feed pump on performance improvement of the dual-loop Rankine cycle using for engine waste heat recovery, Energy Convers. Manag. 171 (2018) 1150–1162. https://doi.org/10.1016/j.enconman.2018.06.011.

[16] M.P. Zwier, H.J. van Gerner, W.W. Wits, Modelling and experimental investigation of a thermally driven self-oscillating pump, Appl. Therm. Eng. 126 (2017) 1126–1133. https://doi.org/10.1016/j.applthermaleng.2017.02.063.

[17] N. Roonprasang, P. Namprakai, N. Pratinthong, A novel thermal water pump for circulating water in a solar water heating system, Appl. Therm. Eng. 29 (2009) 1598–1605. https://doi.org/10.1016/j.applthermaleng.2008.07.010.

[18] J. Nihill, A. Date, P. Lappas, J. Velardo, Investigating the prospects of water desalination using a thermal water pump coupled with reverse osmosis membrane, Desalination. 445 (2018) 256–265. https://doi.org/10.1016/j.desal.2018.08.004.

[19] R. Bandaru, C. Muraleedharan, P.K. Pavan, Modelling and dynamic simulation of solarthermal energy conversion in an unconventional solar thermal water pump, Renew. Energy. 134 (2019) 292–305. https://doi.org/10.1016/j.renene.2018.10.108.

[20] D.P. Rao, K.S. Rao, Solar water pump for lift irrigation, Sol. Energy. 18 (1976) 405–411. https://doi.org/10.1016/0038-092X(76)90006-2.

[21] K. Sudhakar, M.M. Krishna, D.P. Rao, R.S. Soin, Analysis and simulation of a solar water pump for lift irrigation, Sol. Energy. 24 (1980) 71–82. https://doi.org/10.1016/0038- 092X(80)90022-5.

[22] K. Sumathy, A. Venkatesh, V. Sriramulu, Thermodynamic Analysis of a Solar Thermal Water Pump, Sol. Energy. 57 (1996) 155–161. https://doi.org/https://doi.org/10.1016/S0038- 092X(96)00050-3.

[23] K. Sumathy, Experimental studies on a solar thermal water pump, Appl. Therm. Eng. 19 (1999) 449–459. https://doi.org/10.1016/S1359-4311(98)00071-4.

[24] Y.W. Wong, K. Sumathy, Thermodynamic analysis and optimization of a solar thermal water pump, Appl. Therm. Eng. 21 (2001) 613–627. https://doi.org/10.1016/S1359-4311(00)00065- X.

[25] R. Bandaru, C. Muraleedharan, Performance Prediction of Solar Thermal Water Pump using Artificial Neural Networks, Int. J. Therm. Environ. Eng. 15 (2017) 1–8. https://doi.org/10.5383/ijtee.15.01.001.

[26] W. Wong, Y, K. Sumathy, Thermodynamic analysis and optimization of a solar thermal water pump, Appl. Therm. Eng. 21 (2001) 613–627. https://doi.org/10.1016/S1359-4311(00)00065- X.

[27] K. Sumathy, Experimental studies on a solar thermal water pump, Appl. Therm. Eng. 19 (1999) 449–459. https://doi.org/10.1016/s1359-4311(98)00071-4.

[28] N. Kurhe, A. Funde, P. Gokhale, S. Jadkar, S. Ghaisas, A. Date, Development of Low Temperature Heat Engine for Water Pumping Application, Energy Procedia. 110 (2017) 292– 297. https://doi.org/10.1016/j.egypro.2017.03.142.

[29] Y.T. Abirham, K. Thu, T. Miyazaki, N. Takata, Comparative Study of Thermal Water Pumping Cycles Y.T., Evergr. Jt. J. Nov. Carbon Resour. Sci. Green Asia Strateg. 8 (2021) 239–248. https://doi.org/10.5109/4372284.

[30] J. Nihill, A. Date, J. Velardo, S. Jadkar, Experimental investigation of the thermal power pump cycle – Proof of concept, Appl. Therm. Eng. 134 (2018) 182–193. https://doi.org/10.1016/j.applthermaleng.2018.01.106.

[31] W. Wong, Y, Performance of a solar water pump with ethyl ether as working fluid, Renew. Energy. 22 (2001) 389–394. https://doi.org/10.1016/S0960-1481(00)00065-3.

[32] W. Wong, Y, K. Sumathy, Performance of a solar water pump with n-pentane and ethyl ether as working fluids, Energy Convers. Manag. 41 (2000) 915–927. https://doi.org/10.1016/S0196-8904(99)00167-3.

[33] M.P. Sharma, G. Singh, A low lift solar water pump, Sol. Energy. 25 (1980) 273–278. https://doi.org/10.1016/0038-092X(80)90335-7.

[34] R. Burton, A solar powered diaphragm pump, Sol. Energy. 31 (1983) 523–525.

[35] D.J. Picken, K.D.R. Seare, F. Goto, Design and development of a water piston solar powered steam pump, Sol. Energy. 61 (1997) 219–224. https://doi.org/10.1016/S0038- 092X(97)00050-9.

[36] H.A. Soliman, M.F. Abd-Rabbo, O.I. Ali, D.J. Picken, Vapor operated solar pump, Int. J. Sol. Energy. 7 (1989) 207–213. https://doi.org/10.1080/01425918908914257.

[37] K. Wang, S.R. Sanders, S. Dubey, F.H. Choo, F. Duan, Stirling cycle engines for recovering low and moderate temperature heat: A review, Renew. Sustain. Energy Rev. 62 (2016) 89– 108. https://doi.org/10.1016/j.rser.2016.04.031.

[38] H. Jokar, A.R. Tavakolpour-Saleh, A novel solar-powered active low temperature differential Stirling pump, Renew. Energy. 81 (2015) 319–337. https://doi.org/10.1016/j.renene.2015.03.041.

[39] U.R. Singh, A. Kumar, Review on solar Stirling engine: Development and performance, Therm. Sci. Eng. Prog. 8 (2018) 244–256. https://doi.org/10.1016/j.tsep.2018.08.016.

[40] Graham Walker, Stirling engines., Oxford University Press, New York, 1980.

[41] R. Solanki, A. Galindo, C.N. Markides, Dynamic modelling of a two-phase thermofluidic oscillator for efficient low grade heat utilization: Effect of fluid inertia, Appl. Energy. 89 (2012) 156–163. https://doi.org/10.1016/j.apenergy.2011.01.007.

[42] T.C.B. Smith, Thermally driven oscillations in dynamic applications, University of Cambridge, 2006.

[43] R. Solanki, R. Mathie, A. Galindo, C.N. Markides, Modelling of a two-phase thermofluidic oscillator for low-grade heat utilisation: Accounting for irreversible thermal losses, Appl. Energy. 106 (2013) 337–354. https://doi.org/10.1016/j.apenergy.2012.12.069.

[44] R. Ahmadi, H. Jokar, M. Motamedi, A solar pressurizable liquid piston stirling engine: Part 2, optimization and development, Energy. 164 (2018) 1200–1215. https://doi.org/10.1016/j.energy.2018.08.197.

[45] E. Orda, K. Mahkamov, Development of “low-tech” solar thermal water pumps for use in developing countries, J. Sol. Energy Eng. Trans. ASME. 126 (2004) 768–773. https://doi.org/10.1115/1.1668015.

[46] M. Motamedi, R. Ahmadi, H. Jokar, A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation, Energy. 155 (2018) 796–814. https://doi.org/10.1016/j.energy.2018.05.002.

[47] N. Kermani, I. Petrushina, M.M. Rokni, Evaluation of ionic liquids as replacements for the solid piston in conventional hydrogen reciprocating compressors: A review, Int. J. Hydrogen Energy. 45 (2020) 16337–16354. https://doi.org/10.1016/j.ijhydene.2020.01.214.

[48] C.-S. Lin, J.-K. Liu, H.-T. Chiang, A U-Shaped Oscillatory Liquid Piston Compression Air Conditioner Driven by Rotary Displacer Stirling Engine, Energies. 13 (2020). https://doi.org/10.3390/en13164091.

[49] R.T. Dobson, An open oscillatory heat pipe water pump, Appl. Therm. Eng. 25 (2005) 603– 621. https://doi.org/10.1016/j.applthermaleng.2004.07.005.

[50] A. Date, A. Akbarzadeh, Theoretical study of a new thermodynamic power cycle for thermal water pumping application and its prospects when coupled to a solar pond, Appl. Therm. Eng. 58 (2013) 511–521. https://doi.org/10.1016/j.applthermaleng.2013.05.004.

[51] J. Nihill, A. Date, P. Lappas, J. Velardo, Investigating the prospects of water desalination using a thermal water pump coupled with reverse osmosis membrane, Desalination. 445 (2018) 256–265. https://doi.org/10.1016/j.desal.2018.08.004.

[52] International Energy Agency, International Energy Agency, Electricity Access Database, (2020). https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity (accessed May 20, 2021).

[53] J. Mugisha, M.A. Ratemo, B.C. Bunani Keza, H. Kahveci, Assessing the opportunities and challenges facing the development of off-grid solar systems in Eastern Africa: The cases of Kenya, Ethiopia, and Rwanda, Energy Policy. 150 (2021) 112131. https://doi.org/10.1016/j.enpol.2020.112131.

[54] NASA, World map at night, NASA, 2016, (n.d.). https://www.nasa.gov/specials/blackmarble/2016/globalmaps/BlackMarble_2016_3km.jpg (accessed October 9, 2021).

[55] S. Mandelli, J. Barbieri, R. Mereu, E. Colombo, Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review, Renew. Sustain. Energy Rev. 58 (2016) 1621–1646. https://doi.org/10.1016/j.rser.2015.12.338.

[56] S. Gabra, J. Miles, S.A. Scott, Techno-economic analysis of stand-alone wind micro-grids, compared with PV and diesel in Africa, Renew. Energy. 143 (2019) 1928–1938. https://doi.org/10.1016/j.renene.2019.05.119.

[57] K. Gebrehiwot, M.A.H. Mondal, C. Ringler, A.G. Gebremeskel, Optimization and costbenefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia, Energy. 177 (2019) 234–246. https://doi.org/10.1016/j.energy.2019.04.095.

[58] E.C. Nnaji, D. Adgidzi, M.O. Dioha, D.R.E. Ewim, Z. Huan, Modelling and management of smart microgrid for rural electrification in sub-saharan Africa: The case of Nigeria, Electr. J. 32 (2019) 106672. https://doi.org/10.1016/j.tej.2019.106672.

[59] S. Das, D. Kashyap, P. Kalita, V. Kulkarni, Y. Itaya, Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India, Renew. Sustain. Energy Rev. 117 (2020). https://doi.org/10.1016/j.rser.2019.109485.

[60] S.G. Sigarchian, R. Paleta, A. Malmquist, A. Pina, Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system - Case study Kenya, Energy. 90 (2015) 1830–1841. https://doi.org/10.1016/j.energy.2015.07.008.

[61] A. Pal, S. Bhattacharjee, Effectuation of biogas based hybrid energy system for cost-effective decentralized application in small rural community, Energy. 203 (2020) 117819. https://doi.org/10.1016/j.energy.2020.117819.

[62] T. Sarkar, A. Bhattacharjee, H. Samanta, K. Bhattacharya, H. Saha, Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability, Energy Convers. Manag. 191 (2019) 102–118. https://doi.org/10.1016/j.enconman.2019.04.025.

[63] M.H. Jahangir, R. Cheraghi, Economic and environmental assessment of solar-wind-biomass hybrid renewable energy system supplying rural settlement load, Sustain. Energy Technol. Assessments. 42 (2020). https://doi.org/10.1016/j.seta.2020.100895.

[64] J. Li, P. Liu, Z. Li, Optimal design and techno-economic analysis of a solar-wind-biomass offgrid hybrid power system for remote rural electrification: A case study of west China, Energy. 208 (2020). https://doi.org/10.1016/j.energy.2020.118387.

[65] Siemens Energy, SGE-S series gas engines and gen-sets biogas, 2017. https://www.siemensenergy.com/global/en/offerings/power-generation/gas-engines/sl-engines.html (accessed February 11, 2021).

[66] L. Tocci, T. Pal, I. Pesmazoglou, B. Franchetti, Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review, Energies. 10 (2017) 413. https://doi.org/10.3390/EN10040413.

[67] B.F. Tchanche, P. Loonis, M. Petrissans, H. Ramenah, Organic Rankine cycle systems: Principles, opportunities and challenges, 2013 25th Int. Conf. Microelectron. ICM 2013. (2013). https://doi.org/10.1109/ICM.2013.6735014.

[68] G. Anríquez, K. Stamoulis, Rural development and poverty reduction: is agriculture still the key?, Electron. J. Agric. Dev. Econ. 4 (2007) 5–46.

[69] V. Bansal, V. Tumwesige, J.U. Smith, Water for small-scale biogas digesters in sub-Saharan Africa, GCB Bioenergy. 9 (2016) 339–357. https://doi.org/10.1111/gcbb.12339.

[70] I. Dincer, Energy and environmental impacts: Present and future perspectives, Energy Sources. 20 (1998) 427–453. https://doi.org/10.1080/00908319808970070.

[71] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog. 6 (2018) 268–289. https://doi.org/10.1016/j.tsep.2018.04.017.

[72] C. Forman, I.K. Muritala, R. Pardemann, B. Meyer, Estimating the global waste heat potential, Renew. Sustain. Energy Rev. 57 (2016) 1568–1579. https://doi.org/10.1016/j.rser.2015.12.192.

[73] G.P. Panayiotou, G. Bianchi, G. Georgiou, L. Aresti, M. Argyrou, R. Agathokleous, K.M. Tsamos, S.A. Tassou, G. Florides, S. Kalogirou, P. Christodoulides, Preliminary assessment of waste heat potential in major European industries, in: Energy Procedia, Elsevier Ltd, 2017: pp. 335–345. https://doi.org/10.1016/j.egypro.2017.07.263.

[74] S. Brueckner, L. Miró, L.F. Cabeza, M. Pehnt, E. Laevemann, Methods to estimate the industrial waste heat potential of regions - A categorization and literature review, Renew. Sustain. Energy Rev. 38 (2014) 164–171. https://doi.org/10.1016/j.rser.2014.04.078.

[75] S.S. Das, P. Kumar, S.S. Sandhu, Hybrid photovoltaic–thermal system for simultaneous generation of power and hot water utilising mobiltherm as heat transfer fluid, Int. J. Sustain. Energy. 40 (2021) 104–119. https://doi.org/10.1080/14786451.2020.1798959.

[76] G. Leonzio, Modelling and optimisation the efficiency of crystalline silicon PV/T solar panel, Int. J. Sustain. Energy. 38 (2019) 716–739. https://doi.org/10.1080/14786451.2019.1584626.

[77] M. Mourshed, S. Kumar Ghosh, T. Islam, N. Nath Mustafi, Experimental investigation and CFD analysis of a solar hybrid PV/T system for the sustainable development of the rural northern part of Bangladesh, Int. J. Sustain. Energy. 38 (2019) 583–602. https://doi.org/10.1080/14786451.2018.1548465.

[78] X. Ju, C. Xu, Z. Liao, X. Du, G. Wei, Z. Wang, Y. Yang, A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR), Sci. Bull. 62 (2017) 1388–1426. https://doi.org/10.1016/j.scib.2017.10.002.

[79] A. Ramos, M.A. Chatzopoulou, I. Guarracino, J. Freeman, C.N. Markides, Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment, Energy Convers. Manag. 150 (2017) 838–850. https://doi.org/10.1016/j.enconman.2017.03.024.

[80] A. Buonomano, F. Calise, G. Ferruzzi, L. Vanoli, A novel renewable polygeneration system for hospital buildings: Design, simulation and thermo-economic optimization, Appl. Therm. Eng. 67 (2014) 43–60. https://doi.org/10.1016/j.applthermaleng.2014.03.008.

[81] C.L. Ong, W. Escher, S. Paredes, A.S.G. Khalil, B. Michel, A novel concept of energy reuse from high concentration photovoltaic thermal (HCPVT) system for desalination, Desalination. 295 (2012) 70–81. https://doi.org/10.1016/j.desal.2012.04.005.

[82] A.A. Lakew, O. Bolland, Y. Ladam, Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump, Appl. Energy. 88 (2011) 3005–3011. https://doi.org/10.1016/j.apenergy.2011.03.029.

[83] C.R. Baggley, M.G. Read, Investigation of a Thermo-Fluidic Exchange Pump in Trilateral Flash and Organic Rankine Cycles, IOP Conf. Ser. Mater. Sci. Eng. 604 (2019). https://doi.org/10.1088/1757-899X/604/1/012087.

[84] Z.X. Wang, S. Du, L.W. Wang, X. Chen, Parameter analysis of an ammonia-water power cycle with a gravity assisted thermal driven “pump” for low-grade heat recovery, Renew. Energy. 146 (2020) 651–661. https://doi.org/10.1016/j.renene.2019.07.014.

[85] A. Desideri, S. Gusev, M. van den Broek, V. Lemort, S. Quoilin, Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications, Energy. 97 (2016) 460–469. https://doi.org/10.1016/J.ENERGY.2015.12.012.

[86] B. Peris, J. Navarro-Esbrí, F. Molés, R. Collado, A. Mota-Babiloni, Performance evaluation of an Organic Rankine Cycle (ORC) for power applications from low grade heat sources, Appl. Therm. Eng. 75 (2015) 763–769. https://doi.org/10.1016/J.APPLTHERMALENG.2014.10.034.

[87] Y. qiang Feng, T.C. Hung, T.Y. Su, S. Wang, Q. Wang, S.C. Yang, J.R. Lin, C.H. Lin, Experimental investigation of a R245fa-based organic Rankine cycle adapting two operation strategies: Stand alone and grid connect, Energy. 141 (2017) 1239–1253. https://doi.org/10.1016/J.ENERGY.2017.09.119.

[88] L. Li, Y.T. Ge, X. Luo, S.A. Tassou, An experimental investigation on a recuperative Organic Rankine Cycle (ORC) system for electric power generation with low-grade thermal energy, Energy Procedia. 142 (2017) 1528–1533. https://doi.org/10.1016/J.EGYPRO.2017.12.603.

[89] B. Peris, J. Navarro-Esbrí, F. Molés, A. Mota-Babiloni, Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry, Energy. 85 (2015) 534–542. https://doi.org/10.1016/J.ENERGY.2015.03.065.

[90] G. Kosmadakis, A. Landelle, M. Lazova, D. Manolakos, A. Kaya, H. Huisseune, C.S. Karavas, N. Tauveron, R. Revellin, P. Haberschill, M. De Paepe, G. Papadakis, Experimental testing of a low-temperature organic Rankine cycle (ORC) engine coupled with concentrating PV/thermal collectors: Laboratory and field tests, Energy. 117 (2016) 222–236. https://doi.org/10.1016/J.ENERGY.2016.10.047.

[91] B. Peris, J. Navarro-Esbrí, F. Molés, M. González, A. Mota-Babiloni, Experimental characterization of an ORC (organic Rankine cycle) for power and CHP (combined heat and power) applications from low grade heat sources, Energy. 82 (2015) 269–276. https://doi.org/10.1016/J.ENERGY.2015.01.037.

[92] X. Yang, J. Xu, Z. Miao, J. Zou, C. Yu, Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques, Energy. 90 (2015) 864–878. https://doi.org/10.1016/J.ENERGY.2015.07.121.

[93] L. Shao, X. Ma, X. Wei, Z. Hou, X. Meng, Design and experimental study of a small-sized organic Rankine cycle system under various cooling conditions, Energy. 130 (2017) 236–245. https://doi.org/10.1016/J.ENERGY.2017.04.092.

[94] J. Galindo, S. Ruiz, V. Dolz, L. Royo-Pascual, R. Haller, B. Nicolas, Y. Glavatskaya, Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander, Energy Convers. Manag. 103 (2015) 519–532. https://doi.org/10.1016/J.ENCONMAN.2015.06.085.

[95] U. Muhammad, M. Imran, D.H. Lee, B.S. Park, Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam, Energy Convers. Manag. 103 (2015) 1089–1100. https://doi.org/10.1016/J.ENCONMAN.2015.07.045.

[96] L. Li, Y.T. Ge, X. Luo, S.A. Tassou, Experimental investigations into power generation with low grade waste heat and R245fa Organic Rankine Cycles (ORCs), Appl. Therm. Eng. 115 (2017) 815–824. https://doi.org/10.1016/J.APPLTHERMALENG.2017.01.024.

[97] D.K. Kim, J.S. Lee, J. Kim, M.S. Kim, M.S. Kim, Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80 °C, Appl. Energy. 189 (2017) 55–65. https://doi.org/10.1016/J.APENERGY.2016.12.026.

[98] Klein, S.A.,Engineering Equation Solver (EES), Academic Commercial V10.644, F-Chart Software, (n.d.).

[99] NIST Chemistry WebBook, (2019). https://webbook.nist.gov/cgi/cbook.cgi?ID=C79209&Mask=7 (accessed July 15, 2020).

[100] W. M. Rohsenow, A method of correlating heat transfer for surface boiling of liquids., Trans. ASME. 74 (1952) 969.

[101] T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th ed., John Wiley and Sons, Inc., Jefferson City, 2011.

[102] K. Stephan, M. Abdelsalam, Heat-transfer correlations for natural convection boiling, Int. J. Heat Mass Transf. 23 (1980) 73–87. https://doi.org/10.1016/0017-9310(80)90140-4.

[103] D. Gorenflo, E. Baumhögger, T. Windmann, G. Herres, Nucleate pool boiling, film boiling and single-phase free convection at pressures up to the critical state. Part I: Integral heat transfer for horizontal copper cylinders, Int. J. Refrig. 33 (2010) 1229–1250. https://doi.org/10.1016/j.ijrefrig.2010.07.015.

[104] M.G. Cooper, Heat Flow Rates in Saturated Nucleate Pool Boiling-A Wide-Ranging Examination Using Reduced Properties, Adv. Heat Transf. 16 (1984) 157–239.

[105] Y.A. Cengel, Heat transfer, a practical approach, 2nd ed., 2002.

[106] D. Gorenflo, D.B.R. Kenning, VDI Heat Atlas - Pool Boiling, 2nd ed., Springer, Berlin, 2010.

[107] J.R. Thome, J.G. Collier, Convective boiling and condensation, 1999.

[108] I.L. Pioro, Experimental evaluation of constants for the Rohsenow pool boiling correlation, Int. J. Heat Mass Transf. 42 (1998) 2003–2013. https://doi.org/10.1016/S0017- 9310(98)00294-4.

[109] A. Vieira da Silva Oliveira, R. Gonçalves dos Santos, G. Alegre, Accuracy of Boiling Correlations on Nucleate Boiling with Ethanol Using a Thin Platinum Wire at Different Pressures, (2016). https://doi.org/10.26678/abcm.encit2016.cit2016-0666.

[110] J.R. Thome, Heat Transfer Handbook, John Wiley and Sons, Inc., 2003. https://doi.org/10.1021/ja1097622.

[111] J.A. Caton, An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines, 1st ed., John Wiley and Sons, Inc., 2015. https://doi.org/10.1002/9781119037576.

[112] REFPROP, NIST Standard Reference Database 23, Version 9.1, USA., (n.d.).

[113] B.J. Jones, J.P. McHale, S. V. Garimella, The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer, J. Heat Transfer. 131 (2009) 121009. https://doi.org/10.1115/1.3220144.

[114] Y.T. Abirham, K. Thu, T. Miyazaki, F. Mikšík, Investigation of a Thermal Power Pumping cycle system using alternative working fluids, Int. J. Sustain. Energy. 0 (2021) 1–20. https://doi.org/10.1080/14786451.2021.1924717.

[115] R.L. Webb, Principles of enhanced heat transfer, John Wiley and Sons, Inc., USA, 1994.

[116] H.W. Coleman, W.G. Steele, Experimentation, Validation, and Uncertainty Analysis for Engineers, 4th ed., John Wiley and Sons, Inc., 2018.

[117] E.M. Cardoso, J.C. Passos, Nucleate boiling of n-Pentane in a horizontal confined space, Heat Transf. Eng. 34 (2013) 470–478. https://doi.org/10.1080/01457632.2012.722438.

[118] J. Bonjour, M. Lallemand, Effects of confinement and pressure on critical heat flux during natural convective boiling in vertical channels, Int. Commun. Heat Mass Transf. 24 (1997) 191–200. https://doi.org/10.1016/S0735-1933(97)00005-5.

[119] K.J.L. Geisler, A. Bar-Cohen, Confinement effects on nucleate boiling and critical heat flux in buoyancy-driven microchannels, Int. J. Heat Mass Transf. 52 (2009) 2427–2436. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.001.

[120] Y. Vogeli, C.R. Lohri, A. Gallardo, S. Diener, C. Zurbrugg, Anaerobic Digestion of Biowaste in Developing Countries Practical Information and Case Studies, Eawag – Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland, 2014.

[121] S. Basumatary, S. Das, P. Kalita, P. Goswami, Effect of feedstock/water ratio on anaerobic digestion of cattle dung and vegetable waste under mesophilic and thermophilic conditions, Bioresour. Technol. Reports. 14 (2021) 100675. https://doi.org/10.1016/J.BITEB.2021.100675.

[122] IRENA, Measuring small-scale biogas capacity and production, 2016. www.irena.org.

[123] T. Endo, S. Kawajiri, Y. Kojima, K. Takahashi, T. Baba, S. Ibaraki, T. Takahashi, M. Shinohara, Study on maximizing exergy in automotive engines, SAE Tech. Pap. Ser. (2007). https://doi.org/10.4271/2007-01-0257.

[124] G. Liang, I. Mudawar, Review of pool boiling enhancement by surface modification, (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.026.

[125] S. Mori, Y. Utaka, Critical heat flux enhancement by surface modification in a saturated pool boiling: A review, Int. J. Heat Mass Transf. 108 (2017) 2534–2557. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.01.090.

[126] H.S. Jo, M.W. Kim, K. Kim, S. An, Y. Il Kim, S.C. James, J. Choi, S.S. Yoon, Effects of capillarity on pool boiling using nano-textured surfaces through electrosprayed BiVO4 nanopillars, Chem. Eng. Sci. 171 (2017) 360–367. https://doi.org/10.1016/J.CES.2017.05.028.

[127] S. Jun, S. Sinha-Ray, A.L. Yarin, Pool boiling on nano-textured surfaces, Int. J. Heat Mass Transf. 62 (2013) 99–111. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2013.02.046.

[128] R. Chen, M.-C. Lu, V. Srinivasan, Z. Wang, H.H. Cho, A. Majumdar, Nanowires for Enhanced Boiling Heat Transfer, Nano Lett. 9 (2009) 548–553. https://doi.org/10.1021/NL8026857/SUPPL_FILE/NL8026857_SI_001.PDF.

[129] N.D. Nimkar, S.H. Bhavnani, R.C. Jaeger, Effect of nucleation site spacing on the pool boiling characteristics of a structured surface, Int. J. Heat Mass Transf. 49 (2006) 2829–2839. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2006.02.018.

[130] H. Honda, J.J. Wei, Enhanced boiling heat transfer from electronic components by use of surface microstructures, Exp. Therm. Fluid Sci. 28 (2004) 159–169. https://doi.org/10.1016/S0894-1777(03)00035-9.

[131] K.H. Chu, Y.S. Joung, R. Enright, C.R. Buie, E.N. Wang, Hierarchically structured surfaces for boiling critical heat flux enhancement, Appl. Phys. Lett. 102 (2013) 151602. https://doi.org/10.1063/1.4801811.

[132] A. Franco, E.M. Latrofa, V. V. Yagov, Heat transfer enhancement in pool boiling of a refrigerant fluid with wire nets structures, Exp. Therm. Fluid Sci. 30 (2006) 263–275. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2005.07.002.

[133] C.H. Li, T. Li, P. Hodgins, C.N. Hunter, A.A. Voevodin, J.G. Jones, G.P. Peterson, Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures, Int. J. Heat Mass Transf. 54 (2011) 3146–3155. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2011.03.062.

[134] E. Meléndez, R. Reyes, The pool boiling heat transfer enhancement from experiments with binary mixtures and porous heating covers, Exp. Therm. Fluid Sci. 30 (2006) 185–192. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2005.05.005.

[135] Z.G. Xu, C.Y. Zhao, Thickness effect on pool boiling heat transfer of trapezoid-shaped copper foam fins, Appl. Therm. Eng. 60 (2013) 359–370. https://doi.org/10.1016/J.APPLTHERMALENG.2013.07.013.

[136] G.P. Peterson, Y. Wang, Evaporation/Boiling in Thin Capillary Wicks (l)-Wick Thickness Effects, Trans. ASME. 128 (2006) 1312–1319. https://doi.org/10.1115/1.2349507.

[137] C. Li, G.P. Peterson, Evaporation/Boiling in Thin Capillary Wicks (II)—Effects of Volumetric Porosity and Mesh Size, Trans. ASME. 128 (2006) 1320–1328. https://doi.org/10.1115/1.2349508.

[138] R. Kumar, Akhilesh Gupta;, Nirupam Rohatgi, Boiling Heat Transfer on Wire-Mesh-Wrapped Extended Tube Surfaces, Am. Chem. Soc. 45 (2006) 9156–9160.

[139] Y. Yang, X. Ji, J. Xu, Pool boiling heat transfer on copper foam covers with water as working fluid, Int. J. Therm. Sci. 49 (2010) 1227–1237. https://doi.org/10.1016/j.ijthermalsci.2010.01.013.

[140] L.L. Manetti, G. Ribatski, R.R. de Souza, E.M. Cardoso, Pool boiling heat transfer of HFE7100 on metal foams, Exp. Therm. Fluid Sci. 113 (2020). https://doi.org/10.1016/J.EXPTHERMFLUSCI.2019.110025.

[141] L.L. Manetti, A.S.O.H. Moita, R.R. de Souza, E.M. Cardoso, Effect of copper foam thickness on pool boiling heat transfer of HFE-7100, Int. J. Heat Mass Transf. 152 (2020) 119547. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.119547.

[142] S. Zhang, X. Jiang, Y. Li, G. Chen, Y. Sun, Y. Tang, C. Pan, Extraordinary boiling enhancement through micro-chimney effects in gradient porous micromeshes for high-power applications, Energy Convers. Manag. 209 (2020) 112665. https://doi.org/10.1016/J.ENCONMAN.2020.112665.

[143] D. Attinger, C. Frankiewicz, A.R. Betz, T.M. Schutzius, R. Ganguly, A. Das, C.-J. Kim, C.M. Megaridis, Surface engineering for phase change heat transfer: A review, MRS Energy Sustain. 1 (2014) 1–40. https://doi.org/10.1557/mre.2014.9.

[144] S.A. Khan, M.A. Atieh, M. Koç, Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review, Energies 2018, Vol. 11, Page 3189. 11 (2018) 3189. https://doi.org/10.3390/EN11113189.

[145] C.M. Patil, S.G. Kandlikar, Review of the manufacturing techniques for porous surfaces used in enhanced pool boiling, Heat Transf. Eng. 35 (2014) 887–902. https://doi.org/10.1080/01457632.2014.862141.

[146] S. Jun, J. Kim, D. Son, H.Y. Kim, S.M. You, Enhancement of Pool Boiling Heat Transfer in Water Using Sintered Copper Microporous Coatings, Nucl. Eng. Technol. 48 (2016) 932–940. https://doi.org/10.1016/J.NET.2016.02.018.

[147] S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef, V. Lemort, Techno-economic survey of organic rankine cycle (ORC) systems, Renew. Sustain. Energy Rev. 22 (2013) 168–186. https://doi.org/10.1016/j.rser.2013.01.028.

[148] B.S. Park, M. Usman, M. Imran, A. Pesyridis, Review of Organic Rankine Cycle experimental data trends, Energy Convers. Manag. 173 (2018) 679–691. https://doi.org/10.1016/J.ENCONMAN.2018.07.097.

参考文献をもっと見る