リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Protein corona formation on epigallocatechin gallate-Au nanoparticles suppressed tumor accumulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Protein corona formation on epigallocatechin gallate-Au nanoparticles suppressed tumor accumulation

Wakayama, Chihiro Inubushi, Sachiko Kunihisa, Tomonari Mizumoto, Sachiko Baba, Motoi Tanino, Hirokazu Cho, Ik Sung Ooya, Tooru 神戸大学

2023.04

概要

Metal nanoparticles (NPs), such as gold NPs (AuNPs), are particularly sensitive to X-rays, and thus specific accumulation of AuNPs in a tumor would allow radiotherapy with low energy X-rays and reduced side effects. AuNPs can be generated using HAuCl₄ and the natural polyphenol epigallocatechin-3-gallate (EGCG) in the presence of citrate. Here, we generated EGCG-AuNPs in the presence of several additives and examined the accumulation of these NPs in mouse tumors following intravenous administration. EGCG-AuNPs 15 ​nm in diameter in the presence of sodium alginate accumulated more in tumors compared to 40-nm-diameter EGCG-AuNPs. Furthermore, the results of in vitro cellular uptake and serum protein absorption studies suggest that adsorption of 15–16 ​kDa serum proteins to EGCG-AuNPs suppresses accumulation in tumors. Thus, tendency to adsorb specific proteins on EGCG-AuNPs surface should be tailored for enhancing their accumulation in tumors.

この論文で使われている画像

参考文献

[1] S. Tran, P. DeGiovanni, B. Piel, P. Rai, Cancer nanomedicine: a review of recent

success in drug delivery, Clin. Transl. Med. 6 (2017), https://doi.org/10.1186/

s40169-017-0175-0.

[2] S. Her, D.A. Jaffray, C. Allen, Gold nanoparticles for applications in cancer

radiotherapy: mechanisms and recent advancements, Adv. Drug Deliv. Rev. 109

(2017) 84–101, https://doi.org/10.1016/j.addr.2015.12.012.

[3] M.F. Attia, J. Wallyn, N. Anton, T.F. Vandamme, Inorganic nanoparticles for X-ray

computed tomography imaging, Crit. Rev. Ther. Drug Carrier Syst. 35 (2018)

391–432, https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2018020974.

[4] N. Elahi, M. Kamali, M.H. Baghersad, Recent biomedical applications of gold

nanoparticles: a review, Talanta 184 (2018) 537–556, https://doi.org/10.1016/

j.talanta.2018.02.088.

[5] D.L. Xia, Y.F. Wang, N. Bao, H. He, X. dong Li, Y.P. Chen, H.Y. Gu, Influence of

reducing agents on biosafety and biocompatibility of gold nanoparticles, Appl.

4. Conclusion

EGCG-AuNP 15 nm in diameter in the presence of sodium alginate

accumulated more in tumors after intravenous injection into mice

compared to 40-nm-diameter EGCG-AuNP. The AuNP surface was

modified with EGCG but no 67LR-mediated tumor accumulation was

observed. The results of in vitro cellular uptake and serum protein absorption suggest that 15–16 kDa serum proteins including hemoglobin

C. Wakayama et al.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

JCIS Open 9 (2023) 100074

[21] W.H. De Jong, W.I. Hagens, P. Krystek, M.C. Burger, A.J.A.M. Sips, R.E. Geertsma,

Particle size-dependent organ distribution of gold nanoparticles after intravenous

administration, Biomaterials 29 (2008) 1912–1919, https://doi.org/10.1016/

j.biomaterials.2007.12.037.

[22] G. Sonavane, K. Tomoda, K. Makino, Biodistribution of colloidal gold nanoparticles

after intravenous administration: effect of particle size, Colloids Surf. B

Biointerfaces 66 (2008) 274–280, https://doi.org/10.1016/j.colsurfb.2008.07.004.

[23] R. Terg, C.D. Miguez, L. Castro, H. Araldi, S. Dominguez, M. Rubio,

Pharmacokinetics of Dextran-70 in patients with cirrhosis and ascites undergoing

therapeutic paracentesis, J. Hepatol. 25 (1996) 329–333, https://doi.org/10.1016/

S0168-8278(96)80119-X.

[24] S.L. Easo, P. V Mohanan, Hepatotoxicity evaluation of dextran stabilized iron oxide

nanoparticles in Wistar rats, Int. J. Pharm. 509 (2016) 28–34, https://doi.org/

10.1016/j.ijpharm.2016.05.026.

[25] X. Zhang, M.R. Servos, J. Liu, Ultrahigh nanoparticle stability against salt, pH, and

solvent with retained surface accessibility via depletion stabilization, J. Am. Chem.

Soc. 134 (2012) 9910–9913, https://doi.org/10.1021/ja303787e.

[26] Y. Zhao, F. Li, M.T. Carvajal, M.T. Harris, Interactions between bovine serum

albumin and alginate: an evaluation of alginate as protein carrier, J. Colloid

Interface Sci. 332 (2009) 345–353, https://doi.org/10.1016/j.jcis.2008.12.048.

[27] L. Ding, C. Yao, X. Yin, C. Li, Y. Huang, M. Wu, B. Wang, X. Guo, Y. Wang, M. Wu,

Size, shape, and protein corona determine cellular uptake and removal mechanisms

of gold nanoparticles, Small 14 (2018) 1–13, https://doi.org/10.1002/

smll.201801451.

[28] G. Maiorano, S. Sabella, B. Sorce, V. Brunetti, M. Ada Malvindi, R. Cingolani,

P. Paolo Pompa, Effects of cell culture media on the dynamic formation of

ProteinNanoparticle complexes and influence on the cellular response, ACS Nano

4 (2010) 7481–7491, https://doi.org/10.1021/nn101557e.

[29] X. Zheng, H. Baker, W.S. Hancock, F. Fawaz, M. McCaman, E. Pungor, Proteomic

analysis for the assessment of different lots of fetal bovine serum as a raw material

for cell culture. Part IV. Application of proteomics to the manufacture of biological

drugs, Biotechnol. Prog. 22 (2006) 1294–1300, https://doi.org/10.1021/

bp060121o.

[30] U. Sakulkhu, M. Mahmoudi, L. Maurizi, G. Coullerez, M. Hofmann-Amtenbrink,

M. Vries, M. Motazacker, F. Rezaee, H. Hofmann, Significance of surface charge and

shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/

shell nanoparticles on the composition of the protein corona, Biomater. Sci. 3

(2015) 265–278, https://doi.org/10.1039/c4bm00264d.

[31] R. Guo, R. Li, X. Li, L. Zhang, X. Jiang, B. Liu, Dual-functional alginic acid hybrid

nanospheres for cell imaging and drug delivery, Small 5 (2009) 709–717, https://

doi.org/10.1002/smll.200801375.

[32] S. Garabagiu, A spectroscopic study on the interaction between gold nanoparticles

and hemoglobin, Mater. Res. Bull. 46 (2011) 2474–2477, https://doi.org/10.1016/

j.materresbull.2011.08.032.

[33] I.F. Tannock, D. Rotin, Acid pH in tumors and its potential for therapeutic

exploitation, Cancer Res. 49 (1989) 4373–4384.

[34] S. Amara, V. Tiriveedhi, Inflammatory role of high salt level in tumor

microenvironment (Review), Int. J. Oncol. 50 (2017) 1477–1481, https://doi.org/

10.3892/ijo.2017.3936.

[35] E. Sahin, A.O. Grillo, M.D. Perkins, C.J. Roberts, Comparative effects of pH and

ionic strength on protein–protein interactions, unfolding, and aggregation for IgG1

antibodies, J. Pharmaceut. Sci. 99 (2010) 4830–4848, https://doi.org/10.1002/

jps.22198.

[36] Y.T. Ho, N. ‘Ain Azman, F.W.Y. Loh, G.K.T. Ong, G. Engudar, S.A. Kriz, J.C.Y. Kah,

Protein corona formed from different blood plasma proteins affects the colloidal

stability of nanoparticles differently, Bioconjugate Chem. 29 (2018) 3923–3934,

https://doi.org/10.1021/acs.bioconjchem.8b00743.

Biochem. Biotechnol. 174 (2014) 2458–2470, https://doi.org/10.1007/s12010014-1193-7.

J. Woong Lee, S.-R. Choi, J. Hyuk Heo, Simultaneous stabilization and

functionalization of gold nanoparticles via biomolecule conjugation: progress and

perspectives, ACS Appl. Mater. Interfaces 13 (2021) 42311–42328, https://doi.org/

10.1021/acsami.1c10436.

N.S. Abadeer, C.J. Murphy, Recent progress in cancer thermal therapy using gold

nanoparticles, J. Phys. Chem. C 120 (2016) 4691–4716, https://doi.org/10.1021/

acs.jpcc.5b11232.

J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Toward Greener Nanosynthesis, 2007,

pp. 2228–2269, https://doi.org/10.1021/cr050943k.

 cík, Methods of gold and

P. Slepicka, N.S. Kas

alkova, J. Siegel, Z. Kolska, V. Svor

silver nanoparticles preparation, Materials 13 (2020) 1, https://doi.org/10.3390/

ma13010001.

I. Ojea-Jimenez, F.M. Romero, N.G. Bastús, V. Puntes, Small gold nanoparticles

synthesized with sodium citrate and heavy water: insights into the reaction

mechanism, J. Phys. Chem. C 114 (2010) 1800–1804, https://doi.org/10.1021/

jp9091305.

B.K. Pong, H.I. Elim, J.X. Chong, W. Ji, B.L. Trout, J.Y. Lee, New insights on the

nanoparticle growth mechanism in the citrate reduction of gold(III) salt: formation

of the Au nanowire intermediate and its nonlinear optical properties, J. Phys. Chem.

C 111 (2007) 6281–6287, https://doi.org/10.1021/jp068666o.

V. Sanna, N. Pala, G. DessI, P. Manconi, A. Mariani, S. Dedola, M. Rassu, C. Crosio,

C. Iaccarino, M. Sechi, Single-step green synthesis and characterization of goldconjugated polyphenol nanoparticles with antioxidant and biological activities, Int.

J. Nanomed. 9 (2014) 4935–4951, https://doi.org/10.2147/IJN.S70648.

S. Zhu, L. Zhu, J. Yu, Y. Wang, B. Peng, Anti-osteoclastogenic effect of

epigallocatechin gallate-functionalized gold nanoparticles in vitro and in vivo, Int.

J. Nanomed. 14 (2019) 5017–5032, https://doi.org/10.2147/IJN.S204628.

N. Gan, C. Wakayama, S. Inubushi, T. Kunihisa, S. Mizumoto, M. Baba, H. Tanino,

T. Ooya, Size dependency of selective cellular uptake of epigallocatechin gallatemodified gold nanoparticles for effective radiosensitization, ACS Appl. Bio Mater. 5

(2022) 355–365, https://doi.org/10.1021/acsabm.1c01149.

C.C. Chen, D.S. Hsieh, K.J. Huang, Y.L. Chan, P. Da Hong, M.K. Yeh, C.J. Wu,

Improving anticancer efficacy of (-)-epigallocatechin-3-gallate gold nanoparticles in

murine B16F10 melanoma cells, Drug Des. Dev. Ther. 8 (2014) 459–473, https://

doi.org/10.2147/DDDT.S58414.

S.R. Chavva, S.K. Deshmukh, R. Kanchanapally, N. Tyagi, J.W. Coym, A.P. Singh,

S. Singh, Epigallocatechin gallate-gold nanoparticles exhibit superior antitumor

activity compared to conventional gold nanoparticles: potential synergistic

interactions, Nanomaterials 9 (2019), https://doi.org/10.3390/nano9030396.

D.S. Hsieh, H. Wang, S.W. Tan, Y.H. Huang, C.Y. Tsai, M.K. Yeh, C.J. Wu, The

treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold

nanoparticles, Biomaterials 32 (2011) 7633–7640, https://doi.org/10.1016/

j.biomaterials.2011.06.073.

O. Oladimeji, J. Akinyelu, A. Daniels, M. Singh, Modified gold nanoparticles for

efficient delivery of betulinic acid to cancer cell mitochondria, Int. J. Mol. Sci. 22

(2021), https://doi.org/10.3390/ijms22105072.

M.Y. Chang, A.L. Shiau, Y.H. Chen, C.J. Chang, H.H.W. Chen, C.L. Wu, Increased

apoptotic potential and dose-enhancing effect of gold nanoparticles in combination

with single-dose clinical electron beams on tumor-bearing mice, Cancer Sci. 99

(2008) 1479–1484, https://doi.org/10.1111/j.1349-7006.2008.00827.x.

R. Shukla, N. Chanda, A. Zambre, A. Upendran, K. Katti, R.R. Kulkarni, S.K. Nune,

S.W. Casteel, C.J. Smith, J. Vimal, E. Boote, J.D. Robertson, P. Kan, H. Engelbrecht,

L.D. Watkinson, T.L. Carmack, J.R. Lever, C.S. Cutler, C. Caldwell, R. Kannan,

K.V. Katti, Laminin receptor specific therapeutic gold nanoparticles (198AuNPEGCg) show efficacy in treating prostate cancer, Proc. Natl. Acad. Sci. U.S.A. 109

(2012) 12426–12431, https://doi.org/10.1073/pnas.1121174109.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る