リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cellular Responses of Human Lymphatic Endothelial Cells to Carbon Nanomaterials」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cellular Responses of Human Lymphatic Endothelial Cells to Carbon Nanomaterials

Sano, Mahoko Izumiya, Makoto Haniu, Hisao Ueda, Katsuya Konishi, Kosuke Ishida, Haruka Kuroda, Chika Uemura, Takeshi Aoki, Kaoru Matsuda, Yoshikazu Saito, Naoto 信州大学 DOI:32674394

2021.02.04

概要

One of the greatest challenges to overcome in the pursuit of the medical application of carbon nanomaterials (CNMs) is safety. Particularly, when considering the use of CNMs in drug delivery systems (DDSs), evaluation of safety at the accumulation site is an essential step. In this study, we evaluated the toxicity of carbon nanohorns (CNHs), which are potential DDSs, using human lymph node endothelial cells that have been reported to accumulate CNMs, as a comparison to fibrous, multi-walled carbon nanotubes (MWCNTs) and particulate carbon black (CB). The effect of different surface characteristics was also evaluated using two types of CNHs (untreated and oxidized). In the fibrous MWCNT, cell growth suppression, as well as expression of inflammatory cytokine genes was observed, as in previous reports. In contrast, no significant toxicity was observed for particulate CB and CNHs, which was different from the report of CB cytotoxicity in vascular endothelial cells. These results show that (1) lymph endothelial cells need to be tested separately from other endothelial cells for safety evaluation of nanomaterials, and (2) the potential of CNHs as DDSs.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Kl˛ebowski, B.; Depciuch, J.; Parlinska-Wojtan,

M.; Baran, J. Applications of Noble Metal-Based Nanoparticles

in Medicine. Int. J. Mol. Sci. 2018, 19, 4031. [CrossRef] [PubMed]

Rostami, I.; Rezvani Alanagh, H.; Hu, Z.; Shahmoradian, S.H. Breakthroughs in medicine and bioimaging

with up-conversion nanoparticles. Int. J. Nanomed. 2019, 14, 7759–7780. [CrossRef] [PubMed]

Stewart, M.P.; Sharei, A.; Ding, X.; Sahay, G.; Langer, R.; Jensen, K.F. In vitro and ex vivo strategies for

intracellular delivery. Nature 2016, 538, 183–192. [CrossRef] [PubMed]

Saito, N.; Haniu, H.; Usui, Y.; Aoki, K.; Hara, K.; Takanashi, S.; Shimizu, M.; Narita, N.; Okamoto, M.;

Kobayashi, S.; et al. Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chem. Rev. 2014, 114,

6040–6079. [CrossRef]

Chung, S.; Revia, R.A.; Zhang, M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing,

and Therapy. Adv. Mater. 2019, e1904362. [CrossRef]

Bacakova, L.; Pajorova, J.; Tomkova, M.; Matejka, R.; Broz, A.; Stepanovska, J.; Prazak, S.; Skogberg, A.;

Siljander, S.; Kallio, P. Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and

Medicine. Nanomaterials 2020, 10, 196. [CrossRef]

Dong, L.; Witkowski, C.M.; Craig, M.M.; Greenwade, M.M.; Joseph, K.L. Cytotoxicity Effects of Different

Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells. Nanoscale Res. Lett.

2009, 4, 1517–1523. [CrossRef]

Madannejad, R.; Shoaie, N.; Jahanpeyma, F.; Darvishi, M.H.; Azimzadeh, M.; Javadi, H. Toxicity of

carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact

2019, 307, 206–222. [CrossRef]

Fadeel, B.; Bussy, C.; Merino, S.; Vázquez, E.; Flahaut, E.; Mouchet, F.; Evariste, L.; Gauthier, L.; Koivisto, A.J.;

Vogel, U.; et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the

Environment. ACS Nano 2018, 12, 10582–10620. [CrossRef]

Iijima, S.; Yudasaka, M.; Yamada, R.; Bandow, S.; Suenaga, K.; Koka, I.F.; Takahashi, K. Nano-Aggregates of

Single-Walled Graphitic Carbon Nano-Horns. Chem. Phys. Lett. 1999, 309, 165–170. [CrossRef]

Utsumi, S.; Miyawaki, J.; Tanaka, H.; Hattori, Y.; Itoi, T.; Ichikuni, N.; Kanoh, H.; Yudasaka, M.; Iijima, S.;

Kaneko, K. Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J. Phys. Chem. B

2005, 109, 14319–14324. [CrossRef] [PubMed]

Ajima, K.; Yudasaka, M.; Suenaga, K.; Kasuya, D.; Azami, T.; Iijima, S. Materials Storage Mechanism in

Porous Nanocarbons. Adv. Mater. 2004, 16, 397–401. [CrossRef]

Fan, J.; Yudasaka, M.; Miyawaki, J.; Ajima, K.; Murata, K.; Iijima, S. Control of Hole Opening in Single-Wall

Carbon Nanotubes and Single-Wall Carbon Nanohorns Using Oxygen. J. Phys. Chem. B 2006, 110, 1587–1591.

[CrossRef]

Ajima, K.; Murakami, T.; Mizoguchi, Y.; Tsuchida, K.; Ichihashi, T.; Iijima, S.; Yudasaka, M. Enhancement of

in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2008,

2, 2057–2064. [CrossRef] [PubMed]

Zhang, M.; Murakami, T.; Ajima, K.; Tsuchida, K.; Sandanayaka, A.S.; Ito, O.; Iijima, S.; Yudasaka, M.

Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy.

Proc. Natl. Acad. Sci. USA 2008, 105, 14773–14778. [CrossRef] [PubMed]

Shi, Y.; Shi, Z.; Li, S.; Zhang, Y.; He, B.; Peng, D.; Tian, J.; Zhao, M.; Wang, X.; Zhang, Q. The interactions of

single-wall carbon nanohorns with polar epithelium. Int. J. Nanomed. 2017, 12, 4177–4194. [CrossRef]

Sato, Y.; Yokoyama, A.; Nodasaka, Y.; Kohgo, T.; Motomiya, K.; Matsumoto, H.; Nakazawa, E.; Numata, T.;

Zhang, M.; Yudasaka, M.; et al. Long-term biopersistence of tangled oxidized carbon nanotubes inside and

outside macrophages in rat subcutaneous tissue. Sci. Rep. 2013, 3, 2516. [CrossRef]

Nanomaterials 2020, 10, 1374

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

13 of 15

Miyawaki, J.; Yudasaka, M.; Azami, T.; Kubo, Y.; Iijima, S. Toxicity of single-walled carbon nanohorns.

ACS Nano 2008, 2, 213–226. [CrossRef]

Shi, Y.; Peng, D.; Wang, D.; Zhao, Z.; Chen, B.; He, B.; Zhu, Y.; Wang, K.; Tian, J.; Zhang, Q. Biodistribution

Survey of Oxidized Single-Wall Carbon Nanohorns Following Different Administration Routes by Using

Label-Free Multispectral Optoacoustic Tomography. Int. J. Nanomed. 2019, 14, 9809–9821. [CrossRef]

Zhang, M.; Yamaguchi, T.; Iijima, S.; Yudasaka, M. Size-dependent biodistribution of carbon nanohorns

in vivo. Nanomedicine 2013, 9, 657–664. [CrossRef]

Miyawaki, J.; Matsumura, S.; Yuge, R.; Murakami, T.; Sato, S.; Tomida, A.; Tsuruo, T.; Ichihashi, T.; Fujinami, T.;

Irie, H.; et al. Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined

in vivo with embedded Gd2O3 labels. ACS Nano 2009, 3, 1399–1406. [CrossRef] [PubMed]

Jacobsen, N.R.; Møller, P.; Clausen, P.A.; Saber, A.T.; Micheletti, C.; Jensen, K.A.; Wallin, H.; Vogel, U.

Biodistribution of Carbon Nanotubes in Animal Models. Basic Clin. Pharmacol. Toxicol. 2017, 121 (Suppl. 3),

30–43. [CrossRef] [PubMed]

Shinohara, N.; Nakazato, T.; Ohkawa, K.; Tamura, M.; Kobayashi, N.; Morimoto, Y.; Oyabu, T.; Myojo, T.;

Shimada, M.; Yamamoto, K.; et al. Long-term retention of pristine multi-walled carbon nanotubes in rat

lungs after intratracheal instillation. J. Appl. Toxicol. 2016, 36, 501–509. [CrossRef] [PubMed]

Lin, Z.; Monteiro-Riviere, N.A.; Riviere, J.E. Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip.

Rev. Nanomed. Nanobiotechnol. 2015, 7, 189–217. [CrossRef]

Hara, K.; Aoki, K.; Usui, Y.; Shimizu, M.; Narita, N.; Ogihara, N.; Nakamura, K.; Ishigaki, N.; Sano, K.;

Haniu, H.; et al. Evaluation of CNT toxicity in comparison to tattoo ink nanoparticles for use as a biomaterial.

Mater. Today 2011, 14, 434–440. [CrossRef]

Werengowska-Cie´cwierz, K.; Wi´sniewski, M.; Terzyk, A.P.; Roszek, K.; Czarnecka, J.; Bolibok, P.; Rychlicki, G.

Conscious Changes of Carbon Nanotubes Cytotoxicity by Manipulation with Selected Nanofactors.

Appl. Biochem. Biotechnol. 2015, 176, 730–741. [CrossRef]

Czarnecka, J.; Wi´sniewski, M.; Forbot, N.; Bolibok, P.; Terzyk, A.P.; Roszek, K. Cytotoxic or Not? Disclosing

the Toxic Nature of Carbonaceous Nanomaterials through Nano-Bio Interactions. Materials 2020, 13, 2060.

[CrossRef] [PubMed]

Zhang, M.; Zhou, X.; Iijima, S.; Yudasaka, M. Small-sized carbon nanohorns enabling cellular uptake control.

Small 2012, 8, 2524–2531. [CrossRef] [PubMed]

Kuroda, C.; Haniu, H.; Ajima, K.; Tanaka, M.; Sobajima, A.; Ishida, H.; Tsukahara, T.; Matsuda, Y.; Aoki, K.;

Kato, H.; et al. The Dispersion State of Tangled Multi-Walled Carbon Nanotubes Affects Their Cytotoxicity.

Nanomaterials 2016, 6, 219. [CrossRef]

Kuroda, C.; Ueda, K.; Haniu, H.; Ishida, H.; Okano, S.; Takizawa, T.; Sobajima, A.; Kamanaka, T.; Yoshida, K.;

Okamoto, M.; et al. Different aggregation and shape characteristics of carbon materials affect biological

responses in RAW264 cells. Int. J. Nanomed. 2018, 13, 6079–6088. [CrossRef]

Caputo, F.; De Nicola, M.; Ghibelli, L. Pharmacological potential of bioactive engineered nanomaterials.

Biochem. Pharmacol. 2014, 92, 112–130. [CrossRef]

Serup, J.; Carlsen, K.H.; Sepehri, M. Tattoo complaints and complications: Diagnosis and clinical spectrum.

In Tattooed Skin and Health; Karger Publishers: Basel, Switzerland, 2015; Volume 48, pp. 48–60.

Kluger, N.; Koljonen, V. Tattoos, inks, and cancer. Lancet Oncol. 2012, 13, e161–e168. [CrossRef]

Haniu, H.; Saito, N.; Matsuda, Y.; Kim, Y.A.; Park, K.C.; Tsukahara, T.; Usui, Y.; Aoki, K.; Shimizu, M.;

Ogihara, N.; et al. Elucidation mechanism of different biological responses to multi-walled carbon nanotubes

using four cell lines. Int. J. Nanomed. 2011, 6, 3487–3497. [CrossRef] [PubMed]

Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular Toxicity and Immunological Effects of Carbon-based

Nanomaterials. Part Fibre Toxicol. 2019, 16, 18. [CrossRef] [PubMed]

Flahaut, E.; Durrieu, M.C.; Remy-Zolghadri, M.; Bareille, R.; Baquey, C. Investigation of the cytotoxicity

of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon 2006, 44, 1093–1099.

[CrossRef]

Zhao, X.; Chang, S.; Long, J.; Li, J.; Li, X.; Cao, Y. The toxicity of multi-walled carbon nanotubes (MWCNTs)

to human endothelial cells: The influence of diameters of MWCNTs. Food Chem. Toxicol. 2019, 126, 169–177.

[CrossRef]

Yamawaki, H.; Iwai, N. Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am. J. Physiol.

Cell Physiol. 2006, 290, C1495–C1502. [CrossRef]

Nanomaterials 2020, 10, 1374

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

14 of 15

Yamawaki, H.; Iwai, N. Mechanisms underlying nano-sized air-pollution-mediated progression of

atherosclerosis: Carbon black causes cytotoxic injury/inflammation and inhibits cell growth in vascular

endothelial cells. Circ. J. 2006, 70, 129–140. [CrossRef]

Tammela, T.; Alitalo, K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell 2010, 140,

460–476. [CrossRef]

Wang, P.; Cheng, Y. Gene expression profile of lymphatic endothelial cells. Cell Biol. Int. 2011, 35, 1177–1187.

[CrossRef]

Niemelä, H.; Elima, K.; Henttinen, T.; Irjala, H.; Salmi, M.; Jalkanen, S. Molecular identification of PAL-E,

a widely used endothelial-cell marker. Blood 2005, 106, 3405–3409. [CrossRef]

Stan, R.V.; Tkachenko, E.; Niesman, I.R. PV1 is a key structural component for the formation of the stomatal

and fenestral diaphragms. Mol. Biol. Cell 2004, 15, 3615–3630. [CrossRef] [PubMed]

Bosma, E.K.; van Noorden, C.J.F.; Schlingemann, R.O.; Klaassen, I. The role of plasmalemma vesicle-associated

protein in pathological breakdown of blood-brain and blood-retinal barriers: Potential novel therapeutic

target for cerebral edema and diabetic macular edema. Fluids Barriers CNS 2018, 15, 24. [CrossRef]

Pelkmans, L.; Kartenbeck, J.; Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step

vesicular-transport pathway to the ER. Nat. Cell Biol. 2001, 3, 473–483. [CrossRef] [PubMed]

Nichols, B.J. A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex.

Nat. Cell Biol. 2002, 4, 374–378. [CrossRef] [PubMed]

Wolff, B.; Burns, A.R.; Middleton, J.; Rot, A. Endothelial cell “memory” of inflammatory stimulation: Human

venular endothelial cells store interleukin 8 in Weibel-Palade bodies. J. Exp. Med. 1998, 188, 1757–1762.

[CrossRef]

Van Mourik, J.A.; Romani de Wit, T.; Voorberg, J. Biogenesis and exocytosis of Weibel-Palade bodies.

Histochem. Cell Biol. 2002, 117, 113–122. [CrossRef]

Kawecki, C.; Lenting, P.J.; Denis, C.V. von Willebrand factor and inflammation. J. Thromb. Haemost. 2017, 15,

1285–1294. [CrossRef]

Maruyama, K.; Haniu, H.; Saito, N.; Matsuda, Y.; Tsukahara, T.; Kobayashi, S.; Tanaka, M.; Aoki, K.;

Takanashi, S.; Okamoto, M.; et al. Endocytosis of Multiwalled Carbon Nanotubes in Bronchial Epithelial and

Mesothelial Cells. Biomed Res. Int. 2015, 2015, 793186. [CrossRef]

Liu, N.; Tang, M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular

organelles. J. Appl. Toxicol. 2020, 40, 16–36. [CrossRef]

Alnasser, F.; Castagnola, V.; Boselli, L.; Esquivel-Gaon, M.; Efeoglu, E.; McIntyre, J.; Byrne, H.J.; Dawson, K.A.

Graphene Nanoflake Uptake Mediated by Scavenger Receptors. Nano Lett. 2019, 19, 1260–1268. [CrossRef]

[PubMed]

Hirano, S.; Fujitani, Y.; Furuyama, A.; Kanno, S. Macrophage receptor with collagenous structure (MARCO)

is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 cells. Toxicol. Appl.

Pharmacol. 2012, 259, 96–103. [CrossRef] [PubMed]

ENSG00000019169-MARCO and ENSG00000073060-SCARB1. Available online: https://www.proteinatlas.

org/ (accessed on 10 July 2020).

Shannahan, J.H.; Brown, J.M.; Chen, R.; Ke, P.C.; Lai, X.; Mitra, S.; Witzmann, F.A. Comparison of

nanotube-protein corona composition in cell culture media. Small 2013, 9, 2171–2181. [CrossRef] [PubMed]

Mahmoudi, M.; Saeedi-Eslami, S.N.; Shokrgozar, M.A.; Azadmanesh, K.; Hassanlou, M.; Kalhor, H.R.;

Burtea, C.; Rothen-Rutishauser, B.; Laurent, S.; Sheibani, S.; et al. Cell “vision”: Complementary factor of

protein corona in nanotoxicology. Nanoscale 2012, 4, 5461–5468. [CrossRef] [PubMed]

Holder, A.L.; Carter, B.J.; Goth–Goldstein, R.; Lucas, D.; Koshland, C.P. Increased cytotoxicity of oxidized

flame soot. Atmos Pollut. Res. 2012, 3, 25–31. [CrossRef]

Eldridge, B.N.; Xing, F.; Fahrenholtz, C.D.; Singh, R.N. Evaluation of multiwalled carbon nanotube

cytotoxicity in cultures of human brain microvascular endothelial cells grown on plastic or basement

membrane. Toxicol. In Vitro 2017, 41, 223–231. [CrossRef] [PubMed]

Nanomaterials 2020, 10, 1374

59.

60.

15 of 15

Haniu, H.; Saito, N.; Matsuda, Y.; Kim, Y.A.; Park, K.C.; Tsukahara, T.; Usui, Y.; Aoki, K.; Shimizu, M.;

Ogihara, N.; et al. Effect of dispersants of multi-walled carbon nanotubes on cellular uptake and biological

responses. Int. J. Nanomed. 2011, 6, 3295–3307. [CrossRef]

Takeda, A.; Hollmén, M.; Dermadi, D.; Pan, J.; Brulois, K.F.; Kaukonen, R.; Lönnberg, T.; Boström, P.;

Koskivuo, I.; Irjala, H.; et al. Single-cell survey of human lymphatics unveils marked endothelial cell

heterogeneity and mechanisms of homing for neutrophils. Immunity 2019, 51, 561–572. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

...

参考文献をもっと見る