リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of the electronic entropy on structural change and ablation of metals by an ultrashort laser pulse」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of the electronic entropy on structural change and ablation of metals by an ultrashort laser pulse

田中, 悠太 東京大学 DOI:10.15083/0002001858

2021.10.04

概要

Irradiation of a solid surface with an ultrashort laser pulse creates a highly excited state, where a high-energy electron system (~ eV) coexists with a low-energy lattice system. In this nonequilibrium state, some specific phenomena have been reported such as the emission of excessively high-energy atoms/ions and less than nm order ablation. These phenomena are called a non-thermal ablation and have been particularly focused on from not only fundamental physics but also applied physics since the understanding of it directly leads to the development of the higher precision processing technique. Despite intensive investigation inspired by its interest and importance, its physical mechanism is an open question, and there is discrepancy between experiments and previous theoretical simulations.

 Purposes of our study are following two. The first one is bridging this discrepancy by elucidating the physical mechanism of the non-thermal ablation of metals. The other is extending calculation models and developing codes to simulate the irradiated metal with an ultrashort pulse laser.

 Throughout our study, we use the well-known two-temperature model (TTM) to describe irradiated metals with an ultrashort laser pulse. Our finite-temperature density functional theory (FTDFT) calculations show that the electronic entropy effect leads to the instability of condensed copper (Cu) at high electronic temperature. Based on the result, we propose the electronic entropy-driven (EED) mechanism to describe the non-thermal ablation of metals. Subsequently, to investigate the physical mechanism of the non-thermal ablation and the validity of the EED mechanism, we extend simulation methods and develop calculation codes of the continuum model (CM) simulation and the TTM molecular dynamics (TTM-MD) simulation. Our simulations reproduce experimental results, such as the fluence dependence of the ablation depth and the emission of the high-energy atoms. These results strongly support that the origin of the driving force of the high-energy atom emission is attributed to the electronic entropy effect and the validity of the EED mechanism. In addition, we construct a simple calculation model for estimating the ablation threshold fluence based on our CM and TTM-MD simulation results to find reasonable agreement for several materials (Cr, W, Mo, Ni, Pt, Al, Ag, Cu, and Au).

 We are sure that our findings include fundamentally important knowledge not only for the ablation issue but also for the warm dense matter physics and the ultrafast physics, and provide new and essential insight into these interdisciplinary fields. Moreover, our extended calculation models and developed codes will continue to promote the further understanding these fields.

参考文献

[1] J. Kanasaki, E. Inami, K. Tanimura, H. Ohnishi, and K. Nasu, Phys. Rev. Lett. 102, 087402 (2009).

[2] H. Ohnishi and K. Nasu, Phys. Rev. B 79, 054111 (2009).

[3] D. M. Fritz, D. A. Reis, B. Adams, R. A. Akre, J. Arthur, C. Blome, P. H. Bucks- baum, A. L. Cavalieri, S. Engemann, S. Fahy, R. W. Falcone, P. H. Fuoss, K. J. Gaffney, M. J. George, J. Hajdu, M. P. Hertlein, P. B. Hillyard, M. Horn-von Hoegen, M. Kamm- ler, J. Kaspar, R. Kienberger, P. Krejcik, S. H. Lee, A. M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, E´. D. Murray, A. J. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D. P. Siddons, K. Sokolowski-Tinten, T. Tschentscher, D. von der Linde, and J. B. Hastings, Science 315, 633 (2007).

[4] S. L. Daraszewicz, Y. Giret, N. Naruse, Y. Murooka, J. Yang, D. M. Duffy, A. L. Shluger, and K. Tanimura, Phys. Rev. B 88, 184101 (2013).

[5] M. Hase, Y. Miyamoto, and J. Tominaga, Phys. Rev. B 79, 174112 (2009).

[6] Y. Miyasaka, M. Hashida, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, Phys. Rev. B 86, 075431 (2012).

[7] M. Hashida, S. Namba, K. Okamuro, S. Tokita, and S. Sakabe, Phys. Rev. B 81, 115442 (2010).

[8] H. Dachraoui and W. Husinsky, Appl. Phys. Lett. 89, 104102 (2006).

[9] H. Dachraoui, W. Husinsky, and G. Betz, Appl. Phys. A 83, 333 (2006).

[10] S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Sov. Phys. -JETP 39, 375 (1974).

[11] B. Y. Mueller and B. Rethfeld, Phys. Rev. B 87, 035139 (2013).

[12] A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, ACS Nano 10, 957 (2016).

[13] R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, Phys. Rev. Lett. 58, 1680 (1987).

[14] H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, Phys. Rev. Lett. 58, 1212 (1987).

[15] H. E. Elsayed-Ali, T. Juhasz, G. O. Smith, and W. E. Bron, Phys. Rev. B 43, 4488 (1991).

[16] J. Hohlfeld, S.-S. Wellershoff, J. Gu¨dde, U. Conrad, V. J¨ahnke, and E. Matthias, Chem. Phys. 251, 237 (2000).

[17] R. Ernstorfer, M. Harb, C. T. Hebeisen, G. Sciaini, T. Dartigalongue, and R. J. Dwayne Miller, Science 323, 1033 (2009).

[18] Y. Giret, A. Gell´e, and B. Arnaud, Phys. Rev. Lett. 106, 155503 (2011).

[19] G. E. Norman, S. V. Starikov, and V. V. Stegailov, J. Exp. Theor. Phys. 114, 792 (2012).

[20] G. E. Norman, S. V. Starikov, V. V. Stegailov, I. Saitov, and P. A. Zhilyaev, Contrib. Plasma Phys. 53, 129 (2013).

[21] V. Recoules, J. Cl´erouin, G. Z´erah, P. M. Anglade, and S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006).

[22] N. A. Inogamov, Y. V. Petrov, V. V. Zhakhovsky, V. A. Khokhlov, B. J. Demaske, S. I. Ashitkov, K. Khishchenko, K. P. Migdal, M. B. Agranat, S. I. Anisimov, V. E. Fortov, and I. I. Oleynik, AIP Conf. Proc. 1464, 593 (2012).

[23] X. Wang, A. A. Kuchmizhak, X. Li, S. Juodkazis, O. B. Vitrik, Y. N. Kulchin, V. V. Zhakhovsky, P. A. Danilov, A. A. Ionin, S. I. Kudryashov, A. A. Rudenko, and N. A. Inogamov, Phys. Rev. Appl. 8, 044016 (2017).

[24] N. Watanabe, N. Takahashi, and K. Tsushima, Mater, Chem. Phys. 54, 173 (1998).

[25] T. Yoshitake, T. Nagamoto, and K. Nagayama, Mater, Sci. Eng. B 72, 124 (2000).

[26] A. Fojtik and A. Henglein, Phys. Chem. 97, 252 (1993).

[27] J. Neddersen, G. Chumanov, and T. M. Cotton, Appl. Spectrosc. 47, 1959 (1993).

[28] C. Wu and L. Zhigilei, Appl. Phys. A 114, 11 (2013).

[29] P. Ji and Y. Zhang, Appl. Phys. A 123, 671 (2017).

[30] A. A. Foumani and A. R. Niknam, J. Appl. Phys. 123, 043106 (2018).

[31] C. Schu¨ler, H. M. Urbaseek, and L. Zhigilei, Phys. Rev. B 66, 115404 (2002).

[32] D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B 68, 064114 (2003).

[33] C. M. Rouleau, C.-Y. Shih, C. Wu, L. V. Zhigilei, A. A. Puretzky, and D. B. Geohegan, Appl. Phys. Lett. 104, 193106 (2014).

[34] D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, Appl. Surf. Sci. 109-110, 1 (1997).

[35] K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boring, H. Schu¨ler, and D. von der Linde, Proc. SPIE 3343, 46 (1998).

[36] A. C. K. Sokolowski-Tinten, J. Bialkowski and D. von der Linde, Phys. Rev. Lett. 81, 224 (1998).

[37] K. Sokolowski-Tinten and D. von der Linde, Appl. Surf. Sci. 154-155, 1 (2000).

[38] A. Miotello and R. Kelly, Appl. Phys. A 69, S67 (1999).

[39] N. Bulgakova and A. Bulgakov, Appl. Phys. A 73, 199 (2001).

[40] E. Leveugle, L. V. Zhigilei, A. Sellinger, and J. M. Fitz-Gerald, Appl. Surf. Sci. 253, 6456 (2007).

[41] M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, J. Appl. Phys. 85, 6803 (1999).

[42] M. Shaheen, J. Gagnon, and B. Fryer, J. Appl. Phys. 114, 083110 (2013).

[43] S. Nolte, C. Momma, H. Jacobs, A. Tu¨nnermann, B. N. Chichkov, B. Welleegehausen, and H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997).

[44] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tu¨nnermann, Appl. Phys. A 63, 109 (1996).

[45] C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tu¨nnermann, H. Welling, and B. Wellegehausen, Opt. Commun. 129, 134 (1996).

[46] M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Qgner, Proc. SPIE 4423, 178 (1999).

[47] X. Zhao and Y. C. Shin, J. Phys. D: Appl. Phys. 46, 335501 (2013).

[48] R. Stoian, D. Ashkenasi, A. Rosenfeld, M. Wittmann, R. Kelly, and E. E. B. Campbell, Nucl. Instrum. Methods Phys. Res. B 166, 682 (2000).

[49] R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, Phys. Rev. B 62, 13167 (2000).

[50] T. Sato, T. Okino, K. Yamanouchi, A. Yagishita, F. Kannari, K. Yamakawa, K. Mi- dorikawa, H. Nakano, M. Yabashi, M. Nagasono, and T. Ishikawa, Appl. Phys. Lett. 92, 154103 (2008).

[51] J. Li, X. Wang, Z. Chen, J. Zhou, S. S. Mao, and J. Cao, Appl. Phys. Lett. 98, 011501 (2011).

[52] N. Bulgakova, R. Stoian, A. Rosenfeld, I. Hertel, W. Marine, and E. Campbell, J. Appl. Phys. 81, 345 (2005).

[53] V. Stegailov and P. Zhilyaev, Contrib. Plasma Phys. 55, 164 (2015).

[54] V. Stegailov and P. Zhilyaev, Mol. Phys. 114, 509 (2016).

[55] P. Fons, H. Osawa, A. V. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, H. Tanida, and J. Tominaga, Phys. Rev. B 82, 041203(R) (2010).

[56] M. Birnbaum, J. Appl. Phys. 36, 3688 (1965).

[57] D. B¨auerle, Electronic structure of Materials (Springer, Berlin, 2000), 3rd ed.

[58] J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, Phys. Rev. B 71, 165406 (2005).

[59] J. Byskov-Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, Appl. Phys. A 101, 97 (2010).

[60] D. N. Mermin, Phys. Rev. 137, A1441 (1965).

[61] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[62] W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

[63] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[64] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

[65] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

[66] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 102, 039902 (2009).

[67] R. G. Dandrea and N. W. Ashcroft, Phys. Rev. B 34, 2097 (1986).

[68] S. Pittalis, C. R. Proetto, A. Floris, A. Sanna, C. Bersier, K. Burke, and E. K. U. Gross, Phys. Rev. Lett. 107, 163001 (2011).

[69] H. Eschrig, Phys. Rev. B 82, 205120 (2010).

[70] T. Sjostrom and J. Daligault, Phys. Rev. B 90, 155109 (2014).

[71] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, Phys. Rev. Lett. 112, 076403 (2014).

[72] V. V. Karasiev, L. Calder´ın, and S. B. Trickey, Phys. Rev. E 93, 063207 (2016).

[73] T. Dornheim, S. Groth, T. Sjostrom, F. D. Malone, W. M. C. Foulkes, and M. Bonitz, Phys. Rev. Lett. 117, 156403 (2016).

[74] K. Burke, J. C. Smith, P. E. Grabowski, and A. Pribram-Jones, Phys. Rev. B 93, 195132 (2016).

[75] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

[76] W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys (Perg- amon, Oxford, 1958).

[77] Y. Tanaka and S. Tsuneyuki, Appl. Phys. Exp. 11, 046701 (2018).

[78] “xtapp,” http://ma.cms-initiative.jp/en/application-list/xtapp.

[79] S. T. Murphy, S. L. Daraszewicz, Y. Giret, M. Watkins, A. L. Shluger, K. Tanimura, and D. M. Duffy, Phys. Rev. B 92, 134110 (2015).

[80] S. Murphy, Y. Giret, S. Daraszewicz, A. Lim, A. Shluger, K. Tanimura, and D. Duffy, Phys. Rev. B 93, 104105 (2016).

[81] S. Khakshouri, D. Alf`e, and D. M. Duffy, Phys. Rev. B 78, 224304 (2008).

[82] H. Zhang, C. Li, E. Bevillon, G. Cheng, J. P. Colombier, and R. Stoian, Phys. Rev. B 94, 224103 (2016).

[83] D. K. Il‘nitsky, V. A. Khokhlov, V. V. Zhakhovsky, Y. V. Petrov, K. P. Migdal, and N. A. Inogamov, J. Phys. Conf. Ser. 774, 012101 (2016).

[84] R. Stoian, A. Rosenfeld, D. Ashkenasi, I. Hertel, N. Bulgakova, and E. Campbell, Phys. Rev. Lett. 88, 097603 (2002).

[85] P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

[86] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 2011).

[87] T. F. Chan, SIAM J. Numer. Anal. 21, 272 (1984).

[88] E. B´evillon, J. P. Colombier, V. Recoules, and R. Stoian, Appl. Surf. Sci. 336, 79 (2015).

[89] Z. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133 (2008).

[90] M. E. Straumanis and L. S. Yu, Acta Crystallogr. A 25, 676 (1969).

[91] D. A. Papaconstantopoulos, L. L. Boyer, B. M. Klein, A. R. Williams, V. L. Morruzzi, and J. F. Janak, Phys. Rev. B 15, 4221 (1977).

[92] X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, Phys. Rev. B 50, 8016 (1994).

[93] M. Kaveh and N. Wiser, Adv. Phys. 33, 257 (1984).

[94] M. J. Laubitz, Can. J. Phys. 45, 3677 (1967).

[95] A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, Phys. Rev. B 94, 075120 (2016).

[96] P. B. Allen, Phys. Rev. B 59, 1460 (1987).

[97] K. P. Migdal, Y. V. Petrov, D. K. Il‘nitsky, V. V. Zhakhovsky, N. A. Inogamov, K. V. Khishchenko, D. V. Knyazev, and P. R. Levashov, Appl. Phys. A 122, 408 (2016).

[98] Y. Petrov, N. Inogamov, and K. Migdal, JETP. Lett. 97, 20 (2013).

[99] K. P. Migdal, V. V. Il‘nitsky, Y. V. Petrov, and K. V. Inogamov, J. Phys. Conf. Ser. 653, 012086 (2015).

[100] A. Y. Vorobyev and C. Guo, J. Appl. Phys. 110, 043102 (2011).

[101] P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 125, 164705 (2006).

[102] P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 127, 189901 (2007).

[103] Y. P. Ren, J. K. Chen, and Y. W. Zhang, J. Appl. Phys. 110, 113102 (2011).

[104] C. Kittle, Introduction to Solid State Physics (John Wiley and Sons, New York, 2004), 8th ed.

[105] D. R. Linde, CRC Handbook of Chemistry and Physics (SCRC Press, Florida, 2003-2004), 84th ed.

[106] W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

[107] M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 25, 45 (1985).

[108] M. W. Finnis and J. E. Sinclair, Phil. Mag. A 50, 45 (1984).

[109] A. P. Sutton, Electronic Structure of Materials (Clarendon Press, New York, 1993).

[110] X. D. Dai, Y. Kong, J. H. Li, and B. X. Liu, J. Phys.: Condens. Matter 18, 4527 (2006).

[111] S. S. Harial, N. Farid, A. Hassanein, and V. M. Kozhevin, J. Appl. Phys 114, 203302 (2013).

[112] G. Kresse and J. Furthmu¨ller, Comp. Mat. Sci. 6, 15 (1996).

[113] G. Kresse and J. Furthmu¨ller, Phys. Rev. B 54, 11169 (1996).

[114] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

[115] P. E. Bl¨ochl, Phys. Rev. B 50, 17953 (1994).

[116] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

[117] E. Kaxiras, Atomic and Electronic Structure of Solids (Cambridge University Press, Cam- bridge, 2003).

[118] W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. Model 14, 33 (1996).

[119] J. P. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge University Press, New York, 2000), 2nd ed.

[120] T. Tadano, “Alamode,” http://sourceforge.net/projects/alamode.

[121] T. Tadano, Y. Gohda, and S. Tsuneyuki, J. Phys.: Condens. Matter 26, 225402 (2014).

[122] G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (M. I. T. Press, Cambridge, 1971), 2nd ed.

[123] A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

[124] Z. S. Basinski, M. S. Duesbery, and R. Taylor, Can. J. Phys. 49, 2160 (1971).

[125] M. Hashida, A. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Qgner, Appl. Surf. Sci. 197, 862 (2002).

[126] E. B´evillon, J. P. Colombier, V. Recoules, and R. Stoian, Phys. Rev. B 89, 115117 (2014).

[127] M. Olbrich, E. Punzel, P. Lickschat, S. Weißmantel, and A. Horn, Phys. Procedia 83, 93 (2016).

[128] T. M. Saghebfar, M. K. Tehrani, S. M. R. Darbani, and A. E. Majd, Appl. Phys. A 123, 28 (2017).

[129] A. Y. Vorobyev, V. S. Makin, and C. Guo, Phys. Rev. Lett. 102, 234301 (2009).

[130] M. N. Polyanskiy, “Refractive index database,” https://refractiveindex.info.

[131] S. E. Kirkwood, A. C. van Porta, Y. Y. Tsui, and R. Fedosejevs, Appl. Phys. A 81, 729 (2005).

[132] L. Urech, T. Lippert, A. Wokam, S. Martin, H. M¨adebach, and J. Kru¨ger, Appl. Surf. Sci. 252, 4754 (2006).

[133] L. Gallais, E. Bergeret, B. Wang, M. Guerin, and E. B`enevent, Appl. Phys. A 115, 177 (2017).

[134] Q. Li, H. Lao, J. Lin, Y. Chen, and X. Chen, Appl. Phys. A 105, 125 (2011).

[135] A. Sun, M. Lenzner, and W. Rudolph, J. Appl. Phys. 117, 073102 (2015).

[136] Y. Jee, M. F. Becker, and R. M. Walser, J. Opt. Soc. Am. B 5, 648 (1998).

[137] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

[138] S. Yamada, M. Noda, K. Nobusada, and K. Yabana, Phys. Rev. B 98, 245147 (2018).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る