リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「液体界面における電気化学および和周波分光の理論解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

液体界面における電気化学および和周波分光の理論解析

平野 智倫 東北大学

2022.05.25

概要

原子・分子の実在が確かめられてから久しいが、今日では基礎科学のみならず工業的な応用としても原子・分子レベルで構造・反応を理解し制御することが当たり前のように行われ、求められるようになってきている。分子動力学(MD)シミュレーションは原子レベルの空間分解能とフェムト秒スケールの時間分解能を持ち、構造やダイナミクスを直接探索することが可能であることから、原子・分子スケールで現象を理解するために適した手段である。また、適切なアンサンブルを発生させることによって自由エネルギーやその微分量(圧力、エントロピー、界面張力、分極や感受率など)を計算することができ、拡散係数や粘性係数、熱抵抗といったダイナミクスに関連するパラメータも直接求めることが可能である。これらの量はしばしば実験値と比較することが可能であり、実験と相補的に研究を進めることによって研究の幅を大いに拡大することができることも特長である。気液・液液・固液界面といった液体界面の構造・反応を理解することは、基礎化学的な視点からのみならず応用の面でも重要である。しかし後述するように、これらの界面を実験的に探索することは今日においても容易ではない。そこで本研究では、MD シミュレーションを用いた電気化学実験や和周波分光法の解析を基礎として、界面の構造・反応に対する微視的な理解を様々な角度から与えることを目標とする。

参考文献

[1] Y. Kanda, T. Nakamura, and K. Higashitani. Afm studies of interaction forces between surfaces in alcohol-water solutions. Colloids Surf. A: Physicochem. Eng. Asp., Vol. 139, pp. 55–62, 1998.

[2] S. Nie and S. R. Emory. Probing single molcules and single nanoparticles by surface- enhanced raman scattering. Science, Vol. 275, pp. 1102–1106, 1997.

[3] A. Yamakata and M. Osawa. Destruction of the water layer on a hydrophobic surface induced by the forced approach of hydrophilic and hydrophobic cations. J. Phys. Chem. Lett., Vol. 1, pp. 1487–1491, 2010.

[4] A. Yamakata, E. Soeta, T. Ishiyama, M. Osawa, and A. Morita. Real-time observation of the destruction of hydration shells under electrochemical force. J. Am. Chem. Soc., Vol. 135, pp. 15033–15039, 2013.

[5] E. M. Knipping, M. J. Lakin, K. L. Foster, P. Jungwirth, D. J. Tobias, R. B. Gerber, D. Dabdub, and B. J. Finlayson-Pitts. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. Science, Vol. 288, p. 301, 2000.

[6] S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz. Vibrational spectro- scopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. Chem. Rev., Vol. 106, p. 1155, 2006.

[7] B. J. Finlayson-Pitts. Reactions at surfaces in the atmosphere: integration of experi- ments and theory as necessary (but not necessarily suufficient) for predicting the physical chemistry of aerosols. Phys. Chem. Chem. Phys., Vol. 11, pp. 7760–7779, 2009.

[8] A. Chanda and V. V. Fokin. Organic synthesis “on water”. Chem. Rev., Vol. 109, pp. 725–748, 2009.

[9] T. Ishiyama, T. Tahara, and A. Morita. Why the photochemical reaction of phenol becomes ultrafast at the air-water interface: The effect of surface hydration. J. Am. Chem. Soc., Vol. 144, pp. 6321–6325, 2022.

[10] P. Jungwirth and D. J. Tobias. Specific ion effects at the air/water interface. Chem. Rev., Vol. 106, p. 1259, 2006.

[11] T. Ishiyama, T. Imamura, and A. Morita. Chem. Rev., Vol. 114, pp. 8447–8470, 2014.

[12] N. Bloembergen and P. S. Pershan. Light waves at the boundary of nonlinear media. Phys. Rev., Vol. 128, p. 606, 1962.

[13] K. B. Eisenthal. Chem. Rev., Vol. 96, p. 1343, 1996.

[14] J. H. Hunt, P. Guyot-Sionnest, and Y. R. Shen. Observation of c-h stretch vibrations of monolayers of molecules optical sum-frequency generation. Chem. Phys. Lett., Vol. 133, p. 189, 1987.

[15] Q. Du, R. Superfine, E. Freysz, and Y. R. Shen. Vibrational spectroscopy of water at the vapor/water interface. Phys. Rev. Lett., Vol. 70, p. 2313, 1993.

[16] G. L. Richmond. Structure and bonding of molecules at aqueous surfaces. Annu. Rev. Phys. Chem., Vol. 52, pp. 357–389, 2001.

[17] F. M. Geiger. Second harmonic generation, sum frequency generaion, and χ(3): Dissecting environmental interfaces with a nonlinear optical swiss army knife. Annu. Rev. Phys. Chem., Vol. 60, pp. 61–83, 2009.

[18] A. Morita. Theory of sum frequency generation spectroscopy, Vol. 97. Springer, Singapore, 2018.

[19] V. Ostroverkhov, C. S. Tian, and Y. R. Shen. Characterization of vibrational resonances of water-vaopr interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett., Vol. 100, p. 096102, 2008.

[20] G. Ma and H. C. Allen. Surface studies of aqueous methanol solutions by vibrational broad bandwidth sum frequency generation spectroscopy. J. Phys. Chem. B, Vol. 107, p. 6343, 2003.

[21] C. S. Tian, , S. J. Byrnes, H. Han, and Y. R. Shen. Surface propensities of atmospheri- cally relevant ions in salt solutions revealed by phase-sensitive sum frequency vibrational spectroscopy. J. Phys. Chem. Lett., Vol. 2, p. 1946, 2011.

[22] J. A. Mondal, S. Nihonyanagi, S. Yamaguchi, and T. Tahara. J. Am. Chem. Soc., Vol. 134, p. 7842, 2012.

[23] Y. R. Shen. Phase-sensitive sum-frequency spectroscopy. Annu. Rev. Phys. Chem., Vol. 64, p. 129, 2013.

[24] N. Ji, V. Ostroverkhov, C. S. Tian, and Y. R. Shen. New information on water interfacial structure revealed by phase-sensitive surface spectroscopy. Phys. Rev. Lett., Vol. 100, p. 096102, 2008.

[25] S. Nihonyanagi, S. Yamaguchi, and T. Tahara. Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys., Vol. 130, p. 204704, 2009.

[26] S. Yamaguchi and T. Otosu. Progress in phase-sensitive sum frequency generation spec- troscopy. Phys. Chem. Chem. Phys., Vol. 23, pp. 18253–18267, 2021.

[27] S. Yamaguchi and T. Tahara. Development of electronic sum frequency generation spec- troscopies and their application to liquid interfaces. J. Phys. Chem. C, Vol. 119, pp. 14815–14828, 2015.

[28] J. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen. Sum-frequency vibrational spectroscopy on chiral liquids: A novel technique to probe molecular chirality. Phys. Rev. Lett., Vol. 85, p. 4474, 2000.

[29] E. C. Y. Yan, L. Fu, Z. Wang, and W. Liu. Biological macromolecules at interfaces probed by chiral vibrational sum frequency generations spectroscopy. Chem. Rev., Vol. 114, p. 8471, 2014.

[30] M. Okuno and T. Ishibashi. Bulk-or-interface assignment of heterodyne-detected chiral vibrational sum frequency generation signal by its polarization dependence. J. Chem. Phys., Vol. 149, p. 244703, 2018.

[31] K. Watanabe, K. Inoue, I. F. Nakai, and Y. Matsumoto. Nonadiabatic coupling between c-o stretching and pt substrate electrons enhanced by frustrated mode excitations. Phys. Rev. B, Vol. 81, p. 241408, 2010.

[32] F. G. Moore and G. L. Richmond. Integration or segregation: How do molecules behave at oil/water interfaces. Acc. Chem. Res., Vol. 41, p. 739, 2007.

[33] W. Liu, L. Zhang, and Y. R. Shen. Interfacial layer structure at alcohol/silica interfaces probed by sum-frequency vibrational spectroscopy. Chem. Phys. Lett., Vol. 412, p. 206, 2005.

[34] L. Zhang, W. Liu, Y. R. Shen, and D. G. Cahill. Competitive molecular adsorption at liuqid/solid interfaces: A study by sum-frequency vibrational spectroscopy. J. Phys. Chem. C, Vol. 111, pp. 2069–2076, 2007.

[35] E. A. Gobrogge and R. A. Walker. Binary solvent organization at silica/liquid interfaces: preferential ordering in acetonitrile-methanol mixtures. J. Phys. Chem. Lett., Vol. 5, pp. 2688–2693, 2014.

[36] Q. Peng, J. Chen, H. Ji, A. Morita, and S. Ye. Origin of the overpotential for the oxygen evolution reaction on a well-defined graphene electrode probed by in situ sum frequency generation spectroscopy. J. Am. Chem. Soc., Vol. 140, pp. 15548–15571, 2018.

[37] F. O. Laforge, T. Kakiuchi, F. Shigematsu, and M. V. Mirkin. Comparative study of electron transfer reactions at the ionic liquid/water and organic/water interfaces. J. Am. Chem. Soc., Vol. 126, pp. 15380–15381, 2004.

[38] Z. Samec, J. Langmaier, and T. Kakiuchi. Charge-transfer processes at the interface between hydrophobic ionic liquid and water. Pure Appl. Chem., Vol. 81, pp. 1473–1488, 2009.

[39] F. Reymond, D. Ferm`ın, H. J. Lee, and H. H. Girault. Electrochemistry at liquid/liquid interfaces: methodology and potential applications. Electrochim. Acta, Vol. 45, pp. 2647– 2662, 2000.

[40] H. H. Girault. Electrochemistry at liquid-liquid interfaces, Vol. 23, pp. 1–104. CRC Press, Boca Raton, 2010.

[41] Z. Samec, V. Mareˇcek, and J. Weber. Detection of an electron transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry with four-electrode system. J. Electroanal. Chem., Vol. 96, pp. 245–247, 1977.

[42] Z. Samec, V. Mareˇcek, and J. Weber. Charge transfer between two immiscible electrolyte solutions: Part IV. electron transfer between hexacyanoferrate(III) in water and ferrocene in nitrobenzene investigated by cyclic voltammetry with four-electrode system. J. Electroanal. Chem., Vol. 96, pp. 245–247, 1977.

[43] S. Liu, Q. Li, and Y. Shao. Electrochemistry at micro- and nanoscopic liquid/liquid interfaces. Chem. Soc. Rev., Vol. 40, pp. 2236–2253, 2011.

[44] C. Wei, A. J. Bard, and M. V. Mirkin. Scanning electrochemical microscopy. 31. application of secm to the study of charge transfer processes at the liquid/liquid interface. J. Phys. Chem., Vol. 99, pp. 16033–16042, 1995.

[45] J. Hanzl`ık, Z. Samec, and J. Hovorka. Transfer of ferricenium cation across water/organic solvent interfaces. J. Electroanal. Chem., Vol. 216, pp. 303–308, 1987.

[46] F. O. Laforge, P. Sun, and M. V. Mirkin. Shuttling mechanism of ion transfer at the interface between two immiscible liquids. J. Am. Chem. Soc., Vol. 128, pp. 15019–15025, 2006.

[47] S. Amemiya, Z. Ding, J. Zhou, and A. J. Bard. Studies of charge transfer at liquid—liquid interfaces and bilayer lipid membranes by scanning electrochemical microscopy. J. Elec- troanal. Chem., Vol. 483, pp. 7–17, 2000.

[48] R. A. Marcus. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem., Vol. 15, pp. 155–196, 1964.

[49] R. A. Marcus and N. Sutin. Electron transfers in chemistry and biology. Biochim. Biophys. acta, Vol. 811, pp. 265–322, 1985.

[50] E. A. Carter and J. T. Hynes. Solute-dependent solvent force constants for ion pairs and neutral pairs in a polar solvent. J. Phys. Chem., Vol. 93, pp. 2184–2187, 1989.

[51] L. P. Hammett. Some relations between reaction rates and equilibrium constants. Chem. Rev., Vol. 17, pp. 125–136, 1935.

[52] J. Horiuti and M. Polanyi. Acta Physicochim. USSR, Vol. 2, p. 505, 1935.

[53] J. R. Miller, L. T. Calcaterra, and G. L. Closs. Intermolecular long-distance electron transfer in radical anions. the effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc., Vol. 106, pp. 3047–3049, 1984.

[54] P. Ball. Water as an active constituent in cell biology. Chem. Rev., Vol. 108, pp. 74–108, 2008.

[55] A. G. Volkov, M. I. Gugeshashvili, and D. W. Deamer. Energy conversion at liquid/liquid interfaces: Artificial photosynthetic systems. Electrochim. Acta, Vol. 40, pp. 2849–2868, 1995.

[56] C. C. Moser, J. M. Keske, K. Warncke, R. S. Faric, and P. L. Dutton. Nature of biological electron transfer. Nature, Vol. 355, p. 796, 1992.

[57] D. J. Ferm`ın, Z. Ding, H. D. Duong, P. F. Brevet, and H. H. Girault. Photoinduced electron transfer at liquid/liquid interfaces. 1. photocurrent measurements associated with heterogeneous quenching of zinc porphyrins. J. Phys. Chem. B, Vol. 102, pp. 10334–10341, 1998.

[58] N. Eugster, D. J. Ferm`ın, and H. H. Girault. Photoinduced electron transfer at liq- uid—liquid interfaces: Dynamics of the heterogeneous photoreduction of quinones by self- assembled porphyrin ion pairs. J. Am. Chem. Soc., Vol. 125, pp. 4862–4869, 2003.

[59] Z. Ding, B. M. Quinn, and A. J. Bard. Kinetics of heterogeneous electron transfer at liquid/liquid interfaces as studied by secm. J. Phys. Chem. B, Vol. 105, pp. 6367–6374, 2001.

[60] P. Sun, F. Li, Y. Chen, M. Zhang, Z. Zhang, Z. Gao, and Y. Shao. Observation of the marcus inverted region of electron transfer reactions at a liquid/liquid interface. J. Am. Chem. Soc., Vol. 125, pp. 9600–9601, 2003.

[61] H. Hotta, S. Ichikawa, T. Sugihara, and T. Osakai. Clarification of the mechanism of interfacial electron-transfer reaction between ferrocene and hexacyanoferrate(III) by digital simulation of cyclic voltammograms. J. Phys. Chem. B, Vol. 107, pp. 9717–9725, 2003.

[62] A. Morita, A. Koizumi, and T. Hirano. Recent progress in simulating microscopic ion transport mechanisms at liquid–liquid interfaces. J. Chem. Phys. (Perspective), Vol. 154, p. 080901, 2021.

[63] H. A. Kramers. Second harmonic generation, sum frequency generaion, and χ(3): Dissect- ing environmental interfaces with a nonlinear optical swiss army knife. Physica, Vol. 7, p. 284, 1940.

[64] J. T. Hynes. Chemical reaction dynamics in solution. Annu. Rev. Phys. Chem., Vol. 36, p. 573, 1985.

[65] C. H. Bennett. Efficient estimation of free energy differences from monte carlo data. J. Comput. Phys., Vol. 22, pp. 245–268, 1976.

[66] A. Morita. Free Energy Calculations. Elsevier, Waltham, MA, 2017.

[67] S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg. The weighted histogram analysis method for free-energy calculations on biomolecules. i. the method. J. Comput. Chem., Vol. 13, pp. 1011–1021, 1992.

[68] N. Lu, D. A. Kofke, and T. B. Woolf. Improving the efficiency and reliability of free energy perturbation calculations uisng overlap sampling methods. J. Comput. Chem., Vol. 25, pp. 28–40, 2004.

[69] Y. Sugita, A. Kitao, and Y. Okamoto. Multidimensional replica-exchange method for free-energy calculations. J. Chem. Phys., Vol. 113, pp. 6042–6051, 2000.

[70] N. Kikkawa, L. Wang, and A. Morita. Microscopic barrier mechanism of ion transport through liquid-liquid interface. J. Am. Chem. Soc., Vol. 137, pp. 8311–8312, 2015.

[71] N. Kikkawa, L. Wang, and A. Morita. Computational study of effect of water finger on ion transport through water-oil interface. J. Chem. Phys., Vol. 145, p. 014702, 2016.

[72] A. Koizumi, H. Tahara, T. Hirano, and A. Morita. Revealing transient shuttling mechanism of catalytic ion transport through liquid-liquid interface. J. Phys. Chem. Lett., Vol. 11, pp. 1584–1588, 2020.

[73] L. X. Dang and T. M. Chang. Molecular dynamics study of water clustersw, liquid, and liquid-vapor interface of water with many-body potentials. J. Chem. Phys, Vol. 106, p. 8149, 1997.

[74] L. X. Dang. Computational study of ion binding to the liquid interface of water. J. Phys. Chem. B, Vol. 106, p. 10388, 2002.

[75] P. Jungwirth and D. J. Tobias. Ions at the air/water interface. J. Phys. Chem. B, Vol. 106, p. 6361, 2002.

[76] I. Benjamin. Mechanism and dynamics of ion transfer across a liquid-liquid interface. Science, Vol. 261, pp. 1558–1560, 1993.

[77] L. Wang, N. Kikkawa, and A. Morita. Hydrated ion clusters in hydrophobic liquid: Equi- librium distribution, kinetics, and implications. J. Phys. Chem. B, Vol. 122, pp. 3562–3571, 2018.

[78] A. Morita and J. T. Hynes. A theoretical analysis of the sum frequency generation spectrum of the water surface. Chem. Phys., Vol. 258, p. 371, 2000.

[79] A. Morita and J. T. Hynes. A theoretical analysis of the sum frequency generation spectrum of the water surface. ii. J. Phys. Chem. B, Vol. 106, pp. 673–685, 2002.

[80] T. Ishiyama and A. Morita. Analysis of anisotropic local field in sum frequency generation spectroscopy with the charge response kernel water model. J. Chem. Phys, Vol. 131, p. 244714, 2009.

[81] L. Wang, T. Ishiyama, and A. Morita. Theoretical investigation of c-h vibrational spec- troscopy. 1. modeling of methyl and methylene groups of ethanol with different conformers. J. Phys. Chem. A, Vol. 121, p. 6687, 2017.

[82] L. Wang, T. Ishiyama, and A. Morita. Theoretical investigation of c-h vibrational spec- troscopy. 2. unified assignment method of ir, raman and sfg spectra of ethanol. J. Phys. Chem. A, Vol. 121, p. 6701, 2017.

[83] T. Joutsuka, T. Hirano, M. Sprik, and A. Morita. Effect of third-order susceptibility in sum frequency generation spectroscopy: molecular dynamics study in liquid water. Phys. Chem. Chem. Phys., Vol. 20, pp. 3040–3053, 2018.

[84] T. Ishiyama, S. Takagi, T. Hirano, L. Wang, and A. Morita. Comment on “Toward unraveling the puzzle of sum frequency generation spectra at interface of aqueous methanol solution: Effects of concentration-dependent hyperpolarizability”. J. Phys. Chem. C, Vol. 124, pp. 25160–25162, 2020.

[85] K. Matsuzaki, S. Nihonyanagi, S. Yamaguchi, T. Nagata, and T. Tahara. Vibrational sum frequency generation by the quadrupolar mechanism at the nonpolar benzene/air interface. J. Phys. Chem. Lett., Vol. 4, pp. 1654–1658, 2013.

[86] A. Kundu, S. Tanaka, T. Ishiyama, M. Ahmed, K. Inoue, S. Nihonyanagi, H. Sawai, S. Yamaguchi, A. Morita, and T. Tahara. Bend vibration of surface water investigated by heterodyne-detected sum frequency generation and theoretical study: Dominant role of quadrupole. J. Phys. Chem. Lett., Vol. 7, pp. 2597–2601, 2016.

[87] M. Ahmed, S. Nihonyanagi, A. Kundu, S. Yamaguchi, and T. Tahara. Resolving the con- troversy over dipole versus quadrupole mechanism of bend vibration of water in vibrational sum frequency generation spectra. J. Phys. Chem. Lett., Vol. 11, pp. 9123–9130, 2020.

[88] L. Wang, W. Mori, A. Morita, M. Kondoh, M. Okuno, and T. Ishibasi. Quadrupole contri- bution of c=o vibrational band in sum frequency gneration spectra of organic carbonates. J. Phys. Chem. Lett., Vol. 11, .

[89] C. J. Moll, J. Versluis, and H. J. Bakker. Direct evidence for a surface and bulk specific response in the sum-frequency generation spectrum of the water bend vibration. Phys. Rev. Lett., Vol. 127, p. 116001, 2021.

[90] N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee. Optical second-harmonic gen- eration in reflection from media with inversion symmetry. Phys. Rev., Vol. 174, p. 813, 1968.

[91] P. Guyot-Sionnest and Y. R. Shen. Bulk contribution in surface second-harmonic genera- tion. Phys. Rev. B, Vol. 38, p. 7985, 1988.

[92] Y. R. Shen. Surface contribution versus bulk contribution in surface nonlinear optical spectroscopy. Appl. Phys. B, Vol. 68, pp. 295–300, 1999.

[93] K. Shiratori and A. Morita. Theory of quadrupole contributions from interface and bulk in second-order optical processes. Bull. Chem. Soc. Jpn., Vol. 85, pp. 1061–1076, 2012.

[94] W. Mori, L. Wang, Y. Sato, and A. Morita. Development of quadrupole susceptibility automatic calculator in sum frequency generation spectroscopy and application to methyl C-H vibrations. J. Chem. Phys., Vol. 153, p. 174705, 2020.

[95] P. Mazur and B. R. A. Nijboer. On the statistical mechanics of matter in an electromag- netic field. i: Derivation of the maxwell equations from electron theory. Physica, Vol. 19, pp. 971–986, 1953.

[96] G. Russakoff. A derivation of the macroscopic Maxwell equations. Am. J. Phys., Vol. 38, p. 1188, 1970.

[97] T. Hirano, L. Wang, and A. Morita. Singularity-free constraint on molecular dynamics beyond lagrange multiplier. Mol. Sim., Vol. 44, pp. 965–972, 2018.

[98] J.-P. Ryckaert, G. Ciccotti, and H. J. Berendsen. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys., Vol. 23, No. 3, pp. 327–341, 1977.

[99] H. C. Andersen. RATTLE: A velocity version of the shake algorithm for molecular dy- namics calculations. J. Comput. Phys., Vol. 52, pp. 24–34, 1983.

[100] T. Hirano and A. Morita. Electron transfer mechanism at the oil/water interface revealed by multidimensional free energy calculations. J. Phys. Chem. B, Vol. 124, pp. 3811–3827, 2020.

[101] T. Hirano and A. Morita. Boundary effects and quadrupole contribution in sum frequency generation spectroscopy. J. Chem. Phys., Vol. 156, p. 154109, 2022.

[102] M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Clarendon Press, Oxford, 1987.

[103] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to Appli- cations. Academic Press, San Diego, 2 edition, 2002.

[104] E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral. Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett., Vol. 156, pp. 472–477, 1989.

[105] Y. Duan, S. Kumar, J. M. Rosenberg, and P. A. Kollman. Gradient shake: An improved method for constrained energy minimization in macromolecular simulations. J. Comput. Chem., Vol. 16, No. 11, pp. 1351–1356, 1995.

[106] J. T. Slusher and P. T. Cummings. Non-iterative constraint dynamics using velocity- explicit verlet methods. Mol. Simul., Vol. 18, No. 4, pp. 213–224, 1996.

[107] B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije. Lincs: A linear constraint solver for molecular simulations. J. Comput. Chem., Vol. 18, p. 1463, 1997.

[108] T. R. Forester and W. Smith. Shake, rattle, and roll: Efficient constraint algorithms for linked rigid bodies. J. Comput. Chem., Vol. 19, No. 1, pp. 102–111, 1998.

[109] R. Kutteh. New approaches for molecular dynamics simulations with nonholonomic con- straints. Comput. Phys. Commun., Vol. 119, No. 2, pp. 159–168, 1999.

[110] M. Yoneya. A generalized non-iterative matrix method for constraint molecular dynamics simulations. J. Comput. Phys., Vol. 172, No. 1, pp. 188–197, 2001.

[111] V. Krautler, W. F. v. Gunsteren, and P. H. Hu¨nenberger. A fast shake algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem., Vol. 22, No. 5, pp. 501–508, 2001.

[112] P. Gonnet. P-shake: A quadratically convergent shake in o(n2). J. Comput. Phys., Vol. 220, No. 2, pp. 740–750, 2007.

[113] A. Bailey, C. Lowe, and A. Sutton. Efficient constraint dynamics using milc shake. J. Comput. Phys., Vol. 227, No. 20, pp. 8949–8959, 2008.

[114] P. Gonnet, J. H. Walther, and P. Koumoutsakos. θ-shake: An extension to shake for the explicit treatment of angular constraints. Comput. Phys. Commun., Vol. 180, No. 3, pp. 360–364, 2009.

[115] D. Dubbeldam, G. A. E. Oxford, R. Krishna, L. J. Broadbelt, and R. Q. Snurr. Distance and angular holonomic constraints in molecular simulations. J. Chem. Phys., Vol. 133, No. 3, p. 034114, 2010.

[116] D. J. Evans and G. P. Morriss. Statistical Mechanics of Nonequilibrium Liquids. Academic Press, London, 1990.

[117] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, 1971.

[118] J. J. Potoff and J. I. Siepmann. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J., Vol. 47, No. 7, pp. 1676–1682, 2001.

[119] D. Fincham. Optimisation of the ewald sum for large systems. Mol. Sim., Vol. 13, p. 1, 1994.

[120] S. Nos´e. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., Vol. 81, p. 511, 1984.

[121] W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, Vol. 31, p. 1695, 1985.

[122] D. R. Lide, editor. Handbook of chemistry and physics. Harper Collins Publishers, New York, 90th edition edition, 2009-2010.

[123] J. N. C. Lopes, P. C. d. Couto, and M. E. M. d. Piedade. An all-atom force field for metallocenes. J. Phys. Chem. A, Vol. 110, pp. 13850–13856, 2006.

[124] L. X. Dang. A mechanism for ion transport across the water/dichloromethane interface: A molecular dynamics study using polarizable potential models. J. Phys. Chem. B, Vol. 105, pp. 804–809, 2001.

[125] Z. Samec. Electrochemistry at the interface between two immiscible electrolyte solutions. Pure Appl. Chem., Vol. 76, pp. 2147–2180, 2004.

[126] P. Vany´sek. Charge transfer processes on liquid/liquid interfaces: The first century. Elec- trochim. Acta, Vol. 40, pp. 2841–2847, 1995.

[127] I. Benjamin. Chemical reactions and solvation at liquid interfaces: A microscopic perspec- tive. Chem. Rev., Vol. 96, pp. 1449–1475, 1996.

[128] P. Peljo, E. Smirnov, and H. H. Girault. Heterogeneous versus homogeneous electron transfer reactions at liquid-liquid interfaces: The wrong question? J. Electroanal. Chem., Vol. 779, pp. 187–198, 2016.

[129] Z. Zhang, Y. Yuan, P. Sun, B. Su, J. Guo, Y. Shao, and H. H. Girault. Study of electron- transfer reactions across an externally polarized water/1,2-dichloroethane interface by scanning electrochemical microscopy. J. Phys. Chem. B, Vol. 106, pp. 6713–6717, 2002.

[130] P. J. Rodgers, J. Kim, and S. Amemiya. Kinetic study of rapid transfer of tetraethylam- monium at the 1,2-dichloroethane/water interface by nanopipet voltammetry of common ions. Anal. Chem., Vol. 82, pp. 77–83, 2010.

[131] M. A. Leich and G. L. Richmond. Recent experimental advances in studies of liquid/liquid interfaces. Faraday Discuss., Vol. 129, pp. 1–21, 2005.

[132] Y. R. Shen. Fundamentals of sum-frequency spectroscopy. Cambridge University Press, Cambridge, 2016.

[133] G. Luo, S. Malkova, J. Yoon, D. G. Schultz, B. Lin, M. Meron, I. Benjamin, P. Vany´sek, and M. L. Schlossman. Ion distributions near a liquid-liquid interface. Science, Vol. 311, pp. 216–218, 2006.

[134] I. Benjamin. Molecular structure and dynamics at liquid-liquid interfaces. Annu. Rev. Phys. Chem., Vol. 48, pp. 407–451, 1997.

[135] I. Benjamin. Reaction dynamics at liquid interfaces. Annu. Rev. Phys. Chem., Vol. 66, pp. 165–188, 2015.

[136] T.-M. Chang and L. X. Dang. Recent advances in molecular simulations of ion solvation at liquid interfaces. Chem. Rev., Vol. 106, pp. 1305–1322, 2006.

[137] R. A. Marcus. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys., Vol. 24, pp. 966–978, 1956.

[138] R. A. Marcus. Electrostatic free energy and other properties of states having nonequilib- rium polarization. I. J. Chem. Phys., Vol. 24, pp. 979–989, 1956.

[139] R. A. Marcus. Reorganization free energy for electron transfers at liquid-liquid and dielec- tric semiconductor-liquid interfaces. J. Phys. Chem., Vol. 94, pp. 1050–1055, 1990.

[140] R. A. Marcus. Theory of electron-transfer rates across liquid-liquid interfaces. J. Phys. Chem., Vol. 94, pp. 4152–4155, 1990.

[141] I. Benjamin and Y. I. Kharkats. Reorganization free energy for electron transfer reactions at liquid/liquid interfaces. Electrochim. Acta, Vol. 44, pp. 133–138, 1998.

[142] R. A. Kuharski, J. S. Bader, D. Chandler, M. Sprik, M. L. Klein, and R. W. Impey. Molecular model for aqueous ferrous-ferric electron transfer. J. Chem. Phys., Vol. 89, pp. 3248–3247, 1988.

[143] M. Nonella and K. Schulten. Molecular dynamics simulation of electron transfer in proteins. theory and application to QA → QB transfer in the photosynthetic reaction center. J. Phys. Chem., Vol. 95, pp. 2059–2067, 1991.

[144] J. K. Cooper and I. Benjamin. Photoinduced excited state electron transfer at liquid/liquid interfaces. J. Phys. Chem. B, Vol. 118, pp. 7703–7714, 2014.

[145] M. Tachiya. Relation between the electron-transfer rate and the free energy change of reaction. J. Phys. Chem., Vol. 93, pp. 7050–7052, 1989.

[146] L. X. Dang. Intermolecular interactions of liquid dichloromethane and equilibrium prop- erties of liquid-vapor and liquid-liquid interfaces: A molecular dynamics study. J. Chem. Phys., Vol. 110, pp. 10113–10122, 1999.

[147] L. X. Dang. Computational study of ion binding to the liquid interface of water. J. Phys. Chem. B, Vol. 106, pp. 10388–10394, 2002.

[148] L. X. Dang. A mechanism for ion transport across the water/dichloromethane interface: A molecular dynamics study using polarizable potential models. J. Phys. Chem. B, Vol. 105, pp. 804–809, 2001.

[149] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. A smooth particle mesh ewald method. J. Chem. Phys., Vol. 103, p. 8577, 1995.

[150] A. Nitzan. Chemical dynamics in condensed phases: relaxation, transfer, and reactions in condensed molecular systems. Oxford University Press, Oxford, 2006.

[151] F. Wang and D. P. Landau. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett., Vol. 86, pp. 2050–2053, 2001.

[152] A. Laio and M. Parrinello. Escaping free-energy minima. Proc. Natl. Acad. Sci., Vol. 99, pp. 12562–12566, 2002.

[153] S. Daniele, M. A. Baldo, and C. Bragato. A steady-state voltammetric investigation on the oxidation of ferrocene in ethanol-water mixtures. Electrochem. Commun., Vol. 1, pp. 37–41, 1999.

[154] S. Miertus, E. Scrocco, and J. Tomasi. Electrostatic interaction of a solute with a con- tinuum. a direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys., Vol. 55, pp. 117–129, 1981.

[155] A. D. Becke. Density-functional thermochemistry. iii. the role of exact exchange. J. Chem. Phys., Vol. 98, pp. 5648–5652, 1993.

[156] C. Lee, W. Yang, and R. G. Parr. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, Vol. 37, pp. 785–789, 1988.

[157] R. A. Kendall and T. H. Dunning, Jr. Electron affinities of the first-row atoms revisited. systematic basis sets and wave functions. J. Chem. Phys, Vol. 96, p. 6796, 1992.

[158] P. J. Hay and W. R. Wadt. Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms sc to hg. J. Chem. Phys., Vol. 82, pp. 270–283, 1985.

[159] W. Schmickler. Electron-transfer reactions across liquid—liquid interfaces. J. Electroanal. Chem., Vol. 428, pp. 123–127, 1997.

[160] M. Zhou, S. Gan, L. Zhong, X. Dong, and L. Niu. Which mechanism operates in the electron-transfer process at liquid/liquid interfaces? Phys. Chem. Chem. Phys., Vol. 13, pp. 2774–2779, 2011.

[161] B. Liu and M. V. Mirkin. Potential-independent electron transfer rate at the liquid/liquid interface. J. Am. Chem. Soc., Vol. 121, pp. 8352–8355, 1999.

[162] A. Morita and S. Kato. An ab initio analysis of medium perturbation on molecular polar- izabilities. J. Chem. Phys, Vol. 110, p. 11987, 1999.

[163] A. Morita. Water polarizability in condensed phase: Ab initio evaluation by cluster ap- proach. J. Comput. Chem., Vol. 23, pp. 1466–1471, 2002.

[164] F. Jensen. Introduction to Computational Chemistry. Wiley, Chichester, 3rd edition, 2017.

[165] S. Coriani, A. Haaland, T. Helgaker, and P. Jørgensen. The equilibrium structure of ferrocene. ChemPhysChem, Vol. 7, pp. 245–249, 2006.

[166] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheese- man, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Ki- tao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09, revision C.01. Gaussian, Inc., Wallingford CT, 2010.

[167] C. M. Breneman and K. B. Wiberg. Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis. J. Comput. Chem., Vol. 11, pp. 361–373, 1990.

[168] Chemical Society of Japan, editor. Kagaku Binran. Maruzen, Tokyo, 5 edition, 2004.

[169] L. Onsager. Electric moments of molecules in liquids. J. Am. Chem. Soc., Vol. 58, pp. 1486–1493, 1936.

[170] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., Vol. 118, p. 11225, 1996.

[171] J. Applequist, J. R. Carl, and K. K. Fung. Atom charge transfer in molecular polarizabil- ities. application of the olson-sundberg model to aliphatic and aromatic hydrocarbons. J. Am. Chem. Soc., Vol. 94, p. 2952, 1972.

[172] G. Prampolini, P. Yu, S. Pizzanelli, I. Cacelli, F. Yang, J. Zhao, and J. Wang. Structure and dynamics of ferrocyanide and ferricyanide anions in water and heavy water: an insight by md simulations and 2d ir spectroscopy. J. Phys. Chem. B, Vol. 118, pp. 14899–14912, 2013.

[173] M. L. P. Price, D. Ostrovsky, and W. L. Jorgensen. Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the opls-aa force field. J. Comput. Chem., Vol. 22, pp. 1340–1352, 2001.

[174] C. M. Aguilar, W. B. D. Almeida, and W. R. Rocha. The electronic spectrum of fe2+ ion in aqueous solution: a sequential monte carlo/quantum mechanical study. Chem. Phys. Lett., Vol. 449, pp. 144–148, 2007.

[175] D. A. McQuarrie. Statistical Mechanics. University Science Books, Sausalito, 2000.

[176] M. Toda, M. Saito, R. Kubo, and N. Hashitsume. Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer, Berlin, 1985.

[177] A. Morita and T. Ishiyama. Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy. Phys. Chem. Chem. Phys, Vol. 10, pp. 5801–5816, 2008.

[178] T. Ishiyama and A. Morita. Computational analysis of vibrational sum frequency genera- tion spectroscopy. Annu. Rev. Phys. Chem., Vol. 68, pp. 355–377, 2017.

[179] A. Perry, H. Ahlborn, P. Moore, and B. Space. J. Chem. Phys., Vol. 118, p. 8411, 2003.

[180] E. C. Brown, M. Mucha, P. Jungwirth, and D. J. Tobias. Structure and vibrational spectroscopy of salt water/air interfaces:. J. Phys. Chem. B, Vol. 109, p. 7934, 2005.

[181] B. M. Auer and J. L. Skinner. Vibrational sum-frequency spectroscopy of the liquid/vapor interface for dilute hod in d2o. J. Chem. Phys., Vol. 129, p. 214705, 2008.

[182] Y. Nagata and S. Mukamel. Vibrational sum-frequency generation spectroscopy at the water/lipid interface: Molecular dynamics simulation study. J. Am. Chem. Soc., Vol. 132, pp. 6434–6422, 2010.

[183] Y. Nagata, C.-S. Hseih, T. Hasegawa, J. Voll, E. H. G. Backus, and M. Bonn. Water bend- ing mode at the water vapor interface probed by sum-frequency generation spectroscopy: A combined molecular dynamics simulation and experimental study. J. Phys. Chem. Lett., Vol. 4, pp. 1872–1877, 2013.

[184] M. Sulpizi, M. Salanne, M. Sprik, and M.-P. Gaigeot. Vibrational sum frequency genera- tion spectroscopy of the water liquid-vapor interface from density functional theory-based molecular dynamics simulations. J. Phys. Chem. Lett., Vol. 4, pp. 83–87, 2013.

[185] D. R. Moberg, S. C. Straight, and F. Paesani. Temperature dependence of the air/water interface revealed by polarization sensitive sum-frequency generation spectroscopy. J. Phys. Chem. B, Vol. 122, pp. 4356–4365, 2018.

[186] S. J. Byrnes, P. L. Geissler, and Y. R. Shen. Ambiguities in surface nonlinear spectroscopy calculations. Chem. Phys. Lett., Vol. 516, pp. 115–124, 2011.

[187] C. Dutta and A. V. Benderskii. On the assignment of the vibrational spectrum of the water bend at the air/water interface. J. Phys. Chem. Lett., Vol. 8, pp. 801–804, 2017.

[188] T. Seki, S. Sun, K. Zhong, C.-C. Yu, K. Machel, L. B. Dreier, E. H. G. Backus, M. Bonn, and Y. Nagata. Unveiling heterogeneity of interfacial water through the water bending mode. J. Phys. Chem. Lett., Vol. 10, pp. 6936–6941, 2019.

[189] T. Seki, C.-C. Yu, K.-Y. Chiang, J. Tan, S. Sun, S. Ye, M. Bonn, and Y. Nagata. Disen- tangling sum-frequency generation spectra of the water bending mode at charged aqueous interfaces. J. Phys. Chem. B, Vol. 125, pp. 7060–7067, 2021.

[190] M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale molecular dynamics. J. Chem. Phys., Vol. 97, p. 1990, 1992.

[191] I.-C. Yeh and M. L. Berkowitz. Ewald summation for systems with slab geometry. J. Chem. Phys., Vol. 111, pp. 3155–3162, 1999.

[192] M. A. Wilson, A. Pohorille, and L. R. Pratt. Cooment on “study on the liquid-vapor interface of water I. simulation results of thermodynamic properties and orientational structure”. J. Chem. Phys., Vol. 90, pp. 5211–5213, 1989.

[193] Y. Ni and J. L. Skinner. Communication: Vibrational sum-frequency spectrum of the air-water interface, revisited. J. Chem. Phys., Vol. 145, p. 031103, 2016.

[194] T. H. Dunning, Jr. Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen. J. Chem. Phys, Vol. 90, pp. 1007–1023, 1989.

[195] D. E. Woon and T. H. Dunning, Jr. Gaussian basis sets for use in correlated molecular calculations. iii. the atoms aluminum through argon. J. Chem. Phys., Vol. 98, p. 1358, 1993.

[196] R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. Self-consistent molecular orbital methods. xx. a basis set for correlated wave functions. J. Chem. Phys., Vol. 72, pp. 650– 654, 1980.

[197] T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. R. Schleyer. Efficient diffuse function-augmented basis sets for anion calculations. iii. the 3-21+g basis set for first-row elements, li-f. J. Comp. Chem., Vol. 4, pp. 294–301, 1983.

[198] F. London. Th´eorie quantique des courants interatomiques dans les combinaisons aroma- tiques. J. Phys. Radium, Vol. 8, p. 397, 1937.

[199] R. Ditchfield. Self-consistent perturbation theory of diamagnetism. Mol. Phys., Vol. 27, p. 789, 1974.

[200] F. B. v. Duijneveldt, J. G. C. M. v. D.-v. d. Rijdt, and J. H. v. Lenthe. State of the art in counterpoise theory. Chem. Rev., Vol. 94, p. 1873, 1994.

[201] J. D. Jackson. Classical Electrodynamics. Wiley, New York, 3rd edition, 1999.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る