リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on macro and microplastics debris in Indonesian water: Current condition and problem」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on macro and microplastics debris in Indonesian water: Current condition and problem

Muhammad Reza Cordova 東京農業大学

2021.09.24

概要

1. BACKGROUND AND OBJECTIVE
Chapter 1. Introduction and Overview of the Study
 Since the early 1950s, plastic production has risen exponentially and reached 368 million metric tons in 2019, and this does not include synthetic fibers, which accounted for 61 million tons in 2015. Plastics demand is projected to continue to grow in the near future, with production levels likely to double by 2025. Inadequate plastic waste disposal has contributed to increased freshwater, estuarine, and marine pollution. Around 19 million to 23 million tons of plastic waste reached the oceans in 2016, and marine plastic debris is forecasted could reach 53 million tons by 2030. Indonesia's vast coastline, huge population, and a high percentage of unmanaged waste are recipes that add substantial quantities of land-derived debris to oceans. Indonesia is considered the world's second-largest contributor to oceans after China. In response, Indonesia developed a national action plan to tackle marine plastic debris between 2017-2025 through several measures. The Indonesian government has pledged to allocate up to $1 billion annually to reduce 70% of plastic waste in the Indonesian seas by 2025, to preserve the environment. The middle and long-term fate of macro and microplastics in the environment is unknown, as is its abundance and distribution in coastal ecosystems, particularly in Indonesia. Science is the key to getting the right alternative for managing plastic debris. Thus, monitoring data is key in formulating effective strategies to reduce land-derived debris. The aim of this research is to provide baseline data of plastics debris in Indonesian Sea, particularly to macro and microplastics. This data will be useful for the management of marine litter as has been stated in Indonesia's Presidential Decree No. 83 on Marine Debris Management. The study will address the following objectives (1) to provide in situ monitoring data on sources and inflow of debris from major Indonesian cities with high population density and river discharge as a baseline to better formulate environmental policies in reducing marine debris; and (2) to investigate the abundance and distribution of microplastic from Indonesian marine ecosystem (in the water, sediment, and the marine organism).
 To achieve the study's objectives, two studies were conducted to answer the first research lines and four studies to the second research lines. The first two studies are spatially, and temporally comprehensive marine debris monitoring in major Indonesian rivers carried out at river outlets leading to Jakarta Bay. Furthermore, four studies related to microplastics were carried out on the coast of Surabaya, mangrove areas in Muara Angke Wildlife Reserve, Sekotong coral reef area, and microplastic ingestion in blue panchax fish (Aplocheilus sp.).

2. RIVERINE PLASTIC DEBRIS TRANSPORT
Chapter 2. Marine Debris Inflow from the Greater Jakarta Area, Indonesia
 The first land-derived debris monitoring was performed between June 2015 and June 2016, characterizing major sources and monthly variation of marine debris at nine river outlets in Jakarta Bay, Indonesia. The nine river outlets are from west to east: Dadap River in Tangerang, Angke, Pluit, Ciliwung, Kali Item, Koja, Cilincing, and Marunda Rivers in the capital city of Jakarta, and Bekasi River in Bekasi. Land-derived debris was collected using a 75 m-long and 1.5 m-deep net with a 5 cm mesh scale. River outlets have widths between 18-64.9 m or below our sampling net range. The net was installed 15 minutes along the river width and repeated 3-6 times depending on the river discharge. The debris then quantified by abundance, using a modified list of the NOAA Marine Debris Program datasheet, was classified into six types of debris (plastics, metal, glass, wood/paper, cloth/fiber, and others) and 19 categories of plastics.
 From first monitoring land-derived debris, it is found that plastics are the most common debris entering Jakarta Bay, comprising 59% (abundance) or 37% (weight) of total debris. Styrofoam dominated plastic debris, demonstrating the importance of plastic and styrofoam elimination. Higher debris releases during the rainy season (December-February) reinforce the need to intensify clean-up activities. An average daily release of 97,098 ± 28,932 products or 23 ± 7.10 tons in Jakarta Bay was measured with slightly lower capital inputs than neighboring municipalities. Field monitoring data in the plastics group yields a daily plastic debris release of 8.32 ± 2.44 tons from the Greater Jakarta area, 8-16 times less than global model estimates. A simple explanation is that rivers in the study area (in Jakarta) have floating net booms in place that reduce debris releases, one of the factors that are not captured in the global-scale models. However, there is a possibility of higher debris release in the field relative to global projections in other cities, given varying levels of local commitment to minimize land-derived debris. Plastics are the most common debris entering Jakarta Bay combined with global marine debris models, field sampling at river sources serves as ground-truth evidence to refine global forecasts by taking local strategies in place to minimize marine debris.

Chapter 3. Marine Debris Inflow from Two Rivers Outlet into Jakarta Bay during COVID-19 Pandemic
 In March–April 2020, the measurements from the first monitoring were repeated in two out of nine river outlets (Cilincing and Marunda Rivers) in Jakarta Bay to determine the amount of debris entering the river's marine environment outlet in Jakarta as a result of the COVID-19 pandemic. Due to the lockdown situation, the analysis could not be repeated in all nine river outlets. During the COVID-19 pandemic, the abundance of daily debris releases at two sampling sites increased by 5%. At both locations, daily debris releases decreased by 23% in March from 2.30 to 1.78 tons per day and by 28% in April from 2.19 to 1.58 tons per day. Plastics, accounted for 43-47% by abundance or 50-62% by weight, remained the dominant debris entering the Bay of Jakarta in March-April 2020. The study data demonstrated the unprecedented presence and prevalence of personal protection equipments (PPEs) during the pandemic. The PPEs accounted for 16% of the river debris collected, were not present before the pandemic. Increased lightweight plastic-made PPEs that could move distances in environments with health and environmental issues underline the need for domestic PPE waste management, which varies from regulated and controlled medical facilities sources. Overall, monitoring data on major sources and monthly variations in land-derived debris release to Jakarta Bay advise stakeholders and policymakers to prioritize various forms of debris, plastics groups, and months of the year to eliminate land-derived debris from the Greater Jakarta area more effectively. Furthermore, data could help to evaluate efforts over recent years to minimize land-derived debris across riverine channels.

3. QUANTIFICATION AND IDENTIFICATION OF MICROPLASTICS IN MARINE ECOSYSTEM
 Microplastic (small plastic particle < 5mm) is recognized as an emerging problem in oceans and must be tackled through an intergovernmental process. It is important to develop comprehensive microplastic pollution data at different locations and environmental matrices, particularly in Indonesia's marine ecosystem. Various effects in marine environments and coastal fisheries, aquaculture, and human health will occur through microplastic contaminated seafood consumption. However, data on plastic pollution, particularly microplastic, is still inadequate, and research remains challenging due to limited equipment and a wide marine environment in the Indonesian Seas.
 The sediment, water, and fish sample microplastic extraction procedures were adapted from the Guidelines for Harmonizing Ocean Surface Microplastic Monitoring Methods by implementing a modified flotation method and wet peroxide oxidation procedures. Possible particles had the following characteristics: particle size less than 5mm, homogeneous color, no cellular network, and unsegmented and unbranched. The shape composition, the counted microplastic, was divided into four categories: fragments, fibers, granules, and foam. The samples were categorized into different size classes. The recovered microplastic polymer forms were then described using an ATR FT-IR (Attenuated Total Reflection Fourier Transform Infrared) spectrometer.

Chapter 4. Abundance and Characteristics of Floating Microplastics in the Northern Coastal Waters of Surabaya, Indonesia
 Floating microplastic in northern coastal waters of Surabaya was taken using a sterile HDPE bottle. Microplastic concentration in Surabaya's northern coastal waters ranged from 0.38 to 0.61 N/L, averaging 0.49 N/L. The highest microplastic abundance was obtained at the nearest ground station and, in turn, near the source of microplastic pollutant point. The lowest abundance was found in the mainland's farthest station. The dominance of foams and fragments in Surabaya's northern coastal waters showed that water microplastics result from a waste of population activity. The size ranges of microplastics 500-1000 μm (48.54%) and 300-500 μm (45.48%) indicate the state of microplastic particles that have not been deteriorated for a long time. Polystyrene was dominant relative to other forms of polymers, possibly due to the deterioration of the group's extensive waste activities (secondary microplastics).

Chapter 5. Characterization of Microplastics in Mangrove Sediment of Muara Angke Wildlife Reserve, Indonesia
 Sediment samples in Muara Angke Wildlife Reserve were taken in the mangroves' inner and outer layers. Microplastics were found in all the stations in mangrove sediment of Muara Angke Wildlife Reserve, with an average of 28.09±10.28 particles per kg of dry sediment (n/kg). Sediments in the outside mangrove area contained more microplastics than the inside area. Foam form was the most dominant in all the samples and was found more abundant on the outside. More than half of microplastics were of size <1000 µm, and nearly 50% were polystyrenes. This polymer is widely used for food packaging, which is prone to be fragmented. Polypropylene and polyethylene form another 50% of microplastics, widely used for textiles and fishing gears. As Jakarta is the largest city in Indonesia, this microplastic dataset may be the benchmark for other mangroves around the country.

Chapter 6. Microplastic Pollution Distribution in Coral Reefs Sediment, Case Study Sekotong, West Nusa Tenggara
 Sediment samples in Sekotong by diving in the coral reef area. Microplastics concentration in coral reefs sediment in Sekotong ranged from 35 to 77 particles/kg, with an average of 48.3±13.98 particles/kg. The highest concentration was located in Gili Island's southwest (77 particles/kg). The microplastic types found were foam (41.20%), fragment (32.51%), granule (22.77%), and fiber (3.52%). The most frequent microplastics size ranged from more than 1000 μm and was followed by a size range of 500-1000 μm. Polymer analysis showed that microplastic found were composed of polystyrene, polyethylene, and polypropylene. This type of polymers indicates that the primary source of microplastics in the Sekotong coral reef sediment was styrofoam, food and beverage packages, and fishing devices.

Chapter 7. Microplastics Ingestion by Blue Panchax Fish (Aplocheilus sp.) from Ciliwung Estuary, Jakarta, Indonesia
 Aplocheilus sp. samples were collected randomly in North Jakarta's Ciliwung estuary and coastal region using a larva net. Moreover, floating microplastic in Aplocheilus sp. habitat (Ciliwung River Estuary and North Jakarta Coast) was taken using sterile manta trawl net. Different forms and sizes of microplastic were contained in the river flow of Ciliwung River Estuary (9.37±1.37 particles/m3), North Jakarta coastal waters (8.48±9.43 particles/m3), and 75% of Aplocheilus sp. (1.97 particles/individual). The microplastic size in Aplocheilus sp. was relatively small, ranging from 300 to 500 μm. This small size suggests that fish have trouble distinguishing between their food and microplastics. Furthermore, the plastics were able to contain other contaminants.

4. CONCLUSIONS AND PERSPECTIVES
Chapter 8. Conclusion and Recommendation
 The importance of long-term marine debris monitoring in major Indonesian cities provides critical information to minimize land-derived debris in Oceans. Plastics originating from land activities are predicted to become microplastic because the dominant macro- and microplastic forms found are plastic single-use types. Microplastic was found in all areas, in water, sediment, and selected marine organisms. Microplastics have pervaded relatively pristine habitats, including coral reef and mangrove areas, which may conflict with commercial fishing and aquaculture. Marine plastic debris, including microplastic, tends to reduce commercial fisheries and aquaculture production profitability through physical obstruction and destruction. Many marine species, including those critical to the food supply, ingest microplastic. Humans eat marine plastic when the entire body, including the gut, is eaten, e.g., shellfish, sea snails, and anchovies. Food chain plastic contamination puts the fish product at risk of reduced reproductive success and growth, threatening fish stocks. Commercial fisheries industry sustainability, competitiveness, profitability, and safety are highly vulnerable to the effects of marine plastics, particularly with climate change and overfishing. Detailed research on the impact of plastic consumption on marine organisms, biomagnification, exposure, chemical toxicity, and socio-economy is recommended. Plastic pollution impacts coral reefs and mangrove economic viability, and thus preserving and protecting these areas will offer high economic benefits to local people using the marine and coastal ecosystem. However, plastics' possible social and economic effects on the marine and coastal ecosystem remains an open question. Investing in testing and analysis to resolve information gaps is, therefore, crucial. It is strongly suggested that plastic waste management be strengthened and that an environmentally friendly material be invented to replace synthetic plastics in the near future. A more reliable estimation of marine debris is a step towards achieving the Sustainable Development Goals 14.1 indicator to prevent and substantially reduce marine pollution, including marine debris, especially from land-based activities, by 2030. Accordingly, Indonesia's government has developed a National Action Plan, a policy action to tackle marine plastic debris. Until 2025, Indonesia's government will allocate up to $1 billion per year to eliminate about 70 percent of plastic waste at sea. Other plastics waste sources, however, also lack Indonesia's government regulation. In order to quantify the effects of debris along with the Indonesian marine ecosystem, comprehensive studies, including large-scale, long-term, and detailed monitoring processes, are required.
 It is imperative to invest in monitoring and research to address knowledge gaps and future subjects, e.g., (1) to understand the sources, pathways, and ecological impacts of marine debris using long-term field monitoring data; (2) to investigate the abundance and impact of microplastic from selected fish and invertebrate macrobenthic species in the Indonesian marine ecosystem; (3) to provide advice related to the management of plastic pollution in Indonesia; and (4) to understand societal and economic impacts of plastics on in Indonesian marine ecosystem.

この論文で使われている画像

参考文献

Abayomi, O.A., Range, P., Al-Ghouti, M.A., Obbard, J.P., Almeer, S.H., Ben-Hamadou, R., 2017. Microplastics in coastal environments of the Arabian Gulf. Mar. Pollut. Bull. 124, 181–188. https://doi.org/10.1016/j.marpolbul.2017.07.011

Abu-Hilal, A., Al-Najjar, T., 2009. Marine litter in coral reef areas along the Jordan Gulf of Aqaba, Red Sea. J. Environ. Manage. 90, 1043–1049. https://doi.org/10.1016/j.jenvman.2008.03.014

Agamuthu, P., Mehran, S.B., Norkhairah, A., Norkhairiyah, A., 2019. Marine debris: A review of impacts and global initiatives. Waste Manag. Res. 37, 987–1002. https://doi.org/10.1177/0734242X19845041

Akhbarizadeh, R., Moore, F., Keshavarzi, B., 2019. Investigating microplastics bioaccumulation and biomagnification in seafood from the Persian Gulf: a threat to human health? Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess. 36, 1696–1708. https://doi.org/10.1080/19440049.2019.1649473

Alimba, C.G., Faggio, C., 2019. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environ. Toxicol. Pharmacol. 68, 61–74. https://doi.org/10.1016/j.etap.2019.03.001

Allahvaisi, S., 2017. Polypropylene in the industry of Food Packaging, in: Advances in Polypropylene. pp. 3–22. https://doi.org/10.5772/34255

Aminot, Y., Lanctôt, C., Bednarz, V., Robson, W.J., Taylor, A., Ferrier-Pagès, C., Metian, M., Tolosa, I., 2020. Leaching of flame-retardants from polystyrene debris: Bioaccumulation and potential effects on coral. Mar. Pollut. Bull. 151. https://doi.org/10.1016/j.marpolbul.2019.110862

Andrady, A.L., 2011. Microplastics in the marine environment. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2011.05.030

Aragaw, T.A., 2020. Surgical face masks as a potential source for microplastic pollution in the COVID- 19 scenario. Mar. Pollut. Bull. 159. https://doi.org/10.1016/j.marpolbul.2020.111517

Arutchelvi, J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S., Uppara, P.V., 2008. Biodegradation of polyethylene and polypropylene. Indian J. Biotechnol.

Au, S.Y., Lee, C.M., Weinstein, J.E., van den Hurk, P., Klaine, S.J., 2017. Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs. Integr. Environ. Assess. Manag. https://doi.org/10.1002/ieam.1907

Avio, C.G., Cardelli, L.R., Gorbi, S., Pellegrini, D., Regoli, F., 2017a. Microplastics pollution after the removal of the Costa Concordia wreck: First evidences from a biomonitoring case study. Environ. Pollut. 227, 207–214. https://doi.org/10.1016/j.envpol.2017.04.066

Avio, C.G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., D’Errico, G., Pauletto, M., Bargelloni, L., Regoli, F., 2015a. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut. 198, 211–222. https://doi.org/10.1016/j.envpol.2014.12.021

Avio, C.G., Gorbi, S., Regoli, F., 2017b. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11. https://doi.org/10.1016/j.marenvres.2016.05.012

Avio, C.G., Gorbi, S., Regoli, F., 2015b. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea. Mar. Environ. Res. 111, 18–26. https://doi.org/10.1016/j.marenvres.2015.06.014

Badan Penelitian dan Pengembangan Kesehatan, 2019. Laporan Nasional Riset Kesehatan Dasar (Riskesdas) 2018.

Bakir, A., Rowland, S.J., Thompson, R.C., 2014. Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar. Coast. Shelf Sci. 140, 14–21. https://doi.org/10.1016/j.ecss.2014.01.004

Baldwin, A.K., Corsi, S.R., Mason, S.A., 2016. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology. Environ. Sci. Technol. 50, 10377–10385. https://doi.org/10.1021/acs.est.6b02917

Barboza, L.G.A., Dick Vethaak, A., Lavorante, B.R.B.O., Lundebye, A.K., Guilhermino, L., 2018. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 133, 336–348. https://doi.org/10.1016/j.marpolbul.2018.05.047

Barboza, L.G.A., Gimenez, B.C.G., 2015. Microplastics in the marine environment: Current trends and future perspectives. Mar. Pollut. Bull. 97, 5–12. https://doi.org/10.1016/j.marpolbul.2015.06.008

Barboza, L.G.A., Lopes, C., Oliveira, P., Bessa, F., Otero, V., Henriques, B., Raimundo, J., Caetano, M., Vale, C., Guilhermino, L., 2020. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 717. https://doi.org/10.1016/j.scitotenv.2019.134625

Barnes, D.K.A., Galgani, F., Thompson, R.C., Barlaz, M., 2009. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205

Barreiros, J.P., Guerreiro, O., 2014. Notes on a plastic debris collar on a juvenile Pagellus acarne ( Perciformes : Sparidae ) from Terceira Island , Azores , NE Atlantic. Bothalia J. 44, 42–45.

Barreiros, J.P., Raykov, V.S., 2014. Lethal lesions and amputation caused by plastic debris and fishing gear on the loggerhead turtle Caretta caretta (Linnaeus, 1758). Three case reports from Terceira Island, Azores (NE Atlantic). Mar. Pollut. Bull. 86, 518–522. https://doi.org/10.1016/j.marpolbul.2014.07.020

Barrows, A.P.W., Neumann, C.A., Berger, M.L., Shaw, S.D., 2017. Grab: Vs. neuston tow net: A microplastic sampling performance comparison and possible advances in the field. Anal. Methods 9, 1446–1453. https://doi.org/10.1039/c6ay02387h

Beaumont, N.J., Aanesen, M., Austen, M.C., Börger, T., Clark, J.R., Cole, M., Hooper, T., Lindeque, P.K., Pascoe, C., Wyles, K.J., 2019. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 142, 189–195. https://doi.org/https://doi.org/10.1016/j.marpolbul.2019.03.022

Bessa, F., Barría, P., Neto, J.M., Frias, J.P.G.L., Otero, V., Sobral, P., Marques, J.C., 2018. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 128, 575–584. https://doi.org/10.1016/j.marpolbul.2018.01.044

BIG, 2015. Pentingnya Informasi Geospasial untuk Menata Laut Indonesia [WWW Document]. Badan Inf. Geospasial. URL www.bakosurtanal.go.id/berita-surta/pentingnya-informasi-geospasial- untuk-menata-laut-indonesia (accessed 10.20.18).

BMKG, 2019. Sistem Informasi AWS (Automatic Weather Stations) Center [WWW Document]. URL http://202.90.199.103/main/synoptab.php (accessed 3.23.20).

Boerger, C.M., Lattin, G.L., Moore, S.L., Moore, C.J., 2010. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 60, 2275–2278. https://doi.org/10.1016/j.marpolbul.2010.08.007

Boucher, J., Friot, D., 2017. Primary Microplastics in the Oceans: A Global Evaluation of Sources. [IUCN] International Union for Conservation of Nature and Natural Resources, Gland, Switzerland. https://doi.org/dx.doi.org/10.2305/IUCN.CH.2017.01.en

Bouhroum, R., Boulkamh, A., Asia, L., Lebarillier, S., Halle, A. Ter, Syakti, A.D., Doumenq, P., Malleret, L., Wong-Wah-chung, P., 2019. Concentrations and fingerprints of PAHs and PCBs adsorbed onto marine plastic debris from the Indonesian Cilacap coast and theNorth Atlantic gyre. Reg. Stud. Mar. Sci. 29, 100611. https://doi.org/https://doi.org/10.1016/j.rsma.2019.100611

Bour, A., Haarr, A., Keiter, S., Hylland, K., 2018. Environmentally relevant microplastic exposure affects sediment-dwelling bivalves. Environ. Pollut. 236, 652–660. https://doi.org/10.1016/j.envpol.2018.02.006

Bouwmeester, H., Hollman, P.C.H., Peters, R.J.B., 2015. Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environ. Sci. Technol. 49, 8932–8947. https://doi.org/10.1021/acs.est.5b01090

BPS, 2014. Statistik Indonesia 2014. Badan Pusat Statistik [BPS] - Statistics Indonesia, Jakarta, Indonesia.

BPS Provinsi DKI Jakarta, 2019. Taman Impian Jaya Ancol Menjadi Destinasi Favorit Wisatawan [WWW Document]. URL http://statistik.jakarta.go.id/kunjungan-wisatawan-nusantara-hingga- juni-2019-sebesar-1748-juta/

Brennecke, D., Duarte, B., Paiva, F., Caçador, I., Canning-Clode, J., 2016. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003

Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T., Thompson, R., 2011. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ. Sci. Technol. 45, 9175–9179. https://doi.org/10.1021/es201811s

Browne, M.A., Dissanayake, A., Galloway, T.S., Lowe, D.M., Thompson, R.C., 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42, 5026–5031. https://doi.org/10.1021/es800249a

Bucci, K., Tulio, M., Rochman, C.M., 2020. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecol. Appl. 30, 1–16. https://doi.org/10.1002/eap.2044

Cai, M., He, H., Liu, M., Li, S., Tang, G., Wang, W., Huang, P., Wei, G., Lin, Y., Chen, B., Hu, J., Cen, Z., 2018. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 633, 1206–1216. https://doi.org/10.1016/j.scitotenv.2018.03.197

Carpenter, E.J., Smith, K.L., 1972. Plastics on the Sargasso sea surface. Science (80-. ). 175, 1240– 1241. https://doi.org/10.1126/science.175.4027.1240

Cedervall, T., Hansson, L.A., Lard, M., Frohm, B., Linse, S., 2012. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One 7. https://doi.org/10.1371/journal.pone.0032254

Cesar, H., 2002. The biodiversity benefits of coral reef ecosystems: Values and markets. Paris, France.

Chakraborty, S., Bhattacharya, Swaha, Bhattacharya, Sajal, 2008. Control of Mosquitoes By the Use of Fish in Asia With Special Reference To India : Retrospects and Prospects. J. Mns. Lingkung. 15 No,3, 147–156.

Chapron, L., Peru, E., Engler, A., Ghiglione, J.F., Meistertzheim, A.L., Pruski, A.M., Purser, A., Vétion, G., Galand, P.E., Lartaud, F., 2018. Macro- and microplastics affect cold-water corals growth, feeding and behaviour. Sci. Rep. 8. https://doi.org/10.1038/s41598-018-33683-6

Cheung, P.K., Cheung, L.T.O., Fok, L., 2016. Seasonal variation in the abundance of marine plastic debris in the estuary of a subtropical macro-scale drainage basin in South China. Sci. Total Environ. 562, 658–665. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.04.048

Cheung, P.K., Fok, L., Hung, P.L., Cheung, L.T.O., 2018. Spatio-temporal comparison of neustonic microplastic density in Hong Kong waters under the influence of the Pearl River Estuary. Sci. Total Environ. 628–629, 731–739. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.01.338

Cho, D.O., 2005. Challenges to marine debris management in Korea. Coast. Manag. 33, 389–409. https://doi.org/10.1080/08920750500217559

Cincinelli, A., Scopetani, C., Chelazzi, D., Lombardini, E., Martellini, T., Katsoyiannis, A., Fossi, M.C., Corsolini, S., 2017. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR. Chemosphere 175, 391–400. https://doi.org/10.1016/j.chemosphere.2017.02.024

Claessens, M., Meester, S. De, Landuyt, L. Van, Clerck, K. De, Janssen, C.R., 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 62, 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T.S., 2013. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655. https://doi.org/10.1021/es400663f

Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2011.09.025

Collard, F., Gilbert, B., Compère, P., Eppe, G., Das, K., Jauniaux, T., Parmentier, E., 2017. Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environ. Pollut. 229, 1000–1005. https://doi.org/10.1016/j.envpol.2017.07.089

Constant, M., Kerherve, P., Sola, J., Sanchez-Vidal, A., Canals, M., Heussner, S., 2018. Floating Microplastics in the Northwestern Mediterranean Sea: Temporal and Spatial Heterogeneities, in: Cocca, M., Di Pace, E., Errico, M.E., Gentile, G., Montarsolo, A., Mossotti, R. (Eds.), Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea. Springer International Publishing, Cham, pp. 9–15. https://doi.org/https://doi.org/10.1007/978-3-319-71279-6_2

Coppock, R.L., Cole, M., Lindeque, P.K., Queirós, A.M., Galloway, T.S., 2017. A small-scale, portable method for extracting microplastics from marine sediments. Environ. Pollut. 230, 829–837. https://doi.org/10.1016/j.envpol.2017.07.017

Cordova, M.R., 2020. Marine Plastic Debris: Distribution, Abundance, and Impact on Our Seafood, in: Wani, K.A., Ariana, L., Zuber, S.M. (Eds.), Handbook of Research on Environmental and Human Health Impacts of Plastic Pollution. IGI Global, Hershey, PA, pp. 94–121. https://doi.org/10.4018/978-1-5225-9452-9.ch006

Cordova, M.R., Hadi, T.A., Prayudha, B., 2018. Occurrence and abundance of microplastics in coral reef sediment : a case study in Sekotong , Lombok-Indonesia. Adv. Environ. Sci. Bioflux 10, 23–29. https://doi.org/10.5281/zenodo.1297719

Cordova, M.R., Hernawan, U.E., 2018. Microplastics in Sumba waters, East Nusa Tenggara, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 012023. https://doi.org/10.1088/1755-1315/162/1/012023

Cordova, M.R., Nurhati, I.S., 2019. Major sources and monthly variations in the release of land- derived marine debris from the Greater Jakarta area, Indonesia. Sci. Rep. 9, 18730. https://doi.org/10.1038/s41598-019-55065-2

Cordova, M.R., Nurhati, I.S., Riani, E., Nurhasanah, Iswari, M.Y., 2021. Unprecedented plastic-made personal protective equipment (PPE) debris in river outlets into Jakarta Bay during COVID-19 pandemic. Chemosphere 268, 129360. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.129360

Cordova, M.R., Purwiyanto, A.I.S., Suteja, Y., 2019. Abundance and characteristics of microplastics in the northern coastal waters of Surabaya, Indonesia. Mar. Pollut. Bull. 142, 183–188. https://doi.org/10.1016/j.marpolbul.2019.03.040

Cordova, M.R., Riani, E., Shiomoto, A., 2020. Microplastics ingestion by blue panchax fish (Aplocheilus sp.) from Ciliwung Estuary, Jakarta, Indonesia. Mar. Pollut. Bull. 161, 111763. https://doi.org/https://doi.org/10.1016/j.marpolbul.2020.111763

Cordova, M.R., Wahyudi, A.J., 2016. Microplastic in the Deep-Sea Sediment of Southwestern Sumatran Waters. Mar. Res. Indones. 41, 27. https://doi.org/10.14203/mri.v41i1.99

Costa, D., Burlando, P., Priadi, C., 2016. The importance of integrated solutions to flooding and water quality problems in the tropical megacity of Jakarta. Sustain. Cities Soc. 20, 199–209. https://doi.org/10.1016/j.scs.2015.09.009

Costa, M.F., Barletta, M., 2015. Microplastics in coastal and marine environments of the western tropical and sub-tropical Atlantic Ocean. Environ. Sci. Process. Impacts 17, 1868–1879. https://doi.org/10.1039/c5em00158g

Cozar, A., Echevarria, F., Gonzalez-Gordillo, J.I., Irigoien, X., Ubeda, B., Hernandez-Leon, S., Palma, A.T., Navarro, S., Garcia-de-Lomas, J., Ruiz, A., Fernandez-de-Puelles, M.L., Duarte, C.M., 2014. Plastic debris in the open ocean, in: Proceedings of the National Academy of Sciences. pp. 10239–10244. https://doi.org/10.1073/pnas.1314705111

Cózar, A., Sanz-Martín, M., Martí, E., González-Gordillo, J.I., Ubeda, B., Á.gálvez, J., Irigoien, X., Duarte, C.M., 2015. Plastic accumulation in the mediterranean sea. PLoS One 10, e0121762. https://doi.org/10.1371/journal.pone.0121762

Crawford, C.B., Quinn, B., 2017a. Physiochemical properties and degradation, Microplastic Pollutants. https://doi.org/10.1016/B978-0-12-809406-8.00004-9

Crawford, C.B., Quinn, B., 2017b. Microplastic identification techniques, Microplastic Pollutants. https://doi.org/10.1016/B978-0-12-809406-8.00010-4

Čulin, J., Bielić, T., 2016. Plastic Pollution from Ships. J. Marit. Transp. Sci. 51, 57–66. https://doi.org/10.18048/2016.51.04

Daniel, D.B., Ashraf, P.M., Thomas, S.N., Thomson, K.T., 2021. Microplastics in the edible tissues of shellfishes sold for human consumption. Chemosphere 264, 128554. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.128554

de Sá, L.C., Oliveira, M., Ribeiro, F., Rocha, T.L., Futter, M.N., 2018. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci. Total Environ. 645, 1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207

Dekiff, J.H., Remy, D., Klasmeier, J., Fries, E., 2014. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ. Pollut. 186, 248–256. https://doi.org/10.1016/j.envpol.2013.11.019

Digka, N., Tsangaris, C., Kaberi, H., Adamopoulou, A., Zeri, C., 2018. Microplastic Abundance and Polymer Types in a Mediterranean Environment, in: Cocca, M., Di Pace, E., Errico, M.E., Gentile, G., Montarsolo, A., Mossotti, R. (Eds.), Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea. Springer International Publishing, Cham, pp. 17–24.

Dipa, A., 2016. Bandung implements ban on styrofoam use [WWW Document]. Jakarta Post. URL http://www.thejakartapost.com/news/2016/11/03/bandung-implements-ban-styrofoam- use.html

DLH DKI Jakarta, 2020. Laporan data timbangan sampah di TPST Bantargebang. Jakarta, Indonesia. Dris, R., Gasperi, J., Rocher, V., Saad, M., Tassin, B., Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., Dris, R., Gasperi, C.J., Rocher, A.V., Saad, B.M., A, A.N.R., A, B.T., 2018. Microplastic contamination in an urban area : a case study in Greater Paris. Environ. Chem. 12, 592–599.

Dris, R., Imhof, H., Sanchez, W., Gasperi, J., Galgani, F., Tassin, B., Laforsch, C., 2015. Beyond the ocean: Contamination of freshwater ecosystems with (micro-)plastic particles. Environ. Chem. 12, 539–550. https://doi.org/10.1071/EN14172

Dsikowitzky, L., van der Wulp, S.A., Dwiyitno, Ariyani, F., Hesse, K.J., Damar, A., Schwarzbauer, J., 2018. Transport of pollution from the megacity Jakarta into the ocean: Insights from organic pollutant mass fluxes along the Ciliwung River. Estuar. Coast. Shelf Sci. 215, 219–228. https://doi.org/10.1016/j.ecss.2018.10.017

Duan, J., Han, J., Zhou, H., Lau, Y.L., An, W., Wei, P., Cheung, S.G., Yang, Y., Tam, N.F., 2020. Development of a digestion method for determining microplastic pollution in vegetal-rich clayey mangrove sediments. Sci. Total Environ. 707, 136030. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.136030

Eerkes-Medrano, D., Thompson, R.C., Aldridge, D.C., 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75, 63–82. https://doi.org/10.1016/j.watres.2015.02.012

Ellen MacArthur Foundation, 2016. The new plastics economy: Rethinking the future of plastics, World Economic Forum.

Enders, K., Käppler, A., Biniasch, O., Feldens, P., Stollberg, N., Lange, X., Fischer, D., Eichhorn, K.-J., Pollehne, F., Oberbeckmann, S., Labrenz, M., 2019. Tracing microplastics in aquatic environments based on sediment analogies. Sci. Rep. 9, 15207. https://doi.org/10.1038/s41598-019-50508-2

Eo, S., Hong, S.H., Song, Y.K., Lee, Jongsu, Lee, Jongmyoung, Shim, W.J., 2018. Abundance, composition, and distribution of microplastics larger than 20 μm in sand beaches of South Korea. Environ. Pollut. 238, 894–902. https://doi.org/10.1016/j.envpol.2018.03.096

Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C., Galgani, F., Ryan, P.G., Reisser, J., 2014. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS One 9. https://doi.org/10.1371/journal.pone.0111913

Eunomia, 2016. Plastics in the marine environment, Eunomia Research & Consulting. Bristol.

Falahudin, D., Cordova, M.R., Sun, X., Yogaswara, D., Wulandari, I., Hindarti, D., Arifin, Z., 2020. The first occurrence, spatial distribution and characteristics of microplastic particles in sediments from Banten Bay, Indonesia. Sci. Total Environ. 705, 135304. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.135304

Farrell, P., Nelson, K., 2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 177, 1–3. https://doi.org/10.1016/j.envpol.2013.01.046

Fendall, L.S., Sewell, M.A., 2009. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58, 1225–1228. https://doi.org/10.1016/j.marpolbul.2009.04.025

Feng, L., He, L., Jiang, S., Chen, J., Zhou, C., Qian, Z.J., Hong, P., Sun, S., Li, C., 2020. Investigating the composition and distribution of microplastics surface biofilms in coral areas. Chemosphere 252. https://doi.org/10.1016/j.chemosphere.2020.126565

Fernando, G.K.A.., Jayakody, S., Wijenayake, W.M.H.K., Galappaththy, G.N.L., Yatawara, M., Harishchandra, R.D.J., Wanninayake, W.M.T.B., Deniyage, S.L., 2015. Diurnal variation in the feeding patterns and food preferences of Dwarf panchax (Aplocheilus parvus). Sri Lanka J. Aquat. Sci. 20, 19. https://doi.org/10.4038/sljas.v20i2.7475

Ferreira, T.O., Otero, X.L., Vidal-Torrado, P., Macías, F., 2007. Redox Processes in Mangrove Soils under Rhizophora mangle in Relation to Different Environmental Conditions. Soil Sci. Soc. Am. J. 71, 484–491. https://doi.org/10.2136/sssaj2006.0078

Fitri, S., Patria, M.P., 2019. Microplastic contamination on Cerithidea obtusa (Lamarck 1822) in Pangkal Babu Mangrove Forest Area, Tanjung Jabung Barat District, Jambi. AIP Conf. Proc. 2168, 1–4. https://doi.org/10.1063/1.5132502

Fotopoulou, K.N., Karapanagioti, H.K., 2015. Surface properties of beached plastics. Environ. Sci. Pollut. Res. 22, 11022–11032. https://doi.org/10.1007/s11356-015-4332-y

Furukawa, K., Wolanski, E., Mueller, H., 1997. Currents and sediment transport in mangrove forests. Estuar. Coast. Shelf Sci. 44, 301–310. https://doi.org/10.1006/ecss.1996.0120

Galafassi, S., Nizzetto, L., Volta, P., 2019. Plastic sources: A survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water. Sci. Total Environ. 693. https://doi.org/10.1016/j.scitotenv.2019.07.305

Galgani, F., Hanke, G., Werner, S., De Vrees, L., 2013. Marine litter within the European Marine Strategy Framework Directive. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fst122

Galgani, F., Leaute, J.P., Moguedet, P., Souplet, A., Verin, Y., Carpentier, A., Goraguer, H., Latrouite, D., Andral, B., Cadiou, Y., Mahe, J.C., Poulard, J.C., Nerisson, P., 2000. Litter on the sea floor along European coasts. Mar. Pollut. Bull. 40, 516–527. https://doi.org/10.1016/S0025- 326X(99)00234-9

Galgani, F., Pham, C.K., Claro, F., Consoli, P., 2018. Marine animal forests as useful indicators of entanglement by marine litter. Mar. Pollut. Bull. 135, 735–738. https://doi.org/10.1016/j.marpolbul.2018.08.004

Gall, S.C., Thompson, R.C., 2015. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041

Gallagher, A., Rees, A., Rowe, R., Stevens, J., Wright, P., 2016. Microplastics in the Solent estuarine complex, UK: An initial assessment. Mar. Pollut. Bull. 102, 243–249. https://doi.org/10.1016/j.marpolbul.2015.04.002

Galloway, T.S., Cole, M., Lewis, C., 2017. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1. https://doi.org/10.1038/s41559-017-0116

Garcés-Ordóñez, O., Castillo-Olaya, V.A., Granados-Briceño, A.F., Blandón García, L.M., Espinosa Díaz, L.F., 2019. Marine litter and microplastic pollution on mangrove soils of the Ciénaga Grande de Santa Marta, Colombian Caribbean. Mar. Pollut. Bull. 145, 455–462. https://doi.org/10.1016/j.marpolbul.2019.06.058

Garcés-Ordóñez, O., Mejía-Esquivia, K.A., Sierra-Labastidas, T., Patiño, A., Blandón, L.M., Espinosa Díaz, L.F., 2020. Prevalence of microplastic contamination in the digestive tract of fishes from mangrove ecosystem in Cispata, Colombian Caribbean. Mar. Pollut. Bull. 154, 1–7. https://doi.org/10.1016/j.marpolbul.2020.111085

Garrigós, M.C., Marín, M.L., Cantó, A., Sánchez, A., 2004. Determination of residual styrene monomer in polystyrene granules by gas chromatography-mass spectrometry. J. Chromatogr. A 1061, 211–216. https://doi.org/10.1016/j.chroma.2004.10.102

GESAMP, 2015. Sources, fate and effects of microplastics in the marine environment: a global assessment”, Reports and Studies GESAMP - Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. https://doi.org/10.13140/RG.2.1.3803.7925

Gewert, B., Ogonowski, M., Barth, A., MacLeod, M., 2017. Abundance and composition of near surface microplastics and plastic debris in the Stockholm Archipelago, Baltic Sea. Mar. Pollut. Bull. 120, 292–302. https://doi.org/10.1016/j.marpolbul.2017.04.062

Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3. https://doi.org/10.1126/sciadv.1700782

Gigault, J., Pedrono, B., Maxit, B., Ter Halle, A., 2016. Marine plastic litter: The unanalyzed nano- fraction. Environ. Sci. Nano 3, 346–350. https://doi.org/10.1039/c6en00008h

Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J., Duke, N., 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x

Global Environment Facility, 2012. Impacts of Marine Debris on Biodiversity: Current Status and Potential Solutions., CBD Technical Series. Montreal, Canada.

Golden, C.D., Allison, E.H., Cheung, W.W.L., Dey, M.M., Halpern, B.S., McCauley, D.J., Smith, M., Vaitla, B., Zeller, D., Myers, S.S., 2016. Nutrition: Fall in fish catch threatens human health. Nature 534, 317–320. https://doi.org/10.1038/534317a

Goldstein, M.C., Carson, H.S., Eriksen, M., 2014. Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities. Mar. Biol. 161, 1441–1453. https://doi.org/10.1007/s00227-014-2432-8

Graca, B., Bełdowska, M., Wrzesień, P., Zgrundo, A., 2014. Styrofoam debris as a potential carrier of mercury within ecosystems. Environ. Sci. Pollut. Res. 21, 2263–2271. https://doi.org/10.1007/s11356-013-2153-4

Gupta, S., Banerjee, S., 2013. Comparative Assessment of Mosquito Biocontrol Efficiency Between Guppy ( Poecilia Reticulata ) and Panchax Minnow ( Aplocheilus Panchax ). Jbsd.in 4, 89–95.

Güven, O., Gökdağ, K., Jovanović, B., Kıdeyş, A.E., 2017. Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environ. Pollut. 223, 286–294. https://doi.org/10.1016/j.envpol.2017.01.025

Guzzetti, E., Sureda, A., Tejada, S., Faggio, C., 2018. Microplastic in marine organism: Environmental and toxicological effects. Environ. Toxicol. Pharmacol. 64, 164–171. https://doi.org/10.1016/j.etap.2018.10.009

Häder, D.P., Banaszak, A.T., Villafañe, V.E., Narvarte, M.A., González, R.A., Helbling, E.W., 2020. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Sci. Total Environ. 713, 136586. https://doi.org/10.1016/j.scitotenv.2020.136586

Hadiaty, R.K., 2011. Diversity and the fish species lost at the lakes of Cisadane river basin. J. Iktiologi Indones. 11, 143–157.

Hall, N.M., Berry, K.L.E., Rintoul, L., Hoogenboom, M.O., 2015. Microplastic ingestion by scleractinian corals. Mar. Biol. https://doi.org/10.1007/s00227-015-2619-7

Halland, G.R., 2017. Uptake and excretion of polystyrene microplastics in the marine copepod Calanus finmarchicus. Norwegian University of Science and Technology.

Halpern, B.S., Selkoe, K.A., Micheli, F., Kappel, C. V., 2007. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315. https://doi.org/10.1111/j.1523-1739.2007.00752.x

Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 4, 1–9.

Hapitasari, D.N., 2016. Analisis kandungan mikroplastik pada pasir dan ikan demersal: kakap (Lutjanus sp.) dan kerapu (Epinephelus sp.) di Pantai Ancol, Palabuhan Ratu, dan Labuan. IPB University.

Hardesty, B.D., Wilcox, C., 2011. Understanding the types, sources and at‐sea distribution of marine debris in Australian waters. CSIRO.

Harmesa, Cordova, M.R., 2020. A preliminary study on heavy metal pollutants chrome (Cr), cadmium (Cd), and lead (Pb) in sediments and beach morning glory vegetation (Ipomoea pes-caprae) from Dasun Estuary, Rembang, Indonesia. Mar. Pollut. Bull. 111819. https://doi.org/https://doi.org/10.1016/j.marpolbul.2020.111819

He, G., Pan, Y., Tanaka, T., 2020. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. https://doi.org/10.1038/s41893-020-0581-y

Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075. https://doi.org/10.1021/es2031505

Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha, M., Kwan, C., Moore, C., Gray, H., Laursen, D., Zettler, E.R., Farrington, J.W., Reddy, C.M., Peacock, E.E., Ward, M.W., 2011. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62, 1683–1692. https://doi.org/10.1016/j.marpolbul.2011.06.004

Hitchcock, J.N., Mitrovic, S.M., 2019. Microplastic pollution in estuaries across a gradient of human impact. Environ. Pollut. 247, 457–466. https://doi.org/10.1016/j.envpol.2019.01.069

Hoegh-Guldberg, O., Poloczanska, E.S., Skirving, W., Dove, S., 2017. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00158

Holmes, L.A., Turner, A., Thompson, R.C., 2014. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 167, 25–32. https://doi.org/10.1016/j.marchem.2014.06.001

Horton, A.A., Jürgens, M.D., Lahive, E., van Bodegom, P.M., Vijver, M.G., 2018. The influence of exposure and physiology on microplastic ingestion by the freshwater fish Rutilus rutilus (roach) in the River Thames, UK. Environ. Pollut. 236, 188–194. https://doi.org/10.1016/j.envpol.2018.01.044

Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., Svendsen, C., 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.01.190

Hughes, T.P., Kerry, J.T., Baird, A.H., Connolly, S.R., Dietzel, A., Eakin, C.M., Heron, S.F., Hoey, A.S., Hoogenboom, M.O., Liu, G., McWilliam, M.J., Pears, R.J., Pratchett, M.S., Skirving, W.J., Stella, J.S., Torda, G., 2018. Global warming transforms coral reef assemblages. Nature 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2

Ivar do Sul, J.A., Costa, M.F., Silva-Cavalcanti, J.S., Araújo, M.C.B., 2014. Plastic debris retention and exportation by a mangrove forest patch. Mar. Pollut. Bull. 78, 252–257. https://doi.org/10.1016/j.marpolbul.2013.11.011

Jabeen, K., Su, L., Li, J., Yang, D., Tong, C., Mu, J., Shi, H., 2017. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ. Pollut. 221, 141–149. https://doi.org/10.1016/j.envpol.2016.11.055

Jacob, S.S., Nair, N.B., 1982. Food and feeding habits of the larvivorous fish Aplocheilus lineatus (Cuv. & Val.) in its natural habitat. J. Fish Biol. 20, 329–339. https://doi.org/10.1111/j.1095- 8649.1982.tb04715.x

Jahan, S., Strezov, V., Weldekidan, H., Kumar, R., Kan, T., Sarkodie, S.A., He, J., Dastjerdi, B., Wilson, S.P., 2019. Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia. Sci. Total Environ. 695, 133924. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.133924

Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L., 2015a. Plastic waste inputs from land into the ocean. Science (80-. ). 347, 768–771. https://doi.org/10.1126/science.1260352

Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L., 2015b. Plastic waste inputs from land into the ocean. Science (80-. ). 347, 768–771. https://doi.org/10.1126/science.1260352

Jang, M., Shim, W.J., Han, G.M., Rani, M., Song, Y.K., Hong, S.H., 2016. Styrofoam Debris as a Source of Hazardous Additives for Marine Organisms. Environ. Sci. Technol. 50, 4951–4960. https://doi.org/10.1021/acs.est.5b05485

Jang, S.W., Kim, D.H., Seong, K.T., Chung, Y.H., Yoon, H.J., 2014. Analysis of floating debris behaviour in the Nakdong River basin of the southern Korean peninsula using satellite location tracking buoys. Mar. Pollut. Bull. 88, 275–283. https://doi.org/10.1016/j.marpolbul.2014.08.031

Jovanović, B., 2017. Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr. Environ. Assess. Manag. https://doi.org/10.1002/ieam.1913

Kanniah, K.D., Kamarul Zaman, N.A.F., Kaskaoutis, D.G., Latif, M.T., 2020. COVID-19’s impact on the atmospheric environment in the Southeast Asia region. Sci. Total Environ. 736, 139658. https://doi.org/10.1016/j.scitotenv.2020.139658

Käppler, A., Fischer, D., Oberbeckmann, S., Schernewski, G., Labrenz, M., Eichhorn, K.J., Voit, B., 2016. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 408, 8377–8391. https://doi.org/10.1007/s00216-016-9956-3

Käppler, A., Windrich, F., Löder, M.G.J., Malanin, M., Fischer, D., Labrenz, M., Eichhorn, K.J., Voit, B., 2015. Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(-1) for FTIR transmission measurements. Anal. Bioanal. Chem. 407, 6791–6801. https://doi.org/10.1007/s00216-015- 8850-8

Karami, A., Golieskardi, A., Ho, Y. Bin, Larat, V., Salamatinia, B., 2017. Microplastics in eviscerated flesh and excised organs of dried fish. Sci. Rep. 7. https://doi.org/10.1038/s41598-017-05828-6

Karbalaei, S., Hanachi, P., Walker, T.R., Cole, M., 2018. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ. Sci. Pollut. Res. 25, 36046–36063. https://doi.org/10.1007/s11356-018-3508-7

Kementerian Lingkungan Hidup dan Kehutanan, 2020a. Surat Edaran Menteri Lingkungan Hidup dan Kehutanan (LHK) Nomor SE.02/PSLB3/PLB.3/3/2020 tentang Pengelolaan Limbah Infeksius (Limbah B3 dan Sampah Rumah Tangga dari Penanganan Corona Virus Disease (COVID-19).

Kementerian Lingkungan Hidup dan Kehutanan, 2020b. Surat Edaran Menteri Lingkungan Hidup dan Kehutanan Nomor: SE.2/MENLHK/PSLB3/PLB.3/3/2020 Tahun 2020 tentang Pengelolaan Limbah Infeksius (Limbah B3) dan Sampah Rumah Tangga dari Penanganan Corona Virus Disease (COVID-19) (“SE MENLHK 2/2020”). Indonesia.

Kementerian Lingkungan Hidup dan Kehutanan, 2020c. Surat Menteri Lingkungan Hidup dan Kehutanan Nomor S.167/MENLHK/PSLB3/PLB.3/3/2020 Tahun 2020 tentang Pengelolaan Limbah B3 Medis pada Fasilitas Pelayanan Kesehatan Darurat Covid-19 (“Surat MENLHK 167/2020”). Indonesia.

Kementerian Lingkungan Hidup dan Kehutanan, 2018. Gembira Bersama Kelola Sampah Menuju Hidup Bersih Dan Sehat [WWW Document]. Minist. Environ. For. URL http://www.menlhk.go.id/berita-403-gembira-bersama-kelola-sampah-menuju-hidup-bersih- dan-sehat.html (accessed 6.28.18).

Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia, 2019. Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor P.75/MenLHK/Setjen/Kum.1/10/2019 tentang Peta Jalan Pengurangan Sampah Oleh Produsen. Indonesia.

Kementerian Perindustrian dan Perdagangan, 2013. Semester I, Konsumsi Plastik 1,9 Juta Ton [WWW Document]. Kementeri. Perindustrian dan Perdagang. Republik Indones. URL http://www.kemenperin.go.id/artikel/6262/Semester-I,-Konsumsi-Plastik-1,9- Juta-Ton (accessed 12.8.15).

Khatmullina, L., Isachenko, I., 2017. Settling velocity of microplastic particles of regular shapes. Mar. Pollut. Bull. 114, 871–880. https://doi.org/10.1016/j.marpolbul.2016.11.024

Kingfisher, J., 2011. Micro-Plastic Debris Accumulation on Puget Sound Beaches [WWW Document]. Port Townsend Mar. Sci. Cent. URL .ptmsc.org/Science/plastic_project/Summit final Draft.pdf (accessed 11.17.16).

Klemeš, J.J., Fan, Y. Van, Tan, R.R., Jiang, P., 2020. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew. Sustain. Energy Rev. 127. https://doi.org/10.1016/j.rser.2020.109883

Koelmans, A.A., Kooi, M., Law, K.L., Van Sebille, E., 2017. All is not lost: Deriving a top-down mass budget of plastic at sea. Environ. Res. Lett. 12. https://doi.org/10.1088/1748-9326/aa9500

Kühn, S., Bravo Rebolledo, E.L., Van Franeker, J.A., 2015. Deleterious effects of litter on marine life, in: Marine Anthropogenic Litter. pp. 75–116. https://doi.org/10.1007/978-3-319-16510-3_4

Kukulka, T., Proskurowski, G., Morét-Ferguson, S., Meyer, D.W., Law, K.L., 2012. The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophys. Res. Lett. 39. https://doi.org/10.1029/2012GL051116

Kumar, A.A., Sivakumar, R., Reddy, Y.S.R., Bhagya Raja, M. V., Nishanth, T., Revanth, V., 2016. Preliminary study on marine debris pollution along Marina beach, Chennai, India. Reg. Stud. Mar. Sci. 5, 35–40. https://doi.org/10.1016/j.rsma.2016.01.002

Kurnia, M., 2017. Profil wilayah pesisir kenjeran Surabaya [WWW Document]. URL https://salamperencana.wordpress.com/2017/03/16/profil-wilayah-pesisir-kenjeran-surabaya/ (accessed 9.14.18).

Laglbauer, B.J.L., Franco-Santos, R.M., Andreu-Cazenave, M., Brunelli, L., Papadatou, M., Palatinus, A., Grego, M., Deprez, T., 2014. Macrodebris and microplastics from beaches in Slovenia. Mar. Pollut. Bull. 89, 356–366. https://doi.org/10.1016/j.marpolbul.2014.09.036

Lahens, L., Strady, E., Kieu-Le, T.C., Dris, R., Boukerma, K., Rinnert, E., Gasperi, J., Tassin, B., 2018. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environ. Pollut. 236, 661–671. https://doi.org/10.1016/j.envpol.2018.02.005

Laist, D.W., 1997. Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records, in: Coe, J.M., Rogers, D.B. (Eds.), Marine Debris. Springer Series on Environmental Management. Springer- Verlag New York, New York, NY, pp. 99–139. https://doi.org/10.1007/978-1-4613-8486-1_10

Lamb, J.B., Wenger, A.S., Devlin, M.J., Ceccarelli, D.M., Williamson, D.H., Willis, B.L., 2016. Reserves as tools for alleviating impacts of marine disease. Philos. Trans. R. Soc. B Biol. Sci. 371. https://doi.org/10.1098/rstb.2015.0210

Lamb, J.B., Willis, B.L., Fiorenza, E.A., Couch, C.S., Howard, R., Rader, D.N., True, J.D., Kelly, L.A., Ahmad, A., Jompa, J., Harvell, C.D., 2018. Plastic waste associated with disease on coral reefs. Science (80-. ). 359, 460–462. https://doi.org/10.1126/science.aar3320

Lambert, S., Sinclair, C.J., Bradley, E.L., Boxall, A.B.A., 2013. Effects of environmental conditions on latex degradation in aquatic systems. Sci. Total Environ. 447, 225–234. https://doi.org/10.1016/j.scitotenv.2012.12.067

Langenheim, J., 2017. Indonesia pledges $1bn a year to curb ocean waste [WWW Document]. Guard. URL https://www.theguardian.com/environment/the-coral-triangle/2017/mar/02/indonesia- pledges-us1-billion-a-year-to-curb-ocean-waste (accessed 3.2.17).

Lares, M., Ncibi, M.C., Sillanpää, Markus, Sillanpää, Mika, 2018. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 133, 236–246. https://doi.org/10.1016/j.watres.2018.01.049

Lattin, G.L., Moore, C.J., Zellers, A.F., Moore, S.L., Weisberg, S.B., 2004. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore. Mar. Pollut. Bull. 49, 291–294. https://doi.org/10.1016/j.marpolbul.2004.01.020

Le Quéré, C., Jackson, R.B., Jones, M.W., Smith, A.J.P., Abernethy, S., Andrew, R.M., De-Gol, A.J., Willis, D.R., Shan, Y., Canadell, J.G., Friedlingstein, P., Creutzig, F., Peters, G.P., 2020. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 10, 647–653. https://doi.org/10.1038/s41558-020-0797-x

Lebreton, L.C.M., Van Der Zwet, J., Damsteeg, J.W., Slat, B., Andrady, A., Reisser, J., 2017. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611. https://doi.org/10.1038/ncomms15611

Lee, J., 2015. Economic valuation of marine litter and microplastic pollution in the marine environment : An initial assessment of the case of the United Kingdom. Discuss. Pap. 1–16.

Lehtiniemi, M., Hartikainen, S., Näkki, P., Engström-Öst, J., Koistinen, A., Setälä, O., 2018. Size matters more than shape: Ingestion of primary and secondary microplastics by small predators. Food Webs 17, e00097. https://doi.org/10.1016/j.fooweb.2018.e00097

Lestari, P., Trihadiningrum, Y., Wijaya, B.A., Yunus, K.A., Firdaus, M., 2020. Distribution of microplastics in Surabaya River, Indonesia. Sci. Total Environ. 726. https://doi.org/10.1016/j.scitotenv.2020.138560

Li, J., Zhang, H., Zhang, K., Yang, R., Li, R., Li, Y., 2018. Characterization, source, and retention of microplastic in sandy beaches and mangrove wetlands of the Qinzhou Bay, China. Mar. Pollut. Bull. 136, 401–406. https://doi.org/10.1016/j.marpolbul.2018.09.025

Li, Ruili, Yu, L., Chai, M., Wu, H., Zhu, X., 2020. The distribution, characteristics and ecological risks of microplastics in the mangroves of Southern China. Sci. Total Environ. 708. https://doi.org/10.1016/j.scitotenv.2019.135025

Li, R., Zhang, L., Xue, B., Wang, Y., 2019. Abundance and characteristics of microplastics in the mangrove sediment of the semi-enclosed Maowei Sea of the south China sea: New implications for location, rhizosphere, and sediment compositions. Environ. Pollut. 244, 685–692. https://doi.org/10.1016/j.envpol.2018.10.089

Li, Ruilong, Zhang, S., Zhang, L., Yu, K., Wang, S., Wang, Y., 2020. Field study of the microplastic pollution in sea snails (Ellobium chinense) from mangrove forest and their relationships with microplastics in water/sediment located on the north of Beibu Gulf. Environ. Pollut. 263. https://doi.org/10.1016/j.envpol.2020.114368

Liebezeit, G., Dubaish, F., 2012. Microplastics in Beaches of the East Frisian Islands Spiekeroog and Kachelotplate. Bull. Environ. Contam. Toxicol. 89, 213–217. https://doi.org/10.1007/s00128- 012-0642-7

Lin, L., Pan, X., Zhang, S., Li, D., Zhai, W., Wang, Z., Tao, J., Mi, C., Li, Q., Crittenden, J.C., 2021. Distribution and source of microplastics in China’s second largest reservoir - Danjiangkou Reservoir. J. Environ. Sci. 102, 74–84. https://doi.org/https://doi.org/10.1016/j.jes.2020.09.018

Lippiatt, S., Opfer, S., Arthur, C., 2013. Marine Debris Monitoring and Assessment. NOAA Technical Memorandum NOS-OR&R-46. NOAA Tech. Memo. NOS-OR&R-46 82.

Löder, M.G.J., Gerdts, G., 2015. Methodology used for the detection and identification of microplastics—a critical appraisal, in: Marine Anthropogenic Litter. pp. 201–227. https://doi.org/10.1007/978-3-319-16510-3_8

Löder, M.G.J., Kuczera, M., Mintenig, S., Lorenz, C., Gerdts, G., 2015. Focal plane array detector- based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ. Chem. 12, 563–581. https://doi.org/10.1071/EN14205

López-López, L., Preciado, I., González-Irusta, J.M., Arroyo, N.L., Muñoz, I., Punzón, A., Serrano, A., 2018. Incidental ingestion of meso- and macro-plastic debris by benthic and demersal fish. Food Webs 14, 1–4. https://doi.org/10.1016/j.fooweb.2017.12.002

Lusher, A.L., Hollman, P., Mendozal, J., 2017a. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety, FAO Fisheries and Aquaculture Technical Paper 615. https://doi.org/978-92-5-109882-0

Lusher, A.L., McHugh, M., Thompson, R.C., Welden, N.A., Sobral, P., Cole, M., 2013. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 67, 94–99. https://doi.org/10.1016/j.marpolbul.2012.11.028

Lusher, A.L., Welden, N.A., Sobral, P., Cole, M., 2017b. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods 9, 1346–1360. https://doi.org/10.1039/c6ay02415g

Ma, H., Pu, S., Liu, S., Bai, Y., Mandal, S., Xing, B., 2020. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environ. Pollut. 261, 1–15. https://doi.org/10.1016/j.envpol.2020.114089

Madhavi, R., 1980. Comparison of the parasitic fauna of Aplocheilus panchax and A. melastigma. J. Fish Biol. 17, 349–358. https://doi.org/10.1111/j.1095-8649.1980.tb02770.x

Maes, T., Van der Meulen, M.D., Devriese, L.I., Leslie, H.A., Huvet, A., Frère, L., Robbens, J., Vethaak, A.D., 2017. Microplastics Baseline Surveys at the Water Surface and in Sediments of the North- East Atlantic. Front. Mar. Sci. 4, 135. https://doi.org/10.3389/fmars.2017.00135

Manalu, A.A., Hariyadi, S., Wardiatno, Y., 2017. Microplastics abundance in coastal sediments of Jakarta Bay, Indonesia. AACL Bioflux 10, 1164–1173.

Mani, T., Hauk, A., Walter, U., Burkhardt-Holm, P., 2015. Microplastics profile along the Rhine River. Sci. Rep. 5, 1–7. https://doi.org/10.1038/srep17988

Marchand, C., Baltzer, F., Lallier-Vergès, E., Albéric, P., 2004. Pore-water chemistry in mangrove sediments: Relationship with species composition and developmental stages (French Guiana). Mar. Geol. 208, 361–381. https://doi.org/10.1016/j.margeo.2004.04.015

Martin, C., Almahasheer, H., Duarte, C.M., 2019. Mangrove forests as traps for marine litter. Environ. Pollut. 247, 499–508. https://doi.org/10.1016/j.envpol.2019.01.067

Masura, J., Baker, J., Foster, G., Arthur, C., Herring, C., 2015. Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for quantifying synthetic particles in waters and sediments. Natl. Ocean. Atmos. Adm. U.S. pp 18. https://doi.org/NOS-OR&R-48.

Mathalon, A., Hill, P., 2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 81, 69–79. https://doi.org/10.1016/j.marpolbul.2014.02.018

Mattsson, K., Ekvall, M.T., Hansson, L.A., Linse, S., Malmendal, A., Cedervall, T., 2015. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ. Sci. Technol. 49, 553–561. https://doi.org/10.1021/es5053655

McCormick, A.R., Hoellein, T.J., London, M.G., Hittie, J., Scott, J.W., Kelly, J.J., 2016. Microplastic in surface waters of urban rivers: Concentration, sources, and associated bacterial assemblages. Ecosphere 7. https://doi.org/10.1002/ecs2.1556

McKinsey & Company, Ocean Conservancy, 2015. Stemming the Tide: Land-based strategies for a plastic - free ocean. McKinsey Center for Business and Environment & Ocean Conservancy.

McLusky, D.S., 1989. The Estuarine Environment BT - The Estuarine Ecosystem, in: McLusky, D.S. (Ed.), . Springer Netherlands, Dordrecht, pp. 1–48. https://doi.org/10.1007/978-94-011-7616-3_1

McNeish, R.E., Kim, L.H., Barrett, H.A., Mason, S.A., Kelly, J.J., Hoellein, T.J., 2018. Microplastic in riverine fish is connected to species traits. Sci. Rep. 8, 11639. https://doi.org/10.1038/s41598- 018-29980-9

Mega, D., 2017. Profil Wilayah Pesisir Kenjeran Surabaya [WWW Document]. URL https://salamperencana.wordpress.com/2017/03/16/profil-wilayah-pesisir-kenjeran-surabaya/ (accessed 9.17.18).

Michida, Y., Chavanich, S., Chiba, S., Cordova, M.R., Cozsar Cabanas, A., Glagani, F., Hagmann, P., Hinata, H., Isobe, A., Kershaw, P., Kozlovskii, N., Li, D., Lusher, A.L., Marti, E., Mason, S.A., Mu, J., Saito, H., Shim, W.J., Syakti, A.D., Takada, H., Thompson, R., Tokai, T., Uchida, K., Vasilenko, K., Wang, J., 2019. Guidelines for Harmonizing Ocean Surface Microplastic Monitoring Methods. Version 1.1. Ministry of the Environment Japan, Chiyoda-ku, Tokyo , Japan. https://doi.org/http://dx.doi.org/10.25607/OBP-867 URI

Miller, R.C., 1990. Polypropylene. Mod. Plast. 67, 84,86.

Mizraji, R., Ahrendt, C., Perez-Venegas, D., Vargas, J., Pulgar, J., Aldana, M., Patricio Ojeda, F., Duarte, C., Galbán-Malagón, C., 2017. Is the feeding type related with the content of microplastics in intertidal fish gut? Mar. Pollut. Bull. 116, 498–500. https://doi.org/https://doi.org/10.1016/j.marpolbul.2017.01.008

Moberg, F., Folke, C., 1999. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233. https://doi.org/10.1016/S0921-8009(99)00009-9

Mohamed Nor, N.H., Obbard, J.P., 2014. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 79, 278–283. https://doi.org/10.1016/j.marpolbul.2013.11.025

Moore, C.J., Moore, S.L., Leecaster, M.K., Weisberg, S.B., 2001. A comparison of plastic and plankton in the North Pacific Central Gyre. Mar. Pollut. Bull. 42, 1297–1300. https://doi.org/10.1016/S0025-326X(01)00114-X

Moore, C.J., Moore, S.L., Weisberg, S.B., Lattin, G.L., Zellers, A.F., 2002. A comparison of neustonic plastic and zooplankton abundance in southern California’s coastal waters. Mar. Pollut. Bull. 44, 1035–1038. https://doi.org/10.1016/S0025-326X(02)00150-9

Moore, E., Lyday, S., Roletto, J., Litle, K., Parrish, J.K., Nevins, H., Harvey, J., Mortenson, J., Greig, D., Piazza, M., Hermance, A., Lee, D., Adams, D., Allen, S., Kell, S., 2009. Entanglements of marine mammals and seabirds in central California and the north-west coast of the United States 2001-2005. Mar. Pollut. Bull. 58, 1045–1051. https://doi.org/10.1016/j.marpolbul.2009.02.006

Mouat, J., Lozano, R.L., Bateson, H., 2010. Economic Impacts of marine litter, KIMO International. Mouchi, V., Chapron, L., Peru, E., Pruski, A.M., Meistertzheim, A.L., Vétion, G., Galand, P.E., Lartaud, F., 2019. Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure. Environ. Pollut. 253, 322–329. https://doi.org/10.1016/j.envpol.2019.07.024

Mrowiec, B., 2018. Plastics in the circular economy (CE). Environ. Prot. Nat. Resour. J. Inst. Environ. Prot. Res. Institute. 29, 16–19. https://doi.org/10.2478/oszn-2018-0017

Munno, K., Helm, P.A., Jackson, D.A., Rochman, C., Sims, A., 2018. Impacts of temperature and selected chemical digestion methods on microplastic particles. Environ. Toxicol. Chem. 37, 91–98. https://doi.org/10.1002/etc.3935

Murphy, F., Ewins, C., Carbonnier, F., Quinn, B., 2016. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 50, 5800–5808. https://doi.org/10.1021/acs.est.5b05416

Muthukumar, A., Veerappapillai, S., 2015. Biodegradation of plastics – A brief review. Int. J. Pharm. Sci. Rev. Res. 31, 204–209.

Naidoo, T., Glassom, D., Smit, A.J., 2015. Plastic pollution in five urban estuaries of KwaZulu-Natal, South Africa. Mar. Pollut. Bull. 101, 473–480. https://doi.org/10.1016/j.marpolbul.2015.09.044

Naidoo, T., Sershen, Thompson, R.C., Rajkaran, A., 2020. Quantification and characterisation of microplastics ingested by selected juvenile fish species associated with mangroves in KwaZulu-Natal, South Africa. Environ. Pollut. 257, 1–8. https://doi.org/10.1016/j.envpol.2019.113635 Naji, A., Nuri, M., Amiri, P., Niyogi, S., 2019. Small microplastic particles (S-MPPs) in sediments of mangrove ecosystem on the northern coast of the Persian Gulf. Mar. Pollut. Bull. 146, 305–311. https://doi.org/10.1016/j.marpolbul.2019.06.033

Nash, A.D., 1992. Impacts of marine debris on subsistence fishermen An exploratory study. Mar. Pollut. Bull. 24, 150–156. https://doi.org/10.1016/0025-326X(92)90243-Y

National Research Council, 2014. Review of the Styrene Assessment in the National Toxicology Program 12th Report on Carcinogens, Review of the Styrene Assessment in the National Toxicology Program 12th Report on Carcinogens. National Academies Press (US), Washington (DC), USA. https://doi.org/10.17226/18725

Newman, S., Watkins, E., Farmer, A., Brink, P. Ten, Schweitzer, J.P., 2015. The economics of marine litter, in: Marine Anthropogenic Litter. https://doi.org/10.1007/978-3-319-16510-3_14

Ng, K.L., Obbard, J.P., 2006. Prevalence of microplastics in Singapore’s coastal marine environment. Mar. Pollut. Bull. 52, 761–767. https://doi.org/10.1016/j.marpolbul.2005.11.017

Nguyen, B., Claveau-Mallet, D., Hernandez, L.M., Xu, E.G., Farner, J.M., Tufenkji, N., 2019. Separation and Analysis of Microplastics and Nanoplastics in Complex Environmental Samples. Acc. Chem. Res. 52, 858–866. https://doi.org/10.1021/acs.accounts.8b00602

Norén, F., Naustvoll, L.-J., 2011. Survey of microscopic anthropogenic particles in Skagerrak, Commissioned by KLIMA- OG FORURENSINGSDIREKTORATET, Norway. Inst. Mar. Res. Norw. 22.

Nuelle, M.T., Dekiff, J.H., Remy, D., Fries, E., 2014. A new analytical approach for monitoring microplastics in marine sediments. Environ. Pollut. 184, 161–169. https://doi.org/10.1016/j.envpol.2013.07.027

Nurhati, I.S., Putri, I.A.P., Prasojo, A.P.S., Pradipta, L., Cordova, M.R., 2020. Dampak PSBB & WFH terhadap sampah plastik Jabodetabek. Jakarta, Indonesia.

O’Hanlon, N.J., James, N.A., Masden, E.A., Bond, A.L., 2017. Seabirds and marine plastic debris in the northeastern Atlantic: A synthesis and recommendations for monitoring and research. Environ. Pollut. 231, 1291–1301. https://doi.org/10.1016/j.envpol.2017.08.101

O&apos;Brine, T., Thompson, R.C., 2010. Degradation of plastic carrier bags in the marine environment. Mar. Pollut. Bull. 60, 2279–2283. https://doi.org/10.1016/j.marpolbul.2010.08.005

Okubo, N., Takahashi, S., Nakano, Y., 2018. Microplastics disturb the anthozoan-algae symbiotic relationship. Mar. Pollut. Bull. 135, 83–89. https://doi.org/10.1016/j.marpolbul.2018.07.016

Okubo, N., Tamura-Nakano, M., Watanabe, T., 2020. Experimental observation of microplastics invading the endoderm of anthozoan polyps. Mar. Environ. Res. 162. https://doi.org/10.1016/j.marenvres.2020.105125

Oladejo, A., 2017. Analysis of microplastics and their removal from water. Metropolia University of Applied Sciences.

Orós, J., Torrent, A., Calabuig, P., Déniz, S., 2005. Diseases and causes of mortality among sea turtles stranded in the Canary Islands, Spain (1998-2001). Dis. Aquat. Organ. 63, 13–24. https://doi.org/10.3354/dao063013

Osswald, T.A., 2006. International Plastics Handbook: The Resource for Plastics Engineers. Hanser Publications; 4th Edition (June 1, 2006), Cincinnati, OH, USA.

Paul-Pont, I., Lacroix, C., González Fernández, C., Hégaret, H., Lambert, C., Le Goïc, N., Frère, L., Cassone, A.L., Sussarellu, R., Fabioux, C., Guyomarch, J., Albentosa, M., Huvet, A., Soudant, P., 2016. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environ. Pollut. 216, 724–737. https://doi.org/10.1016/j.envpol.2016.06.039

Pawar, P.R., Shirgaonkar, S.S., Patil, R.B., 2016. Plastic marine debris: Sources, distribution and impacts on coastal and ocean biodiversity. PENCIL Publ. Biol. Sci. 3, 40–54.

Pazos, R.S., Maiztegui, T., Colautti, D.C., Paracampo, A.H., Gómez, N., 2017. Microplastics in gut contents of coastal freshwater fish from Río de la Plata estuary. Mar. Pollut. Bull. 122, 85–90. https://doi.org/https://doi.org/10.1016/j.marpolbul.2017.06.007

Pedrotti, M.L., Petit, S., Elineau, A., Bruzaud, S., Crebassa, J.C., Dumontet, B., Martí, E., Gorsky, G., Cózar, A., 2016. Changes in the floating plastic pollution of the mediterranean sea in relation to the distance to land. PLoS One 11, e0161581. https://doi.org/10.1371/journal.pone.0161581

Pemerintah Provinsi Daerah Khusus Ibukota Jakarta, 2016. Laporan Status Lingkungan Hidup Daerah Provinsi DKI Jakarta Tahun 2015. BPLHD DKI Jakarta, Jakarta, Indonesia.

Pemprov DKI Jakarta, 2020. Data Pantauan COVID-19 Jakarta [WWW Document]. Pemerintah Provinsi Drh. Khusus Ibuk. Jakarta. URL https://corona.jakarta.go.id/id

Phillips, M., Henriksson, P., Tran, N., Chan, C., Mohan, C., Rodriguez, U.-P., Suri, S., Hall, S., Koeshendrajana, S., 2015. Exploring Indonesian aquaculture futures, Working Papers. Penang, Malaysia.

Pichel, W.G., Veenstra, T.S., Churnside, J.H., Arabini, E., Friedman, K.S., Foley, D.G., Brainard, R.E., Kiefer, D., Ogle, S., Clemente-Colón, P., Li, X., 2012. GhostNet marine debris survey in the Gulf of Alaska - Satellite guidance and aircraft observations. Mar. Pollut. Bull. 65, 28–41. https://doi.org/10.1016/j.marpolbul.2011.10.009

PlasticsEurope, 2018. Plastics – the Facts 2018. PlasticsEurope (the Association of Plastics Manufacturers in Europe), Wemmel – Belgium.

Potluri, P., Needham, P., 2005. Technical textiles for protection, in: Scott, R.A. (Ed.), Textiles for Protection, Woodhead Publishing Series in Textiles. Woodhead Publishing, pp. 151–175. https://doi.org/10.1533/9781845690977.1.151

PPGL, 2016. Dinamika Pesisir Jawa Timur [WWW Document]. Pus. Penelit. dan Pengemb. Geol. Kelaut. URL /www.mgi.esdm.co.id/content/dinamika-pesisir-jawa-timur (accessed 5.25.18).

Prata, J.C., Silva, A.L.P., Walker, T.R., Duarte, A.C., Rocha-Santos, T., 2020. COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 54, 7760–7765. https://doi.org/10.1021/acs.est.0c02178

Priscilla, V., Patria, M.P., 2019. Comparison of microplastic abundance in aquaculture ponds of milkfish Chanos chanos (Forsskal, 1775) at Muara Kamal and Marunda, Jakarta Bay. IOP Conf. Ser. Earth Environ. Sci. 404, 1–11. https://doi.org/10.1088/1755-1315/404/1/012027

Pujiraharjo, A., Rachmansyah, A., Pudyono, Suharyanto, A., Devia, Y.P., Nur F, D.R., 2013. Studi dampak rencana reklamasi di Teluk Lamong Provinsi Jawa Timur terhadap pola arus pasang surut dan angkutan sedimen. J. Rekayasa Sipil 7, 108–117.

Purba, N.P., Handyman, D.I.W., Pribadi, T.D., Syakti, A.D., Pranowo, W.S., Harvey, A., Ihsan, Y.N., 2019. Marine debris in Indonesia: A review of research and status. Mar. Pollut. Bull. 146, 134–144. https://doi.org/10.1016/j.marpolbul.2019.05.057

Purwiyanto, A.I.S., Suteja, Y., Trisno, Ningrum, P.S., Putri, W.A.E., Rozirwan, Agustriani, F., Fauziyah, Cordova, M.R., Koropitan, A.F., 2020. Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment. Mar. Pollut. Bull. 158, 111380. https://doi.org/https://doi.org/10.1016/j.marpolbul.2020.111380

Qiu, Q., Tan, Z., Wang, J., Peng, J., Li, M., Zhan, Z., 2016. Extraction, enumeration and identification methods for monitoring microplastics in the environment. Estuar. Coast. Shelf Sci. 176, 102–109. https://doi.org/10.1016/j.ecss.2016.04.012

Rachmatullah, T., Idajati, H., 2016. Tingkat Deviasi Konversi Lahan di Kawasan Lindung Kelurahan Wonorejo Surabaya. J. Tek. ITS 5, C29–C32. https://doi.org/10.12962/j23373539.v5i1.11182

Rahayu, S., Setiowati, E., Lusia, A., Pranita, D., Priyanto, P., Setiawati, R., Rahmawati, D., 2016. Studi Awal Perumusan Indikator Evaluasi Strategi Komunikasi Pemasaran 12 Destinasi Wisata Di Jakarta Utara. J. Vokasi Indones. 2. https://doi.org/10.7454/jvi.v2i1.21

Rånby, B., 1989. Photodegradation and photo-oxidation of synthetic polymers. J. Anal. Appl. Pyrolysis 15, 237–247. https://doi.org/10.1016/0165-2370(89)85037-5

Raum-Suryan, K.L., Jemison, L.A., Pitcher, K.W., 2009. Entanglement of Steller sea lions (Eumetopias jubatus) in marine debris: Identifying causes and finding solutions. Mar. Pollut. Bull. 58, 1487– 1495. https://doi.org/10.1016/j.marpolbul.2009.06.004

Reichert, J., Schellenberg, J., Schubert, P., Wilke, T., 2018. Responses of reef building corals to microplastic exposure. Environ. Pollut. 237, 955–960. https://doi.org/10.1016/j.envpol.2017.11.006

Retama, I., Jonathan, M.P., Shruti, V.C., Velumani, S., Sarkar, S.K., Roy, P.D., Rodríguez-Espinosa, P.F., 2016. Microplastics in tourist beaches of Huatulco Bay, Pacific coast of southern Mexico. Mar. Pollut. Bull. 113, 530–535. https://doi.org/10.1016/j.marpolbul.2016.08.053

Riani, E., Cordova, M.R., 2018. Kualitas dan Kuantitas Sampah dari Kegiatan Domestik di DAS Citarum, in: Prosiding Seminar Nasional Darurat Sampah.

Riani, E., Cordova, M.R., Arifin, Z., 2018. Heavy metal pollution and its relation to the malformation of green mussels cultured in Muara Kamal waters, Jakarta Bay, Indonesia. Mar. Pollut. Bull. 133, 664–670. https://doi.org/10.1016/j.marpolbul.2018.06.029

Richards, D.R., Friess, D.A., 2016. Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012. Proc. Natl. Acad. Sci. U. S. A. 113, 344–349. https://doi.org/10.1073/pnas.1510272113

Rios Mendoza, L.M., Taniguchi, S., Karapanagioti, H.K., 2017. Chapter 8 - Advanced Analytical Techniques for Assessing the Chemical Compounds Related to Microplastics, in: Rocha-Santos, T.A.P., Duarte, A.C.B.T.-C.A.C. (Eds.), Characterization and Analysis of Microplastics. Elsevier, pp. 209–240. https://doi.org/https://doi.org/10.1016/bs.coac.2016.11.001

Rochman, C.M., Hentschel, B.T., The, S.J., 2014. Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments. PLoS One 9. https://doi.org/10.1371/journal.pone.0085433

Rochman, C.M., Hoh, E., Kurobe, T., Teh, S.J., 2013. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 3. https://doi.org/10.1038/srep03263

Rochman, C.M., Tahir, A., Williams, S.L., Baxa, D. V., Lam, R., Miller, J.T., Teh, F.C., Werorilangi, S., Teh, S.J., 2015. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340. https://doi.org/10.1038/srep14340

Rodríguez, B., Bécares, J., Rodríguez, A., Arcos, J.M., 2013. Incidence of entanglements with marine debris by northern gannets (Morus bassanus) in the non-breeding grounds. Mar. Pollut. Bull. 75, 259–263. https://doi.org/10.1016/j.marpolbul.2013.07.003

Rotjan, R.D., Sharp, K.H., Gauthier, A.E., Yelton, R., Baron Lopez, E.M., Carilli, J., Kagan, J.C., Urban- Rich, J., 2019. Patterns, dynamics and consequences of microplastic ingestion by the temperate coral, Astrangia poculata. Proc. R. Soc. B Biol. Sci. 286. https://doi.org/10.1098/rspb.2019.0726

Roy, P.K., Hakkarainen, M., Varma, I.K., Albertsson, A.C., 2011. Degradable polyethylene: Fantasy or reality. Environ. Sci. Technol. https://doi.org/10.1021/es104042f

Rudi, A., 2017. Pasukan Oranye, Dibentuk pada Era Foke atau Ahok? [WWW Document]. URL https://megapolitan.kompas.com/read/2017/03/03/20274651/pasukan.oranye.dibentuk.pada. era.foke.atau.ahok. (accessed 3.23.17).

Ryan, P.G., 2018. Entanglement of birds in plastics and other synthetic materials. Mar. Pollut. Bull. 135, 159–164. https://doi.org/10.1016/j.marpolbul.2018.06.057

Ryan, P.G., Moore, C.J., Van Franeker, J.A., Moloney, C.L., 2009. Monitoring the abundance of plastic debris in the marine environment. Philos. Trans. R. Soc. B Biol. Sci. 364, 1999–2012. https://doi.org/10.1098/rstb.2008.0207

Sanchez, W., Bender, C., Porcher, J.M., 2014. Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: Preliminary study and first evidence. Environ. Res. 128, 98–100. https://doi.org/10.1016/j.envres.2013.11.004

Satmoko, Y., 2016. Kondisi kualitas air sungai ciliwung di wilayah DKI Jakarta ditinjau dari paramater organik, amoniak, fosfat, deterjen dan bakteri coli. J. Air Indones. 6, 34042.

Schuyler, Q., Hardesty, B.D., Wilcox, C., Townsend, K., 2012. To eat or not to eat? debris selectivity by marine turtles. PLoS One 7. https://doi.org/10.1371/journal.pone.0040884

Schuyler, Q.A., Wilcox, C., Townsend, K.A., Wedemeyer-Strombel, K.R., Balazs, G., van Sebille, E., Hardesty, B.D., 2016. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles. Glob. Chang. Biol. 22, 567–576. https://doi.org/10.1111/gcb.13078

Sembiring, E., Fareza, A.A., Suendo, V., Reza, M., 2020. The Presence of Microplastics in Water, Sediment, and Milkfish (Chanos chanos) at the Downstream Area of Citarum River, Indonesia. Water, Air, Soil Pollut. 231, 355. https://doi.org/10.1007/s11270-020-04710-y

Setälä, O., Fleming-Lehtinen, V., Lehtiniemi, M., 2014. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 185, 77–83. https://doi.org/10.1016/j.envpol.2013.10.013

Shah, A.A., Hasan, F., Hameed, A., Ahmed, S., 2008. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 26, 246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

Shicun, W., Keyuan, Z., 2009. Maritime Security in the South china Sea : cooperation and implications. Ashgate Publishing, Ltd, Surrey, England.

Silva-Cavalcanti, J.S., Silva, J.D.B., de França, E.J., de Araújo, M.C.B., Gusmão, F., 2017. Microplastics ingestion by a common tropical freshwater fishing resource. Environ. Pollut. 221, 218–226. https://doi.org/10.1016/j.envpol.2016.11.068

Simon-Sánchez, L., Grelaud, M., Garcia-Orellana, J., Ziveri, P., 2019. River Deltas as hotspots of microplastic accumulation: The case study of the Ebro River (NW Mediterranean). Sci. Total Environ. 687, 1186–1196. https://doi.org/10.1016/j.scitotenv.2019.06.168

Singh, B., Sharma, N., 2008. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 93, 561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008

Slootmaekers, B., Catarci Carteny, C., Belpaire, C., Saverwyns, S., Fremout, W., Blust, R., Bervoets, L., 2019. Microplastic contamination in gudgeons (Gobio gobio) from Flemish rivers (Belgium).

Environ. Pollut. 244, 675–684. https://doi.org/https://doi.org/10.1016/j.envpol.2018.09.136 Song, Y.K., Hong, S.H., Jang, M., Han, G.M., Jung, S.W., Shim, W.J., 2017. Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Technol. 51, 4368–4376. https://doi.org/10.1021/acs.est.6b06155

Spalding, M.D., Brown, B.E., 2015. Warm-water coral reefs and climate change. Science (80-. ). https://doi.org/10.1126/science.aad0349

Steer, M., Cole, M., Thompson, R.C., Lindeque, P.K., 2017. Microplastic ingestion in fish larvae in the western English Channel. Environ. Pollut. 226, 250–259. https://doi.org/10.1016/j.envpol.2017.03.062

Stelfox, M., Hudgins, J., Sweet, M., 2016. A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs. Mar. Pollut. Bull. 111, 6–17. https://doi.org/10.1016/j.marpolbul.2016.06.034

Su, Y., Zhang, K., Zhou, Z., Wang, J., Yang, X., Tang, J., Li, H., Lin, S., 2020. Microplastic exposure represses the growth of endosymbiotic dinoflagellate Cladocopium goreaui in culture through affecting its apoptosis and metabolism. Chemosphere 244. https://doi.org/10.1016/j.chemosphere.2019.125485

Suaria, G., Avio, C.G., Lattin, G., Regoli, F., Aliani, S., 2017. Floating Microplastics in the South Adriatic Sea, in: Baztan, J., Jorgensen, B., Pahl, S., Thompson, R., Vanderlinden, J.-P. (Eds.), Fate and Impact of Microplastics in Marine Ecosystems. Elsevier B.V., Lanzarote, Spain, pp. 51–52. https://doi.org/10.1016/B978-0-12-812271-6.00049-1

Sun, X., Liang, J., Zhu, M., Zhao, Y., Zhang, B., 2018. Microplastics in seawater and zooplankton from the Yellow Sea. Environ. Pollut. 242, 585–595. https://doi.org/10.1016/j.envpol.2018.07.014

Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M.E.J., Le Goïc, N., Quillien, V., Mingant, C., Epelboin, Y., Corporeau, C., Guyomarch, J., Robbens, J., Paul-Pont, I., Soudant, P., Huvet, A., 2016. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. 113, 2430–2435. https://doi.org/10.1073/pnas.1519019113

Sutton, R., Mason, S.A., Stanek, S.K., Willis-Norton, E., Wren, I.F., Box, C., 2016. Microplastic contamination in the San Francisco Bay, California, USA. Mar. Pollut. Bull. 109, 230–235. https://doi.org/10.1016/j.marpolbul.2016.05.077

Syakti, A.D., Bouhroum, R., Hidayati, N.V., Koenawan, C.J., Boulkamh, A., Sulistyo, I., Lebarillier, S., Akhlus, S., Doumenq, P., Wong-Wah-Chung, P., 2017. Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia. Mar. Pollut. Bull. 122, 217–225. https://doi.org/10.1016/j.marpolbul.2017.06.046

Syakti, A.D., Hidayati, N.V., Jaya, Y.V., Siregar, S.H., Yude, R., Suhendy, Asia, L., Wong-Wah-Chung, P., Doumenq, P., 2018. Simultaneous grading of microplastic size sampling in the Small Islands of Bintan water, Indonesia. Mar. Pollut. Bull. 137, 593–600. https://doi.org/10.1016/j.marpolbul.2018.11.005

Syakti, A.D., Jaya, J.V., Rahman, A., Hidayati, N.V., Raza’i, T.S., Idris, F., Trenggono, M., Doumenq, P., Chou, L.M., 2019. Bleaching and necrosis of staghorn coral (Acropora formosa) in laboratory assays: Immediate impact of LDPE microplastics. Chemosphere 228, 528–535. https://doi.org/10.1016/j.chemosphere.2019.04.156

Tanaka, K., Takada, H., 2016. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 34351. https://doi.org/10.1038/srep34351

Taylor, M.L., Gwinnett, C., Robinson, L.F., Woodall, L.C., 2016. Plastic microfibre ingestion by deep- sea organisms. Sci. Rep. 6. https://doi.org/10.1038/srep33997

Teuten, E.L., Saquing, J.M., Knappe, D.R.U., Barlaz, M.A., Jonsson, S., Björn, A., Rowland, S.J., Thompson, R.C., Galloway, T.S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P.H., Tana, T.S., Prudente, M., Boonyatumanond, R., Zakaria, M.P., Akkhavong, K., Ogata, Y., Hirai, H., Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M., Takada, H., 2009. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B Biol. Sci. 364, 2027–2045. https://doi.org/10.1098/rstb.2008.0284

Thaysen, C., Stevack, K., Ruffolo, R., Poirier, D., De Frond, H., DeVera, J., Sheng, G., Rochman, C.M., 2018. Leachate from expanded polystyrene cups is toxic to aquatic invertebrates (Ceriodaphnia dubia). Front. Mar. Sci. 4, 71. https://doi.org/10.3389/fmars.2018.00071

Thompson, R.C., Moore, C.J., Saal, F.S.V., Swan, S.H., 2009. Plastics, the environment and human health: Current consensus and future trends. Philos. Trans. R. Soc. B Biol. Sci. 364, 2153–2166. https://doi.org/10.1098/rstb.2009.0053

Thompson, R.C., Olson, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D., Russell, A.E., 2004. Lost at Sea: Where Is All the Plastic? Science (80-. ). 304, 838. https://doi.org/10.1126/science.1094559

Thushari, G.G.N., Senevirathna, J.D.M., 2020. Plastic pollution in the marine environment. Heliyon 6, e04709. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e04709

Troitzsch, J., Bönold, H.J., Rieber, M., Schiffer, H.W., 1983. Plastics Flammability Handbook: Principles, Regulations, Testing, and Approval, Translated. ed. Hanser Press.

Troyer, N. De, 2015. Occurrence and distribution of microplastics in the Scheldt River. Universiteit Gent.

Tsang, Y.Y., Mak, C.W., Liebich, C., Lam, S.W., Sze, E.T.P., Chan, K.M., 2017. Microplastic pollution in the marine waters and sediments of Hong Kong. Mar. Pollut. Bull. 115, 20–28. https://doi.org/10.1016/j.marpolbul.2016.11.003

Turner, A., Arnold, R., Williams, T., 2020. Weathering and persistence of plastic in the marine environment: Lessons from LEGO. Environ. Pollut. 262, 114299. https://doi.org/https://doi.org/10.1016/j.envpol.2020.114299

UNEP, 2016. Marine plastic debris and microplastics – Global lessons and research to inspire action and guide policy change. United Nations Environment Programme (UNEP), Nairobi, Kenya.

UNEP, 2014. UNEP Year Book 2014 and Valuing Plastic reports: Plastic Contamination Threatens Marine Life, Tourism, Fisheries and Businesses. United Nations Environment Programme, Nairobi, Kenya.

Uneputty, P., Evans, S.M., 1997. The impact of plastic debris on the biota of tidal flats in Ambon Bay (Eastern Indonesia). Mar. Environ. Res. 44, 233–242. https://doi.org/10.1016/S0141- 1136(97)00002-0

United Nation #OceanAction14387, 2017. #OceanAction14387 Indonesia Against Marine Plastic Debris [WWW Document]. Coord. Minist. Marit. Aff. Repub. Indones. URL https://oceanconference.un.org/commitments/?id=14387 (accessed 5.30.18).

Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M.B., Janssen, C.R., 2015. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10–17. https://doi.org/10.1016/j.envpol.2015.01.008

Van Cauwenberghe, L., Janssen, C.R., 2014. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 193, 65–70. https://doi.org/10.1016/j.envpol.2014.06.010

Van Cauwenberghe, L., Vanreusel, A., Mees, J., Janssen, C.R., 2013. Microplastic pollution in deep- sea sediments. Environ. Pollut. 182, 495–499. https://doi.org/10.1016/j.envpol.2013.08.013

van der Hal, N., Ariel, A., Angel, D.L., 2017. Exceptionally high abundances of microplastics in the oligotrophic Israeli Mediterranean coastal waters. Mar. Pollut. Bull. 116, 151–155. https://doi.org/10.1016/j.marpolbul.2016.12.052

Van der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharmacol. 13, 57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

Vanapalli, K.R., Sharma, H.B., Ranjan, V.P., Samal, B., Bhattacharya, J., Dubey, B.K., Goel, S., 2021. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total Environ. 750, 141514. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141514

Vermaire, J.C., Pomeroy, C., Herczegh, S.M., Haggart, O., Murphy, M., 2017. Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets 2, 301–314. https://doi.org/10.1139/facets-2016-0070

Veron, J.E.N., 1995. Corals in Space and Time: The Biogeography and Evolution of the Scleractinia. University New South Wales Press, Sydney, Australia.

Vianello, A., Boldrin, A., Guerriero, P., Moschino, V., Rella, R., Sturaro, A., Da Ros, L., 2013. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuar. Coast. Shelf Sci. 130, 54–61. https://doi.org/10.1016/j.ecss.2013.03.022

Von Moos, N., Burkhardt-Holm, P., Köhler, A., 2012. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335. https://doi.org/10.1021/es302332w

Wabnitz, C., Nichols, W.J., 2010. Editorial: Plastic Pollution: An Ocean Emergency. Mar. Turt. Newsl. 20, 1–4.

Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A.D., Winther- Nielsen, M., Reifferscheid, G., 2014. Microplastics in freshwater ecosystems: what we know and what we need to know. Environ. Sci. Eur. 26, 1–9. https://doi.org/10.1186/s12302-014- 0012-7

Walkinshaw, C., Lindeque, P.K., Thompson, R., Tolhurst, T., Cole, M., 2020. Microplastics and seafood: lower trophic organisms at highest risk of contamination. Ecotoxicol. Environ. Saf. 190, 1–14. https://doi.org/10.1016/j.ecoenv.2019.110066

Watkins, E., ten Brink, P., Withana, S., Mutafoglu, K., Schweitzer, J.-P., Russi, D., Kettunen, M., 2015. Marine litter: socio-economic study. Scoping report, Instiutute for European Environmental Policy.

Wegner, A., Besseling, E., Foekema, E.M., Kamermans, P., Koelmans, A.A., 2012. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environ. Toxicol. Chem. 31, 2490–2497. https://doi.org/10.1002/etc.1984

Wildan, Sukardi, Syuaib, M.Z., 2016. The Feasibility of Development of Social Capital-Based Ecotourism in West Lombok. Mimbar 32, 214–222. https://doi.org/http://dx.doi.org/10.3233/WOR-152175

Willoughby, N.G., 1986. Man-made litter on the shores of the Thousand Island archipelago, Java. Mar. Pollut. Bull. 17, 224–228. https://doi.org/10.1016/0025-326X(86)90605-3 Willoughby, N.G., Sangkoyo, H., Lakaseru, B.O., 1997. Beach litter: An increasing and changing problem for Indonesia. Mar. Pollut. Bull. 34, 469–478. https://doi.org/10.1016/S0025- 326X(96)00141-5

World Health Organization, 2020a. WHO Coronavirus Disease (COVID-19) Dashboard [WWW Document]. Coronavirus Dis. outbreak Situat. URL https://covid19.who.int/

World Health Organization, 2020b. Water, sanitation, hygiene, and waste management for the COVID-19 virus: interim guidance. World Heal. Organ.

World Meteorological Organization, 2020. United in Science Report 2020.

Wright, S.L., Thompson, R.C., Galloway, T.S., 2013. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031

Wu, W.-M., Yang, J., Criddle, C.S., 2016. Microplastics pollution and reduction strategies. Front. Environ. Sci. Eng. 11, 6. https://doi.org/10.1007/s11783-017-0897-7

Wünsch, J.R., Rapra Technology Limited., 2000. Polystyrene : synthesis, production and applications. Rapra Technol. Ltd. 10, 170.

Xu, Q., Xing, R., Sun, M., Gao, Y., An, L., 2020. Microplastics in sediments from an interconnected river-estuary region. Sci. Total Environ. 729, 139025. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.139025

Yan, M., Nie, H., Xu, K., He, Y., Hu, Y., Huang, Y., Wang, J., 2019. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China. Chemosphere 217, 879–886. https://doi.org/10.1016/j.chemosphere.2018.11.093

YKAN, BKSDA Jakarta, 2019. Laporan Pemantauan Ekosistem Mangrove Suaka Margasatwa Muara Angke. Jakarta, Indonesia.

Yoshikawa, T., Asoh, K., 2004. Entanglement of monofilament fishing lines and coral death. Biol. Conserv. 117, 557–560. https://doi.org/10.1016/j.biocon.2003.09.025

Yousif, E., Haddad, R., 2013. Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 2, 398. https://doi.org/10.1186/2193-1801-2-398

Zbyszewski, M., Corcoran, P.L., 2011. Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water. Air. Soil Pollut. 220, 365–372. https://doi.org/10.1007/s11270-011-0760-6

Zettler, E.R., Mincer, T.J., Amaral-Zettler, L.A., 2013. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146. https://doi.org/10.1021/es401288x

Zhang, K., Gong, W., Lv, J., Xiong, X., Wu, C., 2015. Accumulation of floating microplastics behind the Three Gorges Dam. Environ. Pollut. 204, 117–123. https://doi.org/10.1016/j.envpol.2015.04.023

Zhao, S., Zhu, L., Wang, T., Li, D., 2014. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution. Mar. Pollut. Bull. 86, 562–568. https://doi.org/10.1016/j.marpolbul.2014.06.032

Zhou, Q., Tu, C., Fu, C., Li, Y., Zhang, H., Xiong, K., Zhao, X., Li, L., Waniek, J.J., Luo, Y., 2020. Characteristics and distribution of microplastics in the coastal mangrove sediments of China. Sci. Total Environ. 703. https://doi.org/10.1016/j.scitotenv.2019.134807

Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., Tu, C., Luo, Y., 2018. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma 322, 201–208. https://doi.org/10.1016/j.geoderma.2018.02.015 Zuo, L., Sun, Y., Li, H., Hu, Y., Lin, L., Peng, J., Xu, X., 2020. Microplastics in mangrove sediments of the Pearl River Estuary, South China: Correlation with halogenated flame retardants’ levels. Sci. Total Environ. 725. https://doi.org/10.1016/j.scitotenv.2020.138344

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る