リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quercetin suppresses the migration of hepatocellular carcinoma cells stimulated by hepatocyte growth factor or transforming growth factor-α: Attenuation of AKT signaling pathway」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quercetin suppresses the migration of hepatocellular carcinoma cells stimulated by hepatocyte growth factor or transforming growth factor-α: Attenuation of AKT signaling pathway

山田, 紀子 岐阜大学

2021.03.25

概要

天然のポリフェノールであるフラボノイドは,食用植物に広く含まれている機能性成分である。フラボノイドのうち主要なフラボノールであるquercetinは,特にタマネギに多く含まれ,心血管疾患のリスクを低下させるほか,さまざまな組織に由来するがん細胞に対し抗がん作用を示すことが報告されている。肝細胞がん(HCC)において,外科的手術や肝移植などの治療は近年進歩しているが,体内を循環する腫瘍細胞を原因とする転移や再発が非常に多く,HCC患者の生存率は依然として低い。HCC細胞の遊走と浸潤に関して,これまでhepatocyte growth factor (HGF)/c-mesenchymalepithelial transition factor receptor (c-MET)およびtransforming growth factor-α(TGF-α)/ epidermal growth factor receptor (EGFR)により誘導されるmitogen-activated protein kinases(MAPKs)およびAKTシグナル伝達経路の活性化が関与していることが明らかにされている。一方,quercetinおよびその誘導体であるmyricetinは,HCC細胞に対する増殖抑制作用が報告されているが,細胞遊走に対する作用については明らかではなかった。本研究では,HGFおよびTGF-αによるヒトHCC由来HuH7細胞の遊走に対するフラボノール,特にquercetinの影響を検討した。

【対象と方法】
 細胞の遊走能に関し,ヒトHCC由来HuH7細胞を,10%牛胎仔血清を含むRPMI1640培地で培養後,無血清としquercetin(0,3,5,7µM),myricetin(7µM)およびisokaempferide(7µM)で前処置後,HGF(30ng/ml)またはTGF-α(10ng/ml)で刺激し,Boyden chamber法を用いて解析した。c-MET,EGFR,p38MAPK,AKT,phosphoinositide 3-kinase(PI3K)のリン酸化に関し,10%牛胎仔血清を含むRPMI1640培地で,細胞を3日間培養後,培地を無血清とし,24時間後,quercetin(0,10,30µM),myricetin(10µM)で1時間の前処置を行い,HGF(30ng/ml)またはTGF-α(30ng/ml)で刺激し,その後細胞を回収し,Western blot法で解析を行った。

【結果】
 Quercetinは,HGFによるヒトHCC由来HuH7細胞の遊走を3,5,7µMで,TGF-αによる遊走を5,7µMで用量依存的に抑制した。加えてmyricetinもHGFおよびTGF-αによる細胞遊走を7µMで抑制した。一方,不活性型フラボノールであるisokaempferideは,HGFおよびTGF-αによる細胞遊走に何ら影響を及ぼさなかった。Quercetinおよびmyricetinは,c-METおよびEGFRの自己リン酸化に何ら影響を及ぼさなかった。Quercetinは,HGFおよびTGF-αによるp38MAPKのリン酸化に何ら影響を及ぼさなかったが,HGFおよびTGF-αによるAKTのリン酸化は濃度依存的に30µMで有意に抑制した。また,myricetinもHGFおよびTGF-αによるAKTのリン酸化を10µMで有意に抑制した。加えてquercetinは,HGFおよびTGF-αによるPI3Kのリン酸化を30µMで有意に抑制した。一方,isokaempferideは,HGFおよびTGF-αによるAKTのリン酸化に何ら影響を及ぼさなかった。

【考察】
 フラボノールであるquercetinおよびmyricetinは,HGFおよびTGF-αによるヒトHCC由来HuH7細胞の遊走を抑制することを示した。先行研究では,HuH7細胞の遊走における細胞内シグナル伝達に関して,HGFおよびTGF-αはPI3K/AKTおよびp38MAPKを介して促進することを明らかにしている。Quercetinとmyricetinは,HGF-およびTGF-αの受容体チロシンキナーゼの自己リン酸化に何ら影響しなかった。一方,quercetinは,HGFまたはTGF-αによるp38MAPKの活性化にも何ら影響しなかったが,AKTの活性化を抑制した。さらに,myricetinもHGFおよびTGF-αによるAKTの活性化を有意に抑制した。細胞内シグナル伝達においては,PI3KがAKTの上流で機能していることが知られている。Quercetinは,HGFおよびTGF-αによるPI3Kの活性化も顕著に抑制した。以上の結果から,quercetinおよびmyricetinは,p38MAPKシグナル伝達経路ではなく,AKTシグナル伝達経路の阻害によりHGFおよびTGF-αによるHuH7細胞の遊走を抑制することが示唆された。以上の知見より,フラボノールがHCCの転移および再発に対する予防薬の候補となり得ることが示唆された。

【結論】
 フラボノールであるquercetinは,p38MAPKではなくAKTのシグナル伝達経路を阻害することにより,HGFおよびTGF-αによるHCC細胞の遊走を抑制することが強く示唆された。

参考文献

[1] A. Scalbert, G. Williamson, Dietary intake and bioavailability of polyphenols, J. Nutr. 130 (2000) 2073S–2085S, https://doi.org/10.1093/jn/130.8.2073S.

[2] S. Ramos, Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways, Mol. Nutr. Food Res. 52 (2008) 507–526, https://doi.org/10. 1002/mnfr.200700326.

[3] B. Sultana, F. Anwar, Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants, Food Chem. 108 (2008) 879–884, https://doi.org/10.1016/j.foodchem.2007.11.053.

[4] S. Kumar, A.K. Pandey, Chemistry and biological activities of flavonoids: an over- view, Sci. World J. (2013) 162750, https://doi.org/10.1155/2013/162750 2013.

[5] A. Massi, O. Bortolini, D. Ragno, T. Bernardi, G. Sacchetti, M. Tacchini, C. De Risi, Research progress in the modification of quercetin leading to anticancer agents, Molecules 22 (2017) 1270, https://doi.org/10.3390/molecules22081270.

[6] A. Rauf, M. Imran, I.A. Khan, M. ur-Rehman, S.A. Gilani, Z. Mehmood, M.S. Mubarak, Anticancer potential of quercetin: a comprehensive review, Phytother Res. 32 (2018) 2109–2130, https://doi.org/10.1002/ptr.6155.

[7] A.V. Anand David, R. Arulmoli, S. Parasuraman, Overviews of biological im- portance of quercetin: a bioactive flavonoid, Phcog. Rev. 10 (2016) 84–89, https:// doi.org/10.1155/2013/162750.

[8] D. Xu, M.J. Hu, Y.Q. Wang, Y.L. Cui, Antioxidant activities of quercetin and its complexes for medicinal application, Molecules 24 (2019) 1123, https://doi.org/ 10.3390/molecules24061123.

[9] J. Terao, Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function, Biochem. Pharmacol. 139 (2017) 15–23, https://doi.org/10.1016/j.bcp.2017.03.021.

[10] P. Knekt, J. Kumpulainen, R. Järvinen, H. Rissanen, M. Heliövaara, A. Reunanen, T. Hakulinen, A. Aromaa, Flavonoid intake and risk of chronic diseases, Am. J. Clin. Nutr. 76 (2002) 560–568, https://doi.org/10.1093/ajcn/76.3.560.

[11] J.M. Llovet, J. Zucman-Rossi, E. Pikarsky, B. Sangro, M. Schwartz, M. Sherman, G. Gores, Hepatocellular carcinoma, Nat. Rev. Dis. Primers. 2 (2016) 16018, https://doi.org/10.1038/nrdp.2016.18.

[12] J. Bruix, G.J. Gores, V. Mazzaferro, Hepatocellular carcinoma: clinical frontiers and perspectives, Gut 63 (2014) 844–855, https://doi.org/10.1136/gutjnl-2013-306627.

[13] J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D.M. Parkin, M. Piñeros, A. Znaor, F. Bray, Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods, Int. J. Canc. 144 (2019) 1941–1953, https://doi. org/10.1002/ijc.31937.

[14] M. Natsuizaka, T. Omura, T. Akaike, Y. Kuwata, K. Yamazaki, T. Sato, Y. Karino, J. Toyota, T. Suga, M. Asaka, Clinical features of hepatocellular carcinoma with extrahepatic metastases, J. Gastroenterol. Hepatol. 11 (2005) 1781–1787, https:// doi.org/10.1111/j.1440-1746.2005.03919.x.

[15] D.B. Sneag, K. Krajewski, A. Giardino, K.N. O'Regan, A.B. Shinagare, J.P. Jagannathan, N. Ramaiya, Extrahepatic spread of hepatocellular carcinoma: spectrum of imaging findings, AJR Am. J. Roentgenol. 197 (2011) W658–W664, https://doi.org/10.2214/AJR.10.6402.

[16] C. Toso, G. Mentha, P. Majno, Liver transplantation for hepatocellular carcinoma: five steps to prevent recurrence, Am. J. Transplant. 11 (2011) 2031–2035, https:// doi.org/10.1111/j.1600-6143.2011.03689.x.

[17] Y. Zhang, Z.L. Shi, X. Yang, Z.F. Yin, Targeting of circulating hepatocellular car- cinoma cells to prevent postoperative recurrence and metastasis, World J. Gastroenterol. 20 (2014) 142–147, https://doi.org/10.3748/wjg.v20.i1.142.

[18] L. Zender, A. Villanueva, V. Tovar, D. Sia, D.Y. Chiang, J.M. Llovet, Cancer gene discovery in hepatocellular carcinoma, J. Hepatol. 52 (2010) 921–929, https://doi. org/10.1016/j.jhep.2009.12.034.

[19] J. Muntané, A.J. De la Rosa, F. Docobo, R. García-Carbonero, F.J. Padillo, Targeting tyrosine kinase receptors in hepatocellular carcinoma, Curr. Cancer Drug Targets 13 (2013) 300–312, https://doi.org/10.2174/15680096113139990075.

[20] K. Matsumoto, M. Umitsu, D.M. De Silva, A. Roy, D.P. Bottaro, Hepatocyte growth factor/MET in cancer progression and biomarker discovery, Canc. Sci. 108 (2017) 296–307, https://doi.org/10.1111/cas.13156.

[21] L.X. Qin, Z.Y. Tang, The prognostic molecular markers in hepatocellular carcinoma, World J. Gastroenterol. 8 (2002) 385–392, https://doi.org/10.3748/wjg.v8.i2.193.

[22] P. Huang, X. Xu, L. Wang, B. Zhu, X. Wang, J. Xia, The role of EGF-EGFR signalling pathway in hepatocellular carcinoma inflammatory microenvironment, J. Cell Mol. Med. 18 (2014) 218–230, https://doi.org/10.1111/jcmm.12153.

[23] K. Jaskiewicz, M.R. Chasen, Differential expression of transforming growth factor alpha, adhesions molecules and integrins in primary, metastatic liver tumors and in liver cirrhosis, Anticancer Res. 15 (1995) 559–562.

[24] L. Goyal, M.D. Muzumdar, A.X. Zhu, Targeting the HGF/c-MET pathway in hepa- tocellular carcinoma, Clin. Canc. Res. 19 (2013) 2310–2318, https://doi.org/10. 1158/1078-0432.CCR-12-2791.

[25] R. Matsushima-Nishiwaki, H. Toyoda, R. Takamatsu, E. Yasuda, S. Okuda, A. Maeda, Y. Kaneoka, N. Yoshimi, T. Kumada, O. Kozawa, Heat shock protein 22 (HSPB8) reduces the migration of hepatocellular carcinoma cells through the sup- pression of the phosphoinositide 3-kinase (PI3K)/AKT pathway, Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1863 (2017) 1629–1639, https://doi.org/10.1016/j. bbadis.2017.04.021.

[26] R. Matsushima-Nishiwaki, N. Yamada, K. Fukuchi, O. Kozawa, Sphingosine 1- phosphate (S1P) reduces hepatocyte growth factor-induced migration of hepato- cellular carcinoma cells via S1P receptor 2, PloS One 13 (2018) e0209050, , https:// doi.org/10.1371/journal.pone.0209050.

[27] R. Matsushima-Nishiwaki, H. Toyoda, T. Nagasawa, E. Yasuda, N. Chiba, S. Okuda, A. Maeda, Y. Kaneoka, T. Kumada, O. Kozawa, Phosphorylated heat shock protein 20 (HSPB6) regulates transforming growth factor-α-induced migration and invasion of hepatocellular carcinoma cells, PloS One 11 (2016) e0151907, , https://doi.org/ 10.1371/journal.pone.0151907.

[28] N. Yamada, R. Matsushima-Nishiwaki, A. Masue, K. Taguchi, O. Kozawa, Olive oil polyphenols suppress the TGF-α-induced migration of hepatocellular carcinoma cells, Biomed. Rep. 1 (2019) 1–5, https://doi.org/10.3892/br.2019.1215.

[29] M. Li, J. Chen, X. Yu, S. Xu, D. Li, Q. Zheng, Y. Yin, Myricetin suppresses the propagation of hepatocellular carcinoma via down-regulating expression of YAP, Cells 8 (2019) 358, https://doi.org/10.3390/cells8040358.

[30] H. Nakabayashi, K. Taketa, K. Miyano, T. Yamane, J. Sato, Growth of human he- patoma cell lines with differentiated functions in chemically defined medium, Canc. Res. 42 (1982) 3858–3863 doi: Published September 1982.

[31] U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680–685, https://doi.org/10.1038/ 227680a0.

[32] J.J. Hoffmann, J.R. Cole, Phytochemical investigation of Adenium obesum Forskal (Apocynaceae): isolation and identification of cytotoxic agents, J. Pharmaceut. Sci. 66 (1977) 1336–1338, https://doi.org/10.1002/jps.2600660935.

[33] K. Breuhahn, T. Longerich, P. Schirmacher, Dysregulation of growth factor sig- naling in human hepatocellular carcinoma, Oncogene 25 (2006) 3787–3800, https://doi.org/10.1038/sj.onc.1209556.

[34] C.J. Vlahos, W.F. Matter, K.Y. Hui, R.F. Brown, A specific inhibitor of phosphati- dylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), J. Biol. Chem. 269 (1994) 5241–5248.

[35] H. Hayashi, Y. Nishioka, S. Kamohara, F. Kanai, K. Ishii, Y. Fukui, F. Shibasaki, T. Takenawa, H. Kido, N. Katsunuma, Y. Ebina, The α-type 85-kDa subunit of phosphatidylinositol 3-kinase is phosphorylated at tyrosines 368, 580, and 607 by the insulin receptor, J. Biol. Chem. 268 (1993) 7107–7117.

[36] M. Tu, Y. Li, C. Zeng, Z. Deng, S. Gao, W. Xiao, W. Luo, W. Jiang, L. Li, G. Lei, MicroRNA-127-5p regulates osteopontin expression and osteopontin-mediated proliferation of human chondrocytes, Sci. Rep. 6 (2016) 25032, https://doi.org/10. 1038/srep25032.

[37] G. Giannelli, P. Koudelkova, F. Dituri, W. Mikulits, Role of epithelial to mesench- ymal transition in hepatocellular carcinoma, J. Hepatol. 65 (2016) 798–808, https://doi.org/10.1016/j.jhep.2016.05.007.

[38] B.N. Smith, N.A. Bhowmick, Role of EMT in metastasis and therapy resistance, J. Clin. Med. 5 (2016), https://doi.org/10.3390/jcm5020017 pii: E17.

[39] J.L. Huang, S.W. Cao, Q.S. Ou, B. Yang, S.H. Zheng, J. Tang, J. Chen, Y.W. Hu, L. Zheng, Q. Wang, The long non-coding RNA PTTG3P promotes cell growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in hepato- cellular carcinoma, Mol. Canc. 17 (2018) 93, https://doi.org/10.1186/s12943-018- 0841-x.

[40] H. Zou, Y. Zheng, W. Ge, S. Wang, X. Mou, Synergistic anti-tumour effects of quercetin and oncolytic adenovirus expressing TRAIL in human hepatocellular carcinoma, Sci. Rep. 8 (2018) 2182, https://doi.org/10.1038/s41598-018-20213-7.

[41] Y. Ji, L. Li, Y.X. Ma, W.T. Li, L. Li, H.Z. Zhu, M.H. Wu, J.R. Zhou, Quercetin inhibits growth of hepatocellular carcinoma by apoptosis induction in part via autophagy stimulation in mice, J. Nutr. Biochem. 69 (2019) 108–119, https://doi.org/10. 1016/j.jnutbio.2019.03.018.

[42] R. Wang, H. Zhang, Y. Wang, F. Song, Y. Yuan, Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling, Int. Immunopharm. 47 (2017) 126–133, https://doi.org/10. 1016/j.intimp.2017.03.029.

[43] I. Vivanco, C.L. Sawyers, The phosphatidylinositol 3-kinase-AKT pathway in human cancer, Nat. Rev. Canc. 2 (2002) 489–501, https://doi.org/10.1038/nrc839.

[44] Y. Chen, B.C. Wang, Y. Xiao, PI3K: a potential therapeutic target for cancer, J. Cell. Physiol. 227 (2012) 2818–2821, https://doi.org/10.1002/jcp23038.

[45] F. Fang, T. Song, T. Zhang, Y. Cui, G. Zhang, Q. Xiong, MiR-425-5p promotes in- vasion and metastasis of hepatocellular carcinoma cells through SCAI-mediated dysregulation of multiple signaling pathways, Oncotarget 8 (2017) 31745–31757, https://doi.org/10.18632/oncotarget.15958.

[46] Y. Han, M. Chen, A. Wang, X. Fan, STAT3-induced upregulation of lncRNA CASC11 promotes the cell migration, invasion and epithelial-mesenchymal transition in hepatocellular carcinoma by epigenetically silencing PTEN and activating PI3K/ AKT signaling pathway, Biochem. Biophys. Res. Commun. 508 (2019) 472–479, https://doi.org/10.1016/j.bbrc.2018.11.092.

[47] R. Mayoral, A. Fernández-Martínez, L. Boscá, P. Martin-Sanz, Prostaglandin E2 promotes migration and adhesion in hepatocellular carcinoma cells, Carcinogenesis 26 (2005) 753–761, https://doi.org/10.1093/carcin/bgi022.

[48] W.H. Hsu, H.L. Chiou, C.L. Lin, S.H. Kao, H.L. Lee, C.J. Liu, Y.H. Hsieh, Metastasis- associated protein 2 regulates human hepatocellular carcinoma metastasis pro- gression through modulating p38MAPK/MMP pathways, J. Canc. 10 (2019) 6716–6725, https://doi.org/10.7150/jca.35626.

[49] L. Wu, J. Li, T. Liu, S. Li, J. Feng, Q. Yu, J. Zhang, J. Chen, Y. Zhou, J. Ji, K. Chen, Y. Mao, F. Wang, W. Dai, X. Fan, J. Wu, C. Guo, Quercetin shows anti-tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway, Cancer Med. 8 (2019) 4806–4820, https://doi.org/10.1002/cam4.2388.

[50] R. Zamora-Ros, V. Fedirko, A. Trichopoulou, C.A. González, C. Bamia, E. Trepo, U. Nöthlings, T. Duarte-Salles, M. Serafini, L. Bredsdorff, K. Overvad, A. Tjønneland, J. Halkjær, G. Fagherazzi, F. Perquier, M.-C. Boutron-Ruault, V. Katzke, A. Lukanova, A. Floegel, H. Boeing, P. Lagiou, D. Trichopoulos, C. Saieva, C. Agnoli, A. Mattiello, R. Tumino, C. Sacerdote, H.B. Bueno-de-Mesquita, P.H.M. Peeters, E. Weiderpass, D. Engeset, G. Skeie, M.V. Argüelles, E. Molina- Montes, M. Dorronsoro, M.J. Tormo, E. Ardnaz, U. Ericson, E. Sonestedt, M. Sund, R. Landberg, K.-T. Khaw, N.J. Wareham, F.L. Crowe, E. Riboli, M. Jenab, Dietary flavonoid, lignan and antioxidant capacity and risk of hepatocellular carcinoma in the European prospective investigation into cancer and nutrition study, Int. J. Canc. 133 (2013) 2429–2443, https://doi.org/10.1002/ijc.28257.

[51] L. Jia, S. Huang, X. Yin, Y. Zan, Y. Guo, L. Han, Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated au- tophagy induction, Life Sci. 208 (2018) 123–130, https://doi.org/10.1016/j.lfs. 2018.07.027.

[52] F.A. Bhat, G. Sharmila, S. Balakrishnan, R. Arunkumar, P. Elumalai, S. Suganya, P. Raja Singh, N. Srinivasan, J. Arunakaran, Quercetin reverses EGF-induced epi- thelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway, J. Nutr. Biochem. 25 (2014) 1132–1139, https:// doi.org/10.1016/j.jnutbio.2014.06.008.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る