リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Formation and desorption of nickel hexafluoroacetylacetonate Ni(hfac)2on a nickel oxide surface in atomic layer etching processes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Formation and desorption of nickel hexafluoroacetylacetonate Ni(hfac)2on a nickel oxide surface in atomic layer etching processes

Basher, Abdulrahman H. 大阪大学

2020.09

概要

Thermal atomic layer etching (ALE) of nickel (Ni) may be performed with a step of thin-layer oxidation of its surface and another step of its removal by gas-phase hexafluoroacetylacetone (hfacH) as an etchant. In this study, adsorption of hfacH and possible formation of volatile nickel hexafluoroacetylacetonate Ni(hfac)2 on a NiO surface were investigated based on the density functional theory (DFT) with more realistic surface material models than those used in the previous study [A. H. Basher et al., J. Vac. Sci. Technol. A 38, 022610 (2020)]. It has been confirmed that an hfacH molecule approaching a NiO surface deprotonates without a potential barrier and adsorbs on the surface exothermically. In addition, stable adsorption of two deprotonated hfacH molecules on a NiO (100) surface was found to occur not on a single Ni atom but over a few Ni atoms instead, which makes the formation of a Ni(hfac)2 complex on the flat surface very unlikely even at elevated temperature. However, if the surface is rough and a Ni atom protrudes from the surrounding atoms, two hexafluoroacetylacetonate anions (hfac-) can bond to the Ni atom stably, which suggests a possibility of desorption of a Ni(hfac)2 complex from the surface at elevated temperature. Given the experimentally observed fact that desorption of Ni(hfac)2 complexes typically takes place on a NiO surface at a temperature of ∼300-400 °C, our DFT calculations indicate that the surface roughness of an oxidized Ni surface facilitates the formation and desorption of organometallic complexes Ni(hfac)2, and therefore, the resulting Ni surface after ALE can be smoother than the initial surface.

この論文で使われている画像

参考文献

1 A. H. Basher, M. Krsti , T. Takeuchi, M. Isobe, T. Ito, M. Kiuchi, K. Karahashi, W. Wenzel, and S. Hamaguchi, J. Vac. Sci. Technol. A 38, 022610 (2020).

2 G. S. Oehrlein and S. Hamaguchi, Plasma Sources Sci. Technol. 27, 023001 (2018).

3 G. Yuan, N. Wang, S. Huang, and J. Liu, “A brief overview of atomic layer dep- osition and etching in the semiconductor processing,” 2016 17th International Conference on Electronic Packaging Technology, Wuhan, Hubei, China, 16–19 August 2016 (ICEPT, Wuhan, 2016), pp. 1365–1368.

4 D. Metzler, R. L. Bruce, S. Engelmann, E. A. Joseph, and G. S. Oehrlein, J. Vac. Sci. Technol. A 32, 020603 (2014).

5 S. M. George, Chem. Rev. 110, 111 (2010).

6 A. Agarwal and M. J. Kushner, J. Vac. Sci. Technol. A 27, 37 (2009).

7 S. Rauf, T. Sparks, P. L. G. Ventzek, V. V. Smirnov, A. V. Stengach, K. G. Gaynullin, and V. A. Pavlovsky, J. Appl. Phys. 101, 033308 (2007).

8 A. Fischer, A. Routzahn, Y. Lee, T. Lill, and S. M. George, J. Vac. Sci. Technol. A 38, 022603 (2020).

9 K. J. Kanarik, T. Lill, E. A. Hudson, S. Sriraman, S. Tan, J. Marks, V. Vahedi, and R. A. Gottscho, J. Vac. Sci. Technol. A 33, 020802 (2015).

10 K. J. Kanarik, S. Tan, and R. A. Gottscho, J. Phys. Chem. Lett. 9, 4814 (2018).

11 P. C. Lemaire and G. N. Parsons, Chem. Mater. 29, 6653 (2017).

12 M. A. George, D. W. Hess, S. E. Beck, K. Young, D. A. Bohling, G. Voloshin, and A. P. Lane, J. Electrochem. Soc. 143, 3257 (1996).

13 T. Matsuura, J. Murota, Y. Sawada, and T. Ohmi, Appl. Phys. Lett. 63, 2803 (1993).

14 Y. Aoyagi, K. Shinmura, K. Kawasaki, T. Tanaka, K. Gamo, S. Namba, and I. Nakamoto, Appl. Phys. Lett. 60, 968 (1992).

15 P. Walker and W. H. Tarn, Handbook of Metal Etchants (CRC, Boca Raton, FL, 1991).

16 Y. Horiike, T. Tanaka, M. Nakano, S. Iseda, H. Sakaue, A. Nagata, H. Shindo, S. Miyazaki, and M. Hirose, J. Vac. Sci. Technol. A 8, 1844 (1990).

17 M. N. Yoder, U.S. Patent 4,756,794 (12 July 1988).

18 C. T. Carver, J. J. Plombon, P. E. Romero, S. Suri, T. A. Tronic, and R. B. Turkot, ECS J. Solid State Sci. Technol. 4, N5005 (2015).

19 W. Boullart, D. Radisic, V. Paraschiv, S. Cornelissen, M. Manfrini, K. Yatsuda, E. Nishimura, T. Ohishi, and S. Tahara, Proc. SPIE 8685, 86850F (2013).

20 H. L. Nigg and R. I. Masel, J. Vac. Sci. Technol. A 17, 3477 (1999).

21 Y. Lee and S. M. George, J. Phys. Chem. C 123, 18455 (2019).

22 S. M. George and Y. Lee, ACS Nano 10, 4889 (2016).

23 J. Zhao, M. Konh, and A. V. Teplyakov, Appl. Surf. Sci. 455, 438 (2018).

24 T. Ito, K. Karahashi, and S. Hamaguchi, in Proceedings of the 39th International Symposium on Dry Process, Tokyo, Japan, 16–17 November 2017, Vol. E-4, p. 45.

25 A. I. Abdulagatov and S. M. George, J. Vac. Sci. Technol. A 38, 022607 (2020).

26 M. Konh, C. He, X. Lin, X. Guo, V. Pallem, R. Opila, A. Teplyakov, Z. Wang, and B. Yuan, J. Vac. Sci. Technol. A 37, 021004 (2019).

27 J. K. Chen, N. D. Altieri, T. Kim, E. Chen, T. Lill, M. Shen, and J. P. Chang, J. Vac. Sci. Technol. A 35, 05C305 (2017).

28 J. K. Chen, T. Kim, N. D. Altieri, E. Chen, and J. P. Chang, J. Vac. Sci. Technol. A 35, 031304 (2017).

29 TURBOMOLE V7.3.1 2018, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; see: http://www.turbomole.com

30 H. Li et al., J. Vac. Sci. Technol. A 35, 05C303 (2017).

31 K. Fink, J. Phys. Chem. Chem. Phys. 7, 2999 (2005).

32 V. Butera and M. C. Toroker, Materials 10, 480 (2017).

33 V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides (Cambridge University, Cambridge, 1994).

34 S. Nakagomi, T. Yasuda, and Y. Kokubun, Phys. Status Solidi B 257, 1900669 (2019).

35 K. Persson, Materials Data on NiO (SG:225) by Materials Project. United States: N. P., 2014.

36 T. Archer et al., Phys. Rev. B 84, 115114 (2011).

37 D. Ködderitzsch, W. Hergert, W. M. Temmerman, Z. Szotek, A. Ernst, and H. Winter, Phys. Rev. B 66, 064434 (2002).

38 J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).

39 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

40 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

41 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

42 A. Schäfer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).

43 F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs, Chem. Phys. Lett. 294, 143 (1998).

44 S. Grimme, S. Ehrlich, and L. Goerigk, Theory. J. Comput. Chem. 32, 1456 (2011).

45 S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

46 E. R. Johnson and A. D. Becke, J. Chem. Phys. 123, 024101 (2005).

47 F. Weigend and A. Baldes, J. Chem. Phys. 133, 174102 (2010).

48 K. Eichkorn, F. Weigend, O. Treutler, and R. Ahlrichs, Theor. Chem. Acc. 97, 119 (1997).

49 K. Eichkorn, O. Treutler, H. Öhm, M. Häser, and R. Ahlrichs, Chem. Phys. Lett. 242, 652 (1995).

50 M. Sierka, A. Hogekamp, and R. Ahlrichs, J. Chem. Phys. 118, 9136 (2003).

51 H. Kung and A. Teplyakov, J. Catalysis 330, 145 (2015).

52 D. L. Howard, H. G. Kjaergaard, J. Huang, and M. Meuwly, J. Phys. Chem. A 119, 7980 (2015).

53 S. Engmann, B. Ómarsson, M. Lacko, M. Stano, Š. Matejcík, and O. Ingólfsson, J. Chem. Phys. 138, 234309 (2013).

54 K. Manbeck, N. Boaz, N. Bair, A. Sanders, and A. Marsh, J. Chem. Educ. 88, 1444 (2011).

55 M. da Silva, L. Santos, and E. Giera, J. Chem. Thermodyn. 39, 361 (2007).

56 M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).

57 P. Verma and D. G. Truhlar, Theor. Chem. Acc. 135, 182 (2016).

58 P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).

59 S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

60 V. Vetere, C. Adamo, and P. Maldivi, Chem. Phys. Lett. 325, 99 (2000).

61 C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

62 A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

63 See supplementary material at https://doi.org/10.1116/6.0000293 for the Mulliken partial charge distribution state of Fig. 5 and the energy diagram of Fig. 10 including a similar H2O desorption state.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る