リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Epithelial-to-mesenchymal transition, inflammation, subsequent collagen production, and reduced proteinase expression cooperatively contribute to cyclosporin-A-induced gingival overgrowth development」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Epithelial-to-mesenchymal transition, inflammation, subsequent collagen production, and reduced proteinase expression cooperatively contribute to cyclosporin-A-induced gingival overgrowth development

Imagawa, Mio 今川, 澪 イマガワ, ミオ Shinjo, Takanori 新城, 尊徳 シンジョウ, タカノリ Sato, Kohei 佐藤, 晃平 サトウ, コウヘイ Kawakami, Kentaro 川上, 賢太郎 カワカミ, ケンタロウ Zeze, Tatsuro 瀬々, 起朗 ゼゼ, タツロウ Nishimura, Yuki 西村, 優輝 ニシムラ, ユウキ Toyoda, Masaaki 豊田, 真顕 トヨダ, マサアキ Chen, Shuang 陳, 爽 チン, ソウ Ryo, Naoaki 梁, 尚陽 リョウ, ナオアキ Ahmed, Al-kafee Iwashita, Misaki 岩下, 未咲 イワシタ, ミサキ Yamashita, Akiko 山下, 明子 ヤマシタ, アキコ Fukuda, Takao 福田, 隆男 フクダ, タカオ Sanui, Terukazu 讃井, 彰一 サヌイ, テルカズ Nishimura, Fusanori 西村, 英紀 ニシムラ, フサノリ 九州大学

2023.12.13

概要

Drug-induced gingival overgrowth (DIGO), induced by certain immunosuppressive drugs, antihypertensive agents, and antiepileptic drugs, may contribute to the formation of deeper periodontal pockets and

この論文で使われている画像

参考文献

Hayashi, C., Fukuda, T., Kawakami, K., Toyoda, M., Nakao, Y., Watanabe, Y., et al.

(2022). miR-1260b inhibits periodontal bone loss by targeting ATF6β mediated

regulation of ER stress. Front. Cell Dev. Biol. 10, 1061216. doi:10.3389/fcell.2022.

1061216

Alshargabi, R., Sano, T., Yamashita, A., Takano, A., Sanada, T., Iwashita, M., et al.

(2020). SPOCK1 is a novel inducer of epithelial to mesenchymal transition in druginduced gingival overgrowth. Sci. Rep. 10, 9785. doi:10.1038/s41598-020-66660-z

Assaggaf, M. A., Kantarci, A., Sume, S. S., and Trackman, P. C. (2015). Prevention of

phenytoin-induced gingival overgrowth by lovastatin in mice. Am. J. Pathol. 185,

1588–1599. doi:10.1016/j.ajpath.2015.02.004

Kharazmi, A., Svenson, M., Nielsen, H., and Birgens, H. S. (1985). Effect of

cyclosporin A on human neutrophil and monocyte function. Scand. J. Immunol. 21:

585–591. doi:10.1111/j.1365-3083.1985.tb01848.x

Birkedal-Hansen, H. (1993). Role of cytokines and inflammatory mediators in tissue

destruction. J. Periodontal Res. 28, 500–510. doi:10.1111/j.1600-0765.1993.tb02113.x

Kim, A. R., Kim, J. H., Choi, Y. H., Jeon, Y. E., Cha, J. H., Bak, E. J., et al. (2020). The

presence of neutrophils causes RANKL expression in periodontal tissue, giving rise to

osteoclast formation. J. Periodontal Res. 6, 868–876. doi:10.1111/jre.12779

Bocock, J. P., Edgell, C. J. S., Marr, H. S., and Erickson, A. H. (2003). Human

proteoglycan testican-1 inhibits the lysosomal cysteine protease cathepsin L. Eur.

J. Biochem. 270, 4008–4015. doi:10.1046/j.1432-1033.2003.03789.x

Kim, J. H., Jin, H. M., Kim, K., Song, I., Youn, B. U., Matsuo, K., et al. (2009). The

mechanism of osteoclast differentiation induced by IL-1. J. Immunol. 183:1862–1870.

doi:10.4049/jimmunol.0803007

Bullon, P., Gallardo, I., Goteri, G., Rubini, C., Battino, M., Ribas, J., et al. (2007).

Nifedipine and cyclosporin affect fibroblast calcium and gingiva. J. Dent. Res. 86,

357–362. doi:10.1177/154405910708600411

Kobayashi, T., Momoi, Y., and Iwasaki, T. (2007). Cyclosporine A inhibits the mRNA

expressions of IL-2, IL-4 and IFN-gamma, but not TNF-alpha, in canine mononuclear

cells. J. Vet. Med. Sci. 69, 887–892. doi:10.1292/jvms.69.887

Chen, M. Z., Dai, X. F., Sun, Y., Yu, Y. C., and Yang, F. (2023). Cyclosporine

A-induced gingival overgrowth in renal transplant patients accompanied by epithelialto-mesenchymal transition. J. Periodontal Res. 58, 511–519. doi:10.1111/jre.13115

Kose, S., Kaya, F. A., Kuskonmaz, B., and Cetinkaya, D. U. (2019). Characterization of

mesenchymal stem cells in mucolipidosis type II (I-cell disease). Turk J. Biol. 43,

171–178. doi:10.3906/biy-1902-20

Chojnacka-Purpurowicz, J., Wygonowska, E., Placek, W., and Owczarczyk-Saczonek,

A. (2022). Cyclosporine-induced gingival overgrowth-Review. Dermatol Ther. 35,

e15912. doi:10.1111/dth.15912

Kuo, P. J., Tu, H. P., Chin, Y. T., Lu, S. H., Chiang, C. Y., Chen, R. Y., et al. (2012).

Cyclosporine-A inhibits MMP-2 and -9 activities in the presence of Porphyromonas

gingivalis lipopolysaccharide: an experiment in human gingival fibroblast and

U937 macrophage co-culture. J. Periodontal Res. 47, 431–438. doi:10.1111/j.16000765.2011.01450.x

Cui, X., Wang, Y., Lan, W., Wang, S., Cui, Y., Zhang, X., et al. (2022).

SPOCK1 promotes metastasis in pancreatic cancer via NF-κB-dependent epithelialmesenchymal transition by interacting with IκB-α. Cell Oncol. (Dordr) 45, 69–84. doi:10.

1007/s13402-021-00652-7

Li, Y., Chen, L., Chan, T. H., Liu, M., Kong, K. L., Qiu, J. L., et al. (2013). SPOCK1 is

regulated by CHD1L and blocks apoptosis and promotes HCC cell invasiveness and

metastasis in mice. Gastroenterology 144, 179–191. doi:10.1053/j.gastro.2012.09.042

Drozdzik, A., and Drozdzik, M. (2023). Drug-induced gingival overgrowth-molecular

aspects of drug actions. Int. J. Mol. Sci. 24, 5448. doi:10.3390/ijms24065448

Fang, L., and Tan, B. C. (2021). Clinical presentation and management of druginduced gingival overgrowth: a case series. World J. Clin. Cases 9, 9926–9934. doi:10.

12998/wjcc.v9.i32.9926

Lieberman, A., Barrett, R., Kim, J., Zhang, K. J., Avery, D., Monslow, J., et al. (2019).

Deletion of calcineurin promotes a protumorigenic fibroblast phenotype. Cancer Res.

79, 3928–3939. doi:10.1158/0008-5472.CAN-19-0056

Fernandes, M. I., Gaio, E. J., Susin, C., Rösing, C. K., Oppermann, R. V., and Rados, P.

V. (2010). Effect of nifedipine on gingival enlargement and periodontal breakdown in

ligature-induced periodontitis in rats. Arch. Oral Biol. 55, 523–529. doi:10.1016/j.

archoralbio.2010.05.003

Liu, H. X., Cao, Y. Y., and Qu, J. Y. (2021). SPOCK1 promotes the proliferation and

migration of colon cancer cells by regulating the NF-κB pathway and inducing EMT.

Neoplasma 68 (4), 702–710. doi:10.4149/neo_2021_201031N1158

Liu, Y., Peng, Q., Liu, B., Wang, Z., and Cao, Q. (2022). Er,Cr:YSGG laser therapy for

drug-induced gingival overgrowth: a report of two case series. Front. Surg. 9, 922649.

doi:10.3389/fsurg.2022.922649

Francis, C. E., and Bai, Y. (2018). Differential expression of cyclosporine A-Induced

calcineurin isoform-specific matrix metalloproteinase 9 (MMP-9) in renal

fibroblasts. Biochem. Biophys. Res. Commun. 503, 2549–2554. doi:10.1016/j.bbrc.

2018.07.014

Marchesan, J., Girnary, M. S., Jing, L., Miao, M. Z., Zhang, S., Sun, L., et al. (2018). An

experimental murine model to study periodontitis. Nat. Protoc. 13, 2247–2267. doi:10.

1038/s41596-018-0035-4

Gordon, G. M., Ledee, D. L., Feuer, W. J., and Fini, M. E. (2009). Cytokines and

signaling pathways regulating matrix metalloproteinase-9 (MMP-9) expression in

corneal epithelial cells. J. Cell Physiol. 221, 402–411. doi:10.1002/jcp.21869

Marx, M., Weber, W., Merkel, F., Meyer zum Buschenfelde, K. H., and Kohler, H.

(1990). Additive effects of calcium antagonists on cyclosporin A-induced inhibition

of T-cell proliferation. Nephrol. Dial. Transpl. 5, 1038–1044. doi:10.1093/ndt/5.12.

1038

Grinyo, J. M., Cruzado, J. M., Millan, O., Caldes, A., Sabate, I., Gi-vernet, S., et al.

(2004). Low-dose cyclosporine with mycophenolate mofetil induces similar calcineurin

activity and cytokine inhibition as does standard-dose cyclosporine in stable renal

allografts. Transplantation 78, 1400–1403. doi:10.1097/01.tp.0000141227.63639.63

Matsuda, S., Okanobu, A., Hatano, S., Kajiya, M., Sasaki, S., Hamamoto, Y., et al.

(2019). Relationship between periodontal inflammation and calcium channel blockers

induced gingival overgrowth-across-sectional study in a Japanese population. Clin. Oral

Investig. 23, 4099–4105. doi:10.1007/s00784-019-02846-8

Hallmon, W. W., and Rossmann, J. A. (1999). The role of drugs in the pathogenesis of

gingival overgrowth. A collective review of current concepts. Periodontol. 21, 176–196.

doi:10.1111/j.1600-0757.1999.tb00175.x

Medyouf, H., Alcalde, H., Berthier, C., Guillemin, M. C., dos Santos, N. R., Janin, A.,

et al. (2007). Targeting calcineurin activation as a therapeutic strategy for T-cell acute

lymphoblastic leukemia. Nat. Med. 13, 736–741. doi:10.1038/nm1588

Hatano, S., Matsuda, S., Okanobu, A., Furutama, D., Memida, T., Kajiya, H., et al.

(2021). The role of nuclear receptor 4A1 (NR4A1) in drug-induced gingival overgrowth.

FASEB J. 35, e21693. doi:10.1096/fj.202100032R

Frontiers in Physiology

15

frontiersin.org

Imagawa et al.

10.3389/fphys.2023.1298813

and diabetes-related periodontitis in male mice. Diabetes 72, 986–998. doi:10.2337/

db22-1014

Nishikawa, S., Nagata, T., Morisaki, I., Oka, T., and Ishida, H. (1996). Pathogenesis of

drug-induced gingival overgrowth. A review of studies in the rat model. J. Periodontol.

67, 463–471. doi:10.1902/jop.1996.67.5.463

Sousa, C. P., Navarro, C. M., and Sposto, M. R. (2011). Clinical assessment of

nifedipine-induced gingival overgrowth in a group of brazilian patients. ISRN Dent.

2011, 102047. doi:10.5402/2011/102047

Nishimura, F., Naruishi, H., Naruishi, K., Yamada, T., Sasaki, J., Peters, C., et al.

(2002). Cathepsin-L, a key molecule in the pathogenesis of drug-induced and I-cell

disease-mediated gingival overgrowth: a study with cathepsin-L-deficient mice. Am.

J. Pathol. 161, 2047–2052. doi:10.1016/S0002-9440(10)64483-5

Subramani, T., Rathnavelu, V., and Alitheen, N. B. (2013). The possible potential

therapeutic targets for drug induced gingival overgrowth. Mediat. Inflamm. 2013,

639468. doi:10.1155/2013/639468

Nishiyama, S., Manabe, N., Kubota, Y., Ohnishi, H., Kitanaka, A., Tokuda, M., et al.

(2004). Cyclosporin A inhibits the early phase of NF-kappaB/RelA activation induced

by CD28 costimulatory signaling to reduce the IL-2 expression in human peripheral

T cells. Int. Immunopharmacol. 5, 699–710. doi:10.1016/j.intimp.2004.11.018

Subramani, T., Rathnavelu, V., Alitheen, N. B., and Padmanabhan, P. (2015). Cellular

crosstalk mechanism of Toll-like receptors in gingival overgrowth (review). Int. J. Mol.

Med. 35 (5), 1151–1158. doi:10.3892/ijmm.2015.2144

Ogawa, K., Chen, F., Kuang, C., and Chen, Y. (2004). Suppression of matrix

metalloproteinase-9 transcription by transforming growth factor-beta is mediated by

a nuclear factor-kappaB site. Biochem. J. 381, 413–422. doi:10.1042/BJ20040058

Takayanagi, H. (2007). The role of NFAT in osteoclast formation. Ann. N. Y. Acad.

Sci. 1116, 227–237. doi:10.1196/annals.1402.071

Uzel, M. I., Kantarci, A., Hong, H. H., Uygur, C., Sheff, M. C., Firatli, E., et al. (2001).

Connective tissue growth factor in drug-induced gingival overgrowth. J. Periodontol. 72:

921–931. doi:10.1902/jop.2001.72.7.921

Okanobu, A., Matsuda, S., Kajiya, M., Fujita, T., Kittaka, M., Shiba, H., et al. (2017). A

novel gingival overgrowth mouse model induced by the combination of CsA and

ligature-induced inflammation. J. Immunol. Methods 445, 31–36. doi:10.1016/j.jim.

2017.03.003

Van Dyke, T. E., Horoszewicz, H. U., Cianciola, L. J., and Genco, R. J. (1980).

Neutrophil chemotaxis dysfunction in human periodontitis. Infect. Immun. 27,

124–132. doi:10.1128/iai.27.1.124-132.1980

Richardson, D. W., and Dodge, G. R. (2000). Effects of interleukin-1beta and tumor

necrosis factor-alpha on expression of matrix-related genes by cultured equine articular

chondrocytes. Am. J. Vet. Res. 61, 624–630. doi:10.2460/ajvr.2000.61.624

Yamada, H., Nishimura, F., Naruishi, K., Chou, H. H., Takashiba, S., Albright, G. M.,

et al. (2000). Phenytoin and cyclosporin A suppress the expression of MMP-1, TIMP-1,

and cathepsin L, but not cathepsin B in cultured gingival fibroblasts. J. Periodontol. 71,

955–960. doi:10.1902/jop.2000.71.6.955

Sharma, R., Das, P., Kairo, A., and Kale, S. S. (2020). Phenytoin-induced gingival

overgrowth with predominant involvement of hard palate and floor of oral cavity: a case

report and review of literature. J. Neurosci. Rural. Pract. 11, 349–352. doi:10.1055/s0040-1709249

Zeze, T., Shinjo, T., Sato, K., Nishimura, Y., Imagawa, M., Chen, S., et al. (2023).

Endothelial insulin resistance exacerbates experimental periodontitis. J. Dent. Res. 14,

1152–1161. doi:10.1177/00220345231181539

Shinjo, T., Onizuka, S., Zaitsu, Y., Ishikado, A., Park, K., Li, Q., et al. (2023).

Dysregulation of CXCL1 expression and neutrophil recruitment in insulin resistance

Frontiers in Physiology

16

frontiersin.org

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る