リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enhancement of developmentally regulated daidzein secretion from soybean roots in field conditions as compared with hydroponic culture」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enhancement of developmentally regulated daidzein secretion from soybean roots in field conditions as compared with hydroponic culture

Toyofuku, Miwako Okutani, Fuki Nakayasu, Masaru Hamamoto, Shoichiro Takase, Hisabumi Yazaki, Kazufumi Sugiyama, Akifumi 京都大学 DOI:10.1093/bbb/zbab017

2021.05

概要

Analyses of metabolite secretions by field-grown plants remain scarce. We analyzed daidzein secretion by field-grown soybean. Daidzein secretion was higher during early vegetative stages than reproductive stages, a trend that was also seen for hydroponically grown soybean. Daidzein secretion was up to 10 000-fold higher under field conditions than hydroponic conditions, leading to a more accurate simulation of rhizosphere daidzein content.

この論文で使われている画像

参考文献

219

[1] Chen Q, Jiang T, Liu YX, et al. Recently duplicated sesterterpene (C25) gene

220

clusters in Arabidopsis thaliana modulate root microbiota. Sci China Life Sci

221

2019;62:L947–L958. https://doi.org/10.1007/s11427-019-9521-2.

16

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

222

[2] Huang AC, Jiang T, Liu YX, et al. A specialized metabolic network selectively

223

modulates Arabidopsis root microbiota. Science 2019;364:eaau6389.

224

https://doi.org/10.1126/science.aau6389.

225

[3] Massalha H, Korenblum E, Tholl D, et al. Small molecules below-ground: The role

226

of specialized metabolites in the rhizosphere. Plant J 2017;90:788–807.

227

https://doi.org/10.1111/tpj.13543.

228

229

230

[4] Andersen OM, and Markham KR. Flavonoids: Chemistry, biochemistry and

applications. CRC Press, Boca Raton, FL 2005.

[5] Cesco S, Neumann G, Tomasi N, et al. Release of plant-borne flavonoids into the

231

rhizosphere and their role in plant nutrition. Plant Soil 2010;329:1–25.

232

https://doi.org/10.1007/s11104-009-0266-9.

233

[6] Cesco S, Mimmo T, Tonon G, et al. Plant-borne flavonoids released into the

234

rhizosphere: Impact on soil bio-activities related to plant nutrition. A review. Biol

235

Fertil Soils 2012;48:123–149. https://doi.org/10.1007/s00374-011-0653-2.

17

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

236

[7] Pii Y, Mimmo T, Tomasi N, et al. Microbial interactions in the rhizosphere:

237

Beneficial influences of plant growth-promoting rhizobacteria on nutrient

238

acquisition process. A review. Biol Fert Soils 2015;51:403–415. Springer Verlag.

239

https://doi.org/10.1007/s00374-015-0996-1.

240

[8] Mazur WM, Duke JA, Wähälä K, et al. Isoflavonoids and lignans in legumes:

241

Nutritional and health aspects in humans. J Nutr Biochem 1998;9(4):193–200.

242

http://sun.ars-grin.gov/ngrlsb/.

243

[9] Kosslak RM, Bookland R, Barkei J, et al. Induction of Bradyrhizobium japonicum

244

common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci

245

U S A 1987;84:7428–7432. https://doi.org/10.1073/pnas.84.21.7428.

246

[10] Dakora FD, Joseph CM, Phillips DA. Alfalfa (Medicago sativa L.) Root exudates

247

contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol

248

1993;101:819–824. https://doi.org/10.1104/pp.101.3.819.

18

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

249

[11] Okutani F, Hamamoto S, Aoki Y, et al. Rhizosphere modelling reveals

250

spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial

251

community. Plant Cell Environ 2020;43:1036–1046.

252

https://doi.org/10.1111/pce.13708.

253

[12] Sugiyama A, Yamazaki Y, Yamashita K, et al. Developmental and nutritional

254

regulation of isoflavone secretion from soybean roots. Biosci Biotechnol Biochem

255

2016;80:89–94. https://doi.org/10.1080/09168451.2015.1062714.

256

[13] Sugiyama A, Yamazaki Y, Hamamoto S, et al. Synthesis and secretion of

257

isoflavones by field-grown soybean. Plant Cell Physiol 2017;58:1594–1600.

258

https://doi.org/10.1093/pcp/pcx084.

259

[14] Phillips RP, Erlitz Y, Bier R, et al. New approach for capturing soluble root

260

exudates in forest soils. Funct Ecol 2008;22:990–999.

261

https://doi.org/10.1111/j.1365-2435.2008.01495.x.

19

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

262

[15] Neumann G, Bott S, Ohler MA, et al. Root exudation and root development of

263

lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front Microbiol

264

2014;5:2. https://doi.org/10.3389/fmicb.2014.00002.

265

266

267

268

269

[16] Oburger E, Jones DL. Sampling root exudates – Mission impossible? Rhizosphere

2018;6:116–133. doi: 10.1016/j.rhisph.2018.06.004.

[17] Fehr WR, Caviness CE. Stages of soybean development. Lowa State University

Press Ames IA 1977. http://lib.dr.iastate.edu/specialreports/87.

[18] Sugiyama A, Ueda Y, Zushi T, et al. Changes in the Bacterial community of

270

soybean rhizospheres during growth in the field. PLoS One 2014;9:100709. doi:

271

10.1371/journal.pone.0100709.

272

[19] Bolaños–Vásquez MC, Werner D. Effects of Rhizobium tropici, R. etli, and R.

273

leguminosarum bv. phaseoli on nod gene-inducing flavonoids in root exudates of

274

Phaseolus vulgaris. Mol Plant Microbe Interact 1997;10:339–346.

275

https://doi.org/10.1094/MPMI.1997.10.3.339.

20

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

276

[20] Matsuda H, Nakayasu M, Aoki Y, et al. Diurnal metabolic regulation of

277

isoflavones and soyasaponins in soybean roots. Plant Direct 2020;4. doi:

278

10.1002/pld3.286.

279

[21] Nakabayashi R, Mori T, Nishizawa T, et al. Temporal lag between gene expression

280

and metabolite accumulation in flavonol biosynthesis of Arabidopsis roots.

281

Phytochem Lett 2017;22:44–48. doi: 10.1016/j.phytol.2017.09.001.

282

[22] Barbour WM, Hattermann DR, Stacey G. Chemotaxis of Bradyrhizobium

283

japonicum to soybean exudates. Appl Environ Microbiol 1991;57:2635–2639. doi:

284

10.1128/aem.57.9.2635-2639.1991.

285

[23] Kuzyakov Y, Razavi BS. Rhizosphere size and shape: Temporal dynamics and

286

spatial stationarity. Soil Biol Biochem 2019;135:343–360. Elsevier Ltd.

287

https://doi.org/10.1016/j.soilbio.2019.05.011.

288

289

[24] Sugiyama A. The soybean rhizosphere: Metabolites, microbes, and beyond—A

review. J Adv Res 2019;19:67–73. hdoi: 10.1016/j.jare.2019.03.005.

21

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

290

[25] Kape R, Parniske M, Werner D. Chemotaxis and nod gene activity of

291

Bradyrhizobium japonicum in response to hydroxycinnamic acids and

292

isoflavonoids. Appl Environ Microbiol 1991;57:316–319 doi:

293

10.1128/aem.57.1.316-319.1991.

294

[26] Korenblum E, Dong Y, Szymanski J, et al. Rhizosphere microbiome mediates

295

systemic root metabolite exudation by root-to-root signaling. Proc Natl Acad Sci U

296

S A. 2020;117:3874–3883. doi: 10.1073/pnas.1912130117.

297

298

22

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る