リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「開放隅角緑内障患者における落屑の有無によるAdvanced Glycation End Productの蓄積状況」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

開放隅角緑内障患者における落屑の有無によるAdvanced Glycation End Productの蓄積状況

白神 智貴 島根大学

2023.06.29

概要

Progressive optic neuropathy and visual field loss characterize glaucoma, a leading cause of
irreversible blindness worldwide [1] including Japan [2]. Intraocular pressure (IOP) elevation is the
primary risk factor of retinal ganglion cell (RGC) axon loss and apoptotic RGC death, and subsequent
glaucomatous optic neuropathy [3]. In open-angle glaucoma (OAG) such as primary OAG (PG) and
glaucoma secondary to pseudoexfoliation syndrome (EX), reduction of aqueous humor outflow at
the trabecular meshwork (TM) is the main reason for the IOP elevation [4]. This can be the result of
TM cells dysfunction and changes in the amount and quality of the extracellular matrix in the TM [5]. ...

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Foster, A.; Resnikoff, S. The impact of Vision 2020 on global blindness. Eye 2005, 19, 1133–1135. [CrossRef]

Iwase, A.; Araie, M.; Tomidokoro, A.; Yamamoto, T.; Shimizu, H.; Kitazawa, Y. Prevalence and causes of low

vision and blindness in a Japanese adult population: The Tajimi Study. Ophthalmology 2006, 113, 1354–1362.

[CrossRef] [PubMed]

Weinreb, R.N.; Khaw, P.T. Primary open-angle glaucoma. Lancet 2004, 363, 1711–1720. [CrossRef]

Alvarado, J.A.; Murphy, C.G. Outflow obstruction in pigmentary and primary open angle glaucoma.

Arch. Ophthalmol. 1992, 110, 1769–1778.

Lütjen-Drecoll, E.; Shimizu, T.; Rohrbach, M.; Rohen, J.W. Quantitative analysis of “plaque material” in the innerand outer wall of Schlemm’s canal in normal- and glaucomatous eyes. Exp. Eye Res. 1986, 42, 443–455. [CrossRef]

Izzotti, A.; Bagnis, A.; Saccà, S.C. The role of oxidative stress in glaucoma. Mutat. Res. 2006, 612, 105–114.

[CrossRef]

Izzotti, A.; Longobardi, M.; Cartiglia, C.; Saccà, S.C. Mitochondrial damage in the trabecular meshwork occurs

only in primary open-angle glaucoma and in pseudoexfoliative glaucoma. PLoS ONE 2011, 6, e14567. [CrossRef]

Takai, Y.; Tanito, M.; Ohira, A. Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle

glaucoma, exfoliation glaucoma, and cataract. Invest. Ophthalmol. Vis. Sci. 2012, 53, 241–247. [PubMed]

Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Status of systemic oxidative stresses in patients with primary

open-angle glaucoma and pseudoexfoliation syndrome. PLoS ONE 2012, 7, e49680. [CrossRef] [PubMed]

Umeno, A.; Tanito, M.; Kaidzu, S.; Takai, Y.; Horie, M.; Yoshida, Y. Comprehensive measurements of

hydroxylinoleate and hydroxyarachidonate isomers in blood samples from primary open-angle glaucoma

patients and controls. Sci. Rep. 2019, 9, 2171. [CrossRef] [PubMed]

Umeno, A.; Tanito, M.; Kaidzu, S.; Takai, Y.; Yoshida, Y. Involvement of free radical-mediated oxidation

in the pathogenesis of pseudoexfoliation syndrome detected based on specific hydroxylinoleate isomers.

Free Radic. Biol. Med. 2020, 147, 61–68. [CrossRef] [PubMed]

Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Correlation between Systemic Oxidative Stress and Intraocular

Pressure Level. PLoS ONE 2015, 10, e0133582. [CrossRef] [PubMed]

Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Association between systemic oxidative stress and visual field

damage in open-angle glaucoma. Sci. Rep. 2016, 6, 25792. [CrossRef] [PubMed]

Yamada, E.; Himori, N.; Kunikata, H.; Omodaka, K.; Ogawa, H.; Ichinose, M.; Nakazawa, T. The relationship

between increased oxidative stress and visual field defect progression in glaucoma patients with sleep

apnoea syndrome. Acta Ophthalmol. 2018, 96, e479–e484. [CrossRef]

Manabe, K.; Kaidzu, S.; Tsutsui, A.; Mochiji, M.; Matsuoka, Y.; Takagi, Y.; Miyamoto, E.; Tanito, M. Effects of

French maritime pine bark/bilberry fruit extracts on intraocular pressure for primary open-angle glaucoma.

J. Clin. Biol. Chem.. (in print). [CrossRef]

Monnier, V.M. Nonenzymatic glycosylation, the Maillard reaction and the aging process. J. Gerontol. 1990,

45, B105–B111. [CrossRef]

Tessier, F.J. The Maillard reaction in the human body. The main discoveries and factors that affect glycation.

Pathol. Biol. 2010, 58, 214–219. [CrossRef]

Verzijl, N.; DeGroot, J.; Thorpe, S.R.; Bank, R.A.; Shaw, J.N.; Lyons, T.J.; Bijlsma, J.W.; Lafeber, F.P.;

Baynes, J.W.; TeKoppele, J.M. Effect of collagen turnover on the accumulation of advanced glycation end

products. J. Biol. Chem. 2000, 275, 39027–39031. [CrossRef]

Meerwaldt, R.; Graaff, R.; Oomen, P.H.N.; Links, T.P.; Jager, J.J.; Alderson, N.L.; Thorpe, S.R.; Baynes, J.W.;

Gans, R.O.B.; Smit, A.J. Simple non-invasive assessment of advanced glycation endproduct accumulation.

Diabetologia 2004, 47, 1324–1330. [CrossRef]

Sugisawa, E.; Miura, J.; Iwamoto, Y.; Uchigata, Y. Skin autofluorescence reflects integration of past long-term

glycemic control in patients with type 1 diabetes. Diabetes Care 2013, 36, 2339–2345. [CrossRef]

Antioxidants 2020, 9, 755

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

9 of 11

Schweitzer, C.; Cougnard-Gregoire, A.; Rigalleau, V.; Dartigues, J.F.; Malet, F.; Rougier, M.B.; Delyfer, M.N.;

Helmer, C.; Korobelnik, J.F.; Delcourt, C. Autofluorescence of Skin Advanced Glycation End Products as a

Risk Factor for Open Angle Glaucoma: The ALIENOR Study. Invest. Ophthalmol. Vis. Sci. 2018, 59, 75–84.

[CrossRef] [PubMed]

Beisswenger, P.J.; Makita, Z.; Curphey, T.J.; Moore, L.L.; Jean, S.; Brinck-Johnsen, T.; Bucala, R.; Vlassara, H.

Formation of immunochemical advanced glycosylation end products precedes and correlates with early

manifestations of renal and retinal disease in diabetes. Diabetes 1995, 44, 824–829. [CrossRef] [PubMed]

Kilhovd, B.K.; Juutilainen, A.; Lehto, S.; Rönnemaa, T.; Torjesen, P.A.; Hanssen, K.F.; Laakso, M. Increased

serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in

women with type 2 diabetes: A population-based 18 year follow-up study. Diabetologia 2007, 50, 1409–1417.

[CrossRef] [PubMed]

Noordzij, M.J.; Mulder, D.J.; Oomen, P.H.; Brouwer, T.; Jager, J.; Castro Cabezas, M.; Lefrandt, J.D.; Smit, A.J.

Skin autofluorescence and risk of micro- and macrovascular complications in patients with Type 2 diabetes

mellitus-a multi-centre study. Diabet. Med. 2012, 29, 1556–1561. [CrossRef]

Meerwaldt, R.; Links, T.P.; Graaff, R.; Hoogenberg, K.; Lefrandt, J.D.; Baynes, J.W.; Gans, R.O.; Smit, A.J.

Increased accumulation of skin advanced glycation end-products precedes and correlates with clinical

manifestation of diabetic neuropathy. Diabetologia 2005, 48, 1637–1644. [CrossRef]

Tabara, Y.; Ikezoe, T.; Yamanaka, M.; Setoh, K.; Segawa, H.; Kawaguchi, T.; Kosugi, S.; Nakayama, T.;

Ichihashi, N.; Tsuboyama, T.; et al. Advanced Glycation End Product Accumulation Is Associated With Low

Skeletal Muscle Mass, Weak Muscle Strength, and Reduced Bone Density: The Nagahama Study. J. Gerontol.

A Biol. Sci. Med. Sci. 2019, 74, 1446–1453. [CrossRef]

Tabara, Y.; Yamanaka, M.; Setoh, K.; Segawa, H.; Kawaguchi, T.; Kosugi, S.; Nakayama, T.; Matsuda, F.

Advanced Glycation End Product Accumulation is Associated with Lower Cognitive Performance in an

Older General Population: The Nagahama Study. J. Alzheimers Dis. 2020, 74, 741–746. [CrossRef]

Nowotny, K.; Jung, T.; Grune, T.; Höhn, A. Accumulation of modified proteins and aggregate formation in

aging. Exp. Gerontol. 2014, 57, 122–131. [CrossRef]

Dyer, D.G.; Dunn, J.A.; Thorpe, S.R.; Bailie, K.E.; Lyons, T.J.; McCance, D.R.; Baynes, J.W. Accumulation

of Maillard reaction products in skin collagen in diabetes and aging. J. Clin. Invest. 1993, 91, 2463–2469.

[CrossRef]

Li, J.; Liu, D.; Sun, L.; Lu, Y.; Zhang, Z. Advanced glycation end products and neurodegenerative diseases:

Mechanisms and perspective. J. Neurol. Sci. 2012, 317, 1–5. [CrossRef]

Kandarakis, S.A.; Piperi, C.; Topouzis, F.; Papavassiliou, A.G. Emerging role of advanced glycation-end

products (AGEs) in the pathobiology of eye diseases. Prog. Retin. Eye Res. 2014, 42, 85–102. [CrossRef]

[PubMed]

Satish Kumar, M.; Mrudula, T.; Mitra, N.; Bhanuprakash Reddy, G. Enhanced degradation and decreased

stability of eye lens alpha-crystallin upon methylglyoxal modification. Exp. Eye Res. 2004, 79, 577–583.

[CrossRef] [PubMed]

Ishibashi, T.; Murata, T.; Hangai, M.; Nagai, R.; Horiuchi, S.; Lopez, P.F.; Hinton, D.R.; Ryan, S.J. Advanced

glycation end products in age-related macular degeneration. Arch. Ophthalmol. 1998, 116, 1629–1632.

[CrossRef] [PubMed]

Tezel, G. Oxidative stress in glaucomatous neurodegeneration: Mechanisms and consequences. Prog. Retin.

Eye Res. 2006, 25, 490–513. [CrossRef]

Hondur, G.; Göktas, E.; Yang, X.; Al-Aswad, L.; Auran, J.D.; Blumberg, D.M.; Cioffi, G.A.; Liebmann, J.M.;

Suh, L.H.; Trief, D.; et al. Oxidative Stress-Related Molecular Biomarker Candidates for Glaucoma.

Investig. Ophthalmol. Vis. Sci. 2017, 58, 4078–4088. [CrossRef]

Amano, S.; Kaji, Y.; Oshika, T.; Oka, T.; Machinami, R.; Nagai, R.; Horiuchi, S. Advanced glycation end

products in human optic nerve head. Br. J. Ophthalmol. 2001, 85, 52–55. [CrossRef]

Tezel, G.; Luo, C.; Yang, X. Accelerated aging in glaucoma: Immunohistochemical assessment of advanced

glycation end products in the human retina and optic nerve head. Invest. Ophthalmol. Vis. Sci. 2007, 48,

1201–1211. [CrossRef]

Bentata, R.; Cougnard-Grégoire, A.; Delyfer, M.N.; Delcourt, C.; Blanco, L.; Pupier, E.; Rougier, M.B.;

Rajaobelina, K.; Hugo, M.; Korobelnik, J.F.; et al. Skin autofluorescence, renal insufficiency and retinopathy

in patients with type 2 diabetes. J. Diabetes Complicat. 2017, 31, 619–623. [CrossRef]

Antioxidants 2020, 9, 755

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

10 of 11

Yasuda, M.; Shimura, M.; Kunikata, H.; Kanazawa, H.; Yasuda, K.; Tanaka, Y.; Konno, H.; Takahashi, M.;

Kokubun, T.; Maruyama, K.; et al. Relationship of skin autofluorescence to severity of retinopathy in type 2

diabetes. Curr. Eye Res. 2015, 40, 338–345. [CrossRef]

Gerrits, E.G.; Lutgers, H.L.; Kleefstra, N.; Graaff, R.; Groenier, K.H.; Smit, A.J.; Gans, R.O.; Bilo, H.J.

Skin autofluorescence: A tool to identify type 2 diabetic patients at risk for developing microvascular

complications. Diabetes Care 2008, 31, 517–521. [CrossRef]

Yamanaka, M.; Matsumura, T.; Ohno, R.; Fujiwara, Y.; Shinagawa, M.; Sugawa, H.; Hatano, K.; Shirakawa, J.;

Kinoshita, H.; Ito, K.; et al. Non-invasive measurement of skin autofluorescence to evaluate diabetic

complications. J. Clin. Biochem. Nutr. 2016, 58, 135–140. [CrossRef] [PubMed]

McIntyre, N.J.; Fluck, R.J.; McIntyre, C.W.; Taal, M.W. Skin autofluorescence and the association with renal and

cardiovascular risk factors in chronic kidney disease stage 3. Clin. J. Am. Soc. Nephrol. 2011, 6, 2356–2363. [CrossRef]

[PubMed]

Den Hollander, N.C.; Mulder, D.J.; Graaff, R.; Thorpe, S.R.; Baynes, J.W.; Smit, G.P.; Smit, A.J. Advanced

glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia. J. Inherit.

Metab. Dis. 2007, 30, 916–923. [CrossRef] [PubMed]

Ahmad, M.S.; Damanhouri, Z.A.; Kimhofer, T.; Mosli, H.H.; Holmes, E. A new gender-specific model for

skin autofluorescence risk stratification. Sci. Rep. 2015, 5, 10198. [CrossRef]

Noordzij, M.J.; Lefrandt, J.D.; Graaff, R.; Smit, A.J. Dermal factors influencing measurement of skin

autofluorescence. Diabetes Technol. Ther. 2011, 13, 165–170. [CrossRef] [PubMed]

Koetsier, M.; Nur, E.; Chunmao, H.; Lutgers, H.L.; Links, T.P.; Smit, A.J.; Rakhorst, G.; Graaff, R. Skin color

independent assessment of aging using skin autofluorescence. Opt. Express 2010, 18, 14416–14429. [CrossRef]

Yue, X.; Hu, H.; Koetsier, M.; Graaff, R.; Han, C. Reference values for the Chinese population of skin

autofluorescence as a marker of advanced glycation end products accumulated in tissue. Diabet. Med. 2011,

28, 818–823. [CrossRef] [PubMed]

Mulder, D.J.; Water, T.V.; Lutgers, H.L.; Graaff, R.; Gans, R.O.; Zijlstra, F.; Smit, A.J. Skin autofluorescence, a

novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: An overview of

current clinical studies, evidence, and limitations. Diabetes Technol. Ther. 2006, 8, 523–535. [CrossRef]

Li, X.; Dinish, U.S.; Aguirre, J.; Bi, R.; Dev, K.; Attia, A.B.E.; Nitkunanantharajah, S.; Lim, Q.H.; Schwarz, M.;

Yew, Y.W.; et al. Optoacoustic mesoscopy analysis and quantitative estimation of specific imaging metrics in

Fitzpatrick skin phototypes II to V. J. Biophotonics 2019, 12, e201800442. [CrossRef]

Chan, I.L.; Cohen, S.; da Cunha, M.G.; Maluf, L.C. Characteristics and management of Asian skin.

Int. J. Dermatol. 2019, 58, 131–143. [CrossRef]

Himori, N.; Kunikata, H.; Kawasaki, R.; Shiga, Y.; Omodaka, K.; Takahashi, H.; Miyata, T.; Nakazawa, T.

The association between skin autofluorescence and mean deviation in patients with open-angle glaucoma.

Br. J. Ophthalmol. 2017, 101, 233–238. [CrossRef] [PubMed]

Himori, N.; Kunikata, H.; Shiga, Y.; Omodaka, K.; Maruyama, K.; Takahashi, H.; Nakazawa, T. The

association between systemic oxidative stress and ocular blood flow in patients with normal-tension

glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 333–341. [CrossRef] [PubMed]

Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44,

129–146. [CrossRef] [PubMed]

Dawczynski, J.; Vater, C.; Kasper, M.; Franke, S.; Augsten, R.; Jurkutat, S.; Strobel, J.; Königsdörffer, E.

Advanced glycation end products and pseudoexfoliation—Correlation between clinical outcome and

histological findings. Klin Monbl Augenheilkd 2006, 223, 748–751. [CrossRef] [PubMed]

Zhou, L.; Li, Y.; Yue, B.Y. Oxidative stress affects cytoskeletal structure and cell-matrix interactions in cells

from an ocular tissue: The trabecular meshwork. J. Cell. Physiol. 1999, 180, 182–189. [CrossRef]

Yoshida, Y.; Umeno, A.; Shichiri, M. Lipid peroxidation biomarkers for evaluating oxidative stress and

assessing antioxidant capacity in vivo. J. Clin. Biochem. Nutr. 2013, 52, 9–16. [CrossRef] [PubMed]

Umeno, A.; Shichiri, M.; Ishida, N.; Hashimoto, Y.; Abe, K.; Kataoka, M.; Yoshino, K.; Hagihara, Y.; Aki, N.;

Funaki, M.; et al. Singlet oxygen induced products of linoleates, 10- and 12-(Z,E)-hydroxyoctadecadienoic

acids (HODE), can be potential biomarkers for early detection of type 2 diabetes. PLoS ONE 2013, 8, e63542.

[CrossRef]

Antioxidants 2020, 9, 755

58.

59.

60.

61.

62.

63.

64.

11 of 11

Thornalley, P.J. Pharmacology of methylglyoxal: Formation, modification of proteins and nucleic acids, and

enzymatic detoxification—A role in pathogenesis and antiproliferative chemotherapy. Gen. Pharmacol. 1996,

27, 565–573. [CrossRef]

Thornalley, P.J.; Westwood, M.; Lo, T.W.; McLellan, A.C. Formation of methylglyoxal-modified proteins

in vitro and in vivo and their involvement in AGE-related processes. Contrib. Nephrol. 1995, 112, 24–31.

[PubMed]

Fu, M.X.; Wells-Knecht, K.J.; Blackledge, J.A.; Lyons, T.J.; Thorpe, S.R.; Baynes, J.W. Glycation, glycoxidation,

and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard

reaction. Diabetes 1994, 43, 676–683. [CrossRef] [PubMed]

Ando, K.; Beppu, M.; Kikugawa, K.; Nagai, R.; Horiuchi, S. Membrane proteins of human erythrocytes are

modified by advanced glycation end products during aging in the circulation. Biochem. Biophys. Res. Commun.

1999, 258, 123–127. [CrossRef] [PubMed]

Fu, M.X.; Requena, J.R.; Jenkins, A.J.; Lyons, T.J.; Baynes, J.W.; Thorpe, S.R. The advanced glycation end

product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions.

J. Biol. Chem. 1996, 271, 9982–9986. [CrossRef] [PubMed]

Nicholl, I.D.; Bucala, R. Advanced glycation endproducts and cigarette smoking. Cell. Mol. Biol. 1998, 44,

1025–1033. [PubMed]

Cerami, C.; Founds, H.; Nicholl, I.; Mitsuhashi, T.; Giordano, D.; Vanpatten, S.; Lee, A.; Al-Abed, Y.;

Vlassara, H.; Bucala, R.; et al. Tobacco smoke is a source of toxic reactive glycation products. Proc. Nat. Acad.

Sci. USA 1997, 94, 13915–13920. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る