リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Continuity of derivatives of a convex solution to a perturbed one-Laplace equation by p-Laplacian」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Continuity of derivatives of a convex solution to a perturbed one-Laplace equation by p-Laplacian

Giga, Yoshikazu Tsubouchi, Shuntaro 北海道大学

2021.08.30

概要

We consider a one-Laplace equation perturbed by p-Laplacian with 1 < p < ∞. We prove that a weak solution is continuously differentiable (C1) if it is convex. Note that similar result fails to hold for the unperturbed one-Laplace equation. The main difficulty is to show C1-regularity of the solution at the boundary of a facet where the gradient of the solution vanishes. For this purpose we blow-up the solution and prove that its limit is a constant function by establishing a Liouville-type result, which is proved by showing a strong maximum principle. Our argument is rather elementary since we assume that the solution is convex. A few generalization is also discussed.

参考文献

[1] L. Ambrosio, A. Carlotto, and A. Massaccesi. Lectures on elliptic partial differential equations, volume 18 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, 2018.

[2] F. Andreu-Vaillo, V. Caselles, and J. M. Mazón. Parabolic quasilinear equations minimizing linear growth functionals, volume 223 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2004.

[3] D. P. Bertsekas. Convex optimization theory. Athena Scientific, Nashua, NH, 2009.

[4] H. Brézis. Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), pages 101–156, 1971.

[5] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.

[6] M. Colombo and G. Mingione. Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal., 218(1):219–273, 2015.

[7] M. Colombo and G. Mingione. Regularity for double phase variational problems. Arch. Ration. Mech. Anal., 215(2):443–496, 2015.

[8] G. Duvaut and J.-L. Lions. Inequalities in mechanics and physics, volume 219 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin-New York, 1976. Translated from the French by C. W. John.

[9] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Textbooks in Mathematics. CRC Press, Boca Raton, FL, revised edition, 2015.

[10] M. Giaquinta and L. Martinazzi. An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, volume 11 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, second edition, 2012.

[11] M.-H. Giga and Y. Giga. Stability for evolving graphs by nonlocal weighted curvature. Comm. Partial Differential Equations, 24(1-2):109–184, 1999.

[12] M.-H. Giga and Y. Giga. Very singular diffusion equations: second and fourth order problems. Jpn. J. Ind. Appl. Math., 27(3):323–345, 2010.

[13] Y. Giga and R. V. Kohn. Scale-invariant extinction time estimates for some singular diffusion equations. Discrete Contin. Dyn. Syst., 30(2):509–535, 2011.

[14] Y. Giga, H. Kuroda, and H. Matsuoka. Fourth-order total variation flow with Dirichlet condition: characterization of evolution and extinction time estimates. Adv. Math. Sci. Appl., 24(2):499–534, 2014.

[15] Y. Giga, M. Muszkieta, and P. Rybka. A duality based approach to the minimizing total variation flow in the space 𝐻−𝑠. Jpn. J. Ind. Appl. Math., 36(1):261–286, 2019.

[16] Y. Giga and Y. Ueda. Numerical computations of split Bregman method for fourth order total variation flow. J. Comput. Phys., 405:109114, 24, 2020.

[17] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[18] E. Giusti. Direct methods in the calculus of variations. World Scientific Publishing Co., Inc., River Edge, NJ, 2003.

[19] R. Glowinski, J.-L. Lions, and R. Trémolières. Numerical analysis of variational inequalities, volume 8 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York, 1981. Translated from the French.

[20] E. Hopf. A remark on linear elliptic differential equations of second order. Proc. Amer. Math. Soc., 3:791–793, 1952.

[21] Y. Kashima. A subdifferential formulation of fourth order singular diffusion equations. Adv. Math. Sci. Appl., 14(1):49–74, 2004.

[22] Y. Kashima. Characterization of subdifferentials of a singular convex functional in Sobolev spaces of order minus one. J. Funct. Anal., 262(6):2833–2860, 2012.

[23] R. V. Kohn. Surface relaxation below the roughening temperature: some recent progress and open questions. In Nonlinear partial differential equations, volume 7 of Abel Symp., pages 207–221. Springer, Heidelberg, 2012.

[24] R. V. Kohn and H. M. Versieux. Numerical analysis of a steepest-descent PDE model for surface relaxation below the roughening temperature. SIAM J. Numer. Anal., 48(5):1781–1800, 2010.

[25] F. Krügel. A variational problem leading to a singular elliptic equation involving the 1-Laplacian. Berlin: Mensch und Buch Verlag, 2013.

[26] G. Mingione. Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math., 51(4):355–426, 2006.

[27] I. V. Odisharia. Simulation and analysis of the relaxation of a crystalline surface. New York University, 2006.

[28] M. H. Protter and H. F. Weinberger. Maximum principles in differential equations. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.

[29] P. Pucci and J. Serrin. The maximum principle, volume 73 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Basel, 2007.

[30] R. T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks.

[31] H. Spohn. Surface dynamics below the roughening transition. Journal de Physique I, 3(1):69–81, 1993.

[32] S. Tsubouchi. Local Lipschitz bounds for solutions to certain singular elliptic equations involving the one-Laplacian. Calc. Var. Partial Differential Equations, 60(1):Paper No. 33, 35, 2021.

[33] X. Xu. Mathematical validation of a continuum model for relaxation of interacting steps in crystal surfaces in 2 space dimensions. Calc. Var. Partial Differential Equations, 59(5):158, 2020.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る