リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spatial localization of traveling neural activities induced by curved cortical surface geometry : A pre-pattern theory for brain wiring and folding」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spatial localization of traveling neural activities induced by curved cortical surface geometry : A pre-pattern theory for brain wiring and folding

堀部, 和也 大阪大学 DOI:10.18910/85278

2021.06.23

概要

生体や非生命体の曲面上には、化学的・電気的な興奮性の波が広く見られ、何らかの機能を果たしている。ヒト胎児の脳表面では、自発的な神経活動が起こり、興奮性波が表面を空間的に伝播している。興奮性波の発生源の候補として、サブプレートニューロンが挙げられる。サブプレートニューロンは、脳全体で接線方向に連続した均一な成分(サブプレートコンポーネント)を形成している。サブプレートコンポーネントにおける自発的な神経活動は、胎児期に脳の折り畳みと神経線維の配線がいつどこで起こるかをサポートすると示唆されているが、そのメカニズムはほとんどわかっていない。本研究では、一様なコンポーネントの形状が神経活動の方向を制御しているのか、もしそうならば、胎児期の脳の形状がどのように神経活動の偏りを引き起こすのかを確認するために、曲面上の興奮性の波を数値的にシミュレーションした。その結果、表面形状が興奮性波の屈曲と分裂を引き起こすことを発見した。さらに、曲面の最短経路を用いて波の屈曲・分裂を予測できることを示した。続いて、最短経路を用いて胎児の脳表面に神経活動の見積もり、空間的な局在が現れることを発見した。この空間的局在は、後の成長ステージで神経繊維が成熟する位置と一致した。さらに、発達に伴う脳溝の伸長方向は、神経活動の空間的局在の変位と一致した。以上のことから、脳の表面形状に応じて空間的に局在する神経活動は、脳の折り畳みと神経線維の配線を支援するためのプレパターンとして機能することが示唆された。

この論文で使われている画像

参考文献

[1] A. Afif, R. Bouvier, A. Buenerd, J. Trouillas, and P. Mertens, “Development of the human fetal insular cortex: Study of the gyration from 13 to 28 gestational weeks,” Brain Structure and Function, vol. 212, no. 3-4, pp. 335–346, 2007, ISSN: 18632653. DOI: 10.1007/s00429-007-0161-1.

[2] G. Agarwal, I. H. Stevenson, A. Berenyi, K. Mizuseki, G. Buzsaki, and F. T. Sommer, “Spatially Distributed Local Fields in the Hippocampus Encode Rat Position,” Science, vol. 344, no. 6184, pp. 626–630, 2014, ISSN: 0036-8075. DOI: 10.1126/ science.1250444. [Online]. Available: http://www.sciencemag.org/cgi/doi/10.1126/ science.1250444.

[3] S. Alonso, M. Bar, and B. Echebarria, “Nonlinear physics of electrical wave propagation in the heart: A review,” Reports on Progress in Physics, vol. 79, no. 9, p. 96 601, 2016, ISSN: 00344885. DOI: 10.1088/0034- 4885/79/9/096601. [Online]. Available: http://dx.doi.org/10.1088/0034-4885/79/9/096601.

[4] Y. Arai, T. Shibata, S. Matsuoka, M. J. Sato, T. Yanagida, and M. Ueda, “Selforganization of the phosphatidylinositol lipids signaling system for random cell migration,” Proceedings of the National Academy of Sciences, vol. 107, no. 27, pp. 12 399– 12 404, 2010, ISSN: 0027-8424. DOI: 10.1073/pnas.0908278107. [Online]. Available: http://www.pnas.org/cgi/doi/10.1073/pnas.0908278107.

[5] T. Arichi, K. Whitehead, G. Barone, R. Pressler, F. Padormo, A. D. Edwards, and L. Fabrizi, “Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI,” eLife, vol. 6, pp. 1–14, 2017, ISSN: 2050084X. DOI: 10.7554/eLife.27814.

[6] Y. Biton, A. Rabinovitch, I. Aviram, and D. Braunstein, “Two mechanisms of spiralpair-source creation in excitable media,” Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 373, no. 20, pp. 1762–1767, 2009, ISSN: 03759601. DOI: 10.1016/j.physleta.2009.03.030. [Online]. Available: http://dx.doi.org/10. 1016/j.physleta.2009.03.030.

[7] P. K. Brazhnik, V. A. Davydov, and A. S. Mikhailov, “Kinematic approach to the description of autowave processes in active media,” Theor. Mat. Fiz., vol. 74, pp. 440– 447, 1988, ISSN: 00405779. DOI: 10.1007/BF01016624.

[8] S. Budday, P. Steinmann, and E. Kuhl, “The role of mechanics during brain development,” Journal of the Mechanics and Physics of Solids, vol. 72, pp. 75–92, 2014, ISSN: 00225096. DOI: 10 . 1016 / j . jmps . 2014 . 07 . 010. [Online]. Available: http://dx.doi.org/10.1016/j.jmps.2014.07.010.

[9] J. C. Butcher, “Implicit Runge-Kutta Processes,” Mathematics of Computation, vol. 18, no. 85, pp. 50–64, 1964. DOI: 10.2307/2003405.

[10] S. Chun, “Geometric analysis on the unidirectionality of the pulmonary veins for atrial reentry,” 2013. arXiv: 1310.2466v1.

[11] J. D. Comer, S. Alvarez, S. J. Butler, and J. A. Kaltschmidt, “Commissural axon guidance in the developing spinal cord: From Cajal to the present day,” Neural Development, vol. 14, no. 1, pp. 1–16, 2019, ISSN: 17498104. DOI: 10.1186/s13064- 019-0133-1.

[12] V. A. Davydov, N. Manz, O. Steinbock, and S. C. Muller, “Critical properties of ¨ excitation waves on curved surfaces: Curvature-dependent loss of excitability,” Europhysics Letters, vol. 59, no. 3, pp. 344–350, 2002, ISSN: 02955075. DOI: 10.1209/ epl/i2002-00200-6.

[13] V. A. Davydov, N. Manz, O. Steinbock, V. S. Zykov, and S. C. Muller, “Excitation ¨ fronts on a periodically modulated curved surface,” Physical Review Letters, vol. 85, no. 4, pp. 868–871, 2000, ISSN: 00319007. DOI: 10.1103/PhysRevLett.85.868.

[14] V. A. Davydov, V. G. Morozov, and N. V. Davydov, “Critical properties of autowaves propagating on deformed cylindrical surfaces,” Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 307, no. 5-6, pp. 265–268, 2003, ISSN: 03759601. DOI: 10.1016/S0375-9601(02)01726-7.

[15] V. Davydov, V. Morozov, and N. Davydov, “Ring-shaped autowaves on curved surfaces,” Physics Letters A, vol. 267, no. 5-6, pp. 326–330, 2000, ISSN: 03759601. DOI: 10 . 1016 / S0375 - 9601(00 ) 00130 - 4. [Online]. Available: https : / / doi . org / 10.1016/S0375- 9601(00)00130- 4https://linkinghub.elsevier.com/retrieve/pii/ S0375960100001304.

[16] V. Davydov and V. Zykov, “Kinematics of spiral waves on nonuniformly curved surfaces,” Physica D: Nonlinear Phenomena, vol. 49, no. 1-2, pp. 71–74, 1991, ISSN: 01672789. DOI: 10.1016/0167-2789(91)90195-F.

[17] V. A. Davydov, V. S. Zykov, and A. S. Mikhailov, “Kinematics of autowave structures in excitable media,” Soviet Physics Uspekhi, vol. 34, no. 8, pp. 665–684, 1991, ISSN: 0038-5670. DOI: 10.1070/PU1991v034n08ABEH002462.

[18] H. G. Dobereiner, B. J. Dubin-Thaler, J. M. Hofman, H. S. Xenias, T. N. Sims, ¨ G. Giannone, M. L. Dustin, C. H. Wiggins, and M. P. Sheetz, “Lateral membrane waves constitute a universal dynamic pattern of motile cells,” Physical Review Letters, vol. 97, no. 3, pp. 10–13, 2006, ISSN: 00319007. DOI: 10.1103/PhysRevLett. 97.038102.

[19] A. Duque, Z. Krsnik, I. Kostovic, and P. Rakic, “Secondary expansion of the tran- ´ sient subplate zone in the developing cerebrum of human and nonhuman primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 35, pp. 9892–9897, 2016, ISSN: 10916490. DOI: 10.1073/pnas. 1610078113.

[20] S Ei, M Mimura, and M Nagayama, “Pulse – pulse interaction in reaction – diffusion systems,” Physica D, vol. 165, pp. 176–198, 2002.

[21] J. H. Ferziger and M. Peric,´ Computational Methods for Fluid Dynamics. Springer Science & Business Media, 2002, ISBN: 978-3-540-42074-3. [Online]. Available: http://link.springer.com/10.1007/978-3-642-56026-2.

[22] R. FitzHugh, “Impulses and Physiological States in Theoretical Models of Nerve Membrane,” Biophysical Journal, vol. 1, no. 6, pp. 445–466, 1961, ISSN: 00063495. DOI: 10.1016/S0006-3495(61)86902-6. [Online]. Available: http://dx.doi.org/10. 1016/S0006-3495(61)86902-6.

[23] K. E. Garcia, C. D. Kroenke, and P. V. Bayly, “Mechanics of cortical folding: Stress, growth and stability,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 373, no. 1759, 2018, ISSN: 14712970. DOI: 10.1098/rstb.2017.0321.

[24] D. Geometry, F. de Goes, K. Crane, M. Desbrun, and P. Schroder, “Digital geometry ¨ processing with discrete exterior calculus,” in ACM SIGGRAPH 2013 Courses on - SIGGRAPH ’13, vol. 31, New York, New York, USA: ACM Press, 2013, pp. 1– 126, ISBN: 9781450323390. DOI: 10.1145/2504435.2504442. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2504435.2504442http://epubs.siam.org/doi/10. 1137/08073322X.

[25] M. Gerhardt, M. Ecke, M. Walz, A. Stengl, C. Beta, and G. Gerisch, “Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state,” Journal of Cell Science, vol. 127, no. 20, pp. 4507–4517, 2014, ISSN: 0021-9533. DOI: 10 . 1242/jcs.156000. [Online]. Available: http://jcs.biologists.org/lookup/doi/10.1242/ jcs.156000.

[26] G. Gerisch, M. Ecke, B. Schroth-Diez, S. Gerwig, U. Engel, L. Maddera, and M. Clarke, “Self-organizing actin waves as planar phagocytic cup structures,” Cell Adhesion and Migration, vol. 3, no. 4, pp. 373–382, 2009, ISSN: 19336926. DOI: 10. 4161/cam.3.4.9708.

[27] G. Gerisch, B. Schroth-Diez, A. Muller-Taubenberger, and M. Ecke, “PIP3 waves ¨ and PTEN dynamics in the emergence of cell polarity,” Biophysical Journal, vol. 103, no. 6, pp. 1170–1178, 2012, ISSN: 00063495. DOI: 10.1016/j.bpj.2012.08.004.

[28] A. Greiner, S. Kaessmair, and S. Budday, “Physical aspects of cortical folding,” Soft Matter, 2021, ISSN: 1744-683X. DOI: 10.1039/d0sm02209h.

[29] M. Hadders-Algra, “Early human brain development: Starring the subplate,” Neuroscience and Biobehavioral Reviews, vol. 92, no. January, pp. 276–290, 2018, ISSN: 18737528. DOI: 10 . 1016 / j . neubiorev. 2018 . 06 . 017. [Online]. Available: https : //doi.org/10.1016/j.neubiorev.2018.06.017.

[30] D. Hebb, The Organization of Behavior. New York: Wiley & Sons., 1949.

[31] S. Heitmann, T. Boonstra, and M. Breakspear, “A Dendritic Mechanism for Decoding Traveling Waves: Principles and Applications to Motor Cortex,” PLoS Computational Biology, vol. 9, no. 10, 2013, ISSN: 1553734X. DOI: 10.1371/journal.pcbi. 1003260.

[32] A. V. Holden, M. Markus, and H. G. Othmer, Eds., Nonlinear Wave Processes in Excitable Media, ser. NATO ASI Series. Boston, MA: Springer US, 1991, vol. 244, ISBN: 978-1-4899-3685-1. DOI: 10.1007/978-1-4899-3683-7. [Online]. Available: http://link.springer.com/10.1007/978-1-4899-3683-7.

[33] B. Horgos, M. Mecea, A. Boer, B. Szabo, A. Buruiana, F. Stamatian, C. M. Mihu, I. Florian, S. Susman, and R. Pascalau, “White Matter Dissection of the Fetal Brain,” Frontiers in Neuroanatomy, vol. 14, no. September, pp. 1–11, 2020, ISSN: 16625129. DOI: 10.3389/fnana.2020.584266.

[34] K. Horibe, K. I. Hironaka, K. Matsushita, and K. Fujimoto, “Curved surface geometryinduced topological change of an excitable planar wavefront,” Chaos, vol. 29, no. 9, 2019, ISSN: 10541500. DOI: 10.1063/1.5108838. arXiv: 1905.02927.

[35] M. Horning and T. Shibata, “Three-Dimensional Cell Geometry Controls Excitable ¨ Membrane Signaling in Dictyostelium Cells,” Biophysical Journal, vol. 116, no. 2, pp. 372–382, 2019, ISSN: 15420086. DOI: 10.1016/j.bpj.2018.12.012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0006349518345077? via{\%}3Dihub.

[36] H. Huang, R. Xue, J. Zhang, T. Ren, L. J. Richards, P. Yarowsky, M. I. Miller, and S. Mori, “Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging,” Journal of Neuroscience, vol. 29, no. 13, pp. 4263–4273, 2009, ISSN: 02706474. DOI: 10.1523/JNEUROSCI.2769-08.2009.

[37] M. Ishii, T. Tateya, M. Matsuda, and T. Hirashima, “Retrograde erk activation waves drive base-to-apex multicellular flow in murine cochlear duct morphogenesis,” eLife, vol. 10, pp. 1–16, 2021, ISSN: 2050084X. DOI: 10.7554/eLife.61092.

[38] C. K. R. T. Jones, “Stability of the travelling wave solution of the FitzHugh-Nagumo system,” Transactions of the American Mathematical Society, vol. 286, no. 2, pp. 431– 431, 1984, ISSN: 0002-9947. DOI: 10.1090/S0002-9947-1984-0760971-6. [Online]. Available: http : / / www. ams . org / jourcgi / jour- getitem ? pii = S0002 - 9947 - 1984 - 0760971-6.

[39] P. O. Kanold and H. J. Luhmann, “The Subplate and Early Cortical Circuits,” Annual Review of Neuroscience, vol. 33, no. 1, pp. 23–48, 2010, ISSN: 0147-006X. DOI: 10.1146/annurev- neuro- 060909- 153244. [Online]. Available: http://www. annualreviews.org/doi/10.1146/annurev-neuro-060909-153244.

[40] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson Surface Reconstruction,” Proceedings of the Symposium on Geometry Processing, pp. 61–70, 2006, ISSN: 30905673. DOI: 10.1145/1364901.1364904. [Online]. Available: http://dl.acm.org/citation. cfm ? id = 2487237{\ % }5Cnhttp : / / dl . acm . org / citation . cfm ? doid = 2487228 . 2487237{\%}5Cnhttp://dl.acm.org/citation.cfm?doid=2487228.2487237.

[41] K. Keunen, S. J. Counsell, and M. J. Benders, “The emergence of functional architecture during early brain development,” NeuroImage, vol. 160, pp. 2–14, 2017, ISSN: 10959572. DOI: 10.1016/j.neuroimage.2017.01.047. [Online]. Available: http://dx.doi.org/10.1016/j.neuroimage.2017.01.047.

[42] W. Kilb, S. Kirischuk, and H. J. Luhmann, “Electrical activity patterns and the functional maturation of the neocortex,” European Journal of Neuroscience, vol. 34, no. 10, pp. 1677–1686, 2011, ISSN: 0953816X. DOI: 10.1111/j.1460-9568.2011. 07878.x.

[43] F. Kneer, E. Scholl, and M. A. Dahlem, “Nucleation of reaction-diffusion waves on ¨ curved surfaces,” New Journal of Physics, vol. 16, 2014.

[44] I. Kostovic and M. Juda ´ s, “Embryonic and Fetal Development of the Human Cere- ˇ bral Cortex,” Brain Mapping: An Encyclopedic Reference, vol. 2, pp. 167–175, 2015. DOI: 10.1016/B978-0-12-397025-1.00193-7.

[45] I. Kostovic, “The enigmatic fetal subplate compartment forms an early tangential ´ cortical nexus and provides the framework for construction of cortical connectivity,” Progress in Neurobiology, vol. 194, no. July, p. 101 883, 2020, ISSN: 18735118. DOI: 10.1016/j.pneurobio.2020.101883. [Online]. Available: https://doi.org/10. 1016/j.pneurobio.2020.101883.

[46] I. Kostovic and P. S. Goldman-Rakic, “Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain,” Journal of Comparative Neurology, vol. 219, no. 4, pp. 431–447, 1983, ISSN: 10969861. DOI: 10.1002/cne.902190405.

[47] I. Kostovic, N. Jovanov-Milo ´ sevi ˇ c, M. Rado ´ s, G. Sedmak, V. Benjak, M. Kostovi ˇ c-´ Srzentic, L. Vasung, M. ´ Culjat, M. Rado ˇ s, P. H ˇ uppi, and M. Juda ¨ s, “Perinatal and ˇ early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches,” Brain Structure and Function, vol. 219, no. 1, pp. 231–253, 2014, ISSN: 18632653. DOI: 10.1007/s00429-012-0496-0.

[48] I. Kostovic and P. Rakic, “Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain,” Journal of Comparative Neurology, vol. 297, no. 3, pp. 441–470, 1990, ISSN: 10969861. DOI: 10.1002/cne.902970309.

[49] Y. Kuramoto, “Instability and Turbulence of Wavefronts in Reaction-Diffusion Systems,” Progress of Theoretical Physics, vol. 63, no. 6, pp. 1885–1903, 1980, ISSN: 0033-068X. DOI: 10.1143/PTP.63.1885. [Online]. Available: https://academic.oup. com/ptp/article-lookup/doi/10.1143/PTP.63.1885.

[50] C. Llinares-Benadero and V. Borrell, “Deconstructing cortical folding: genetic, cellular and mechanical determinants,” Nature Reviews Neuroscience, vol. 20, no. 3, pp. 161–176, 2019, ISSN: 14710048. DOI: 10.1038/s41583-018-0112-2. [Online]. Available: http://dx.doi.org/10.1038/s41583-018-0112-2.

[51] E. V. Lubenov and A. G. Siapas, “Hippocampal theta oscillations are travelling waves,” Nature, vol. 459, no. 7246, pp. 534–539, 2009, ISSN: 00280836. DOI: 10. 1038/nature08010. [Online]. Available: http://dx.doi.org/10.1038/nature08010.

[52] C. B. Macdonald, B. Merriman, and S. J. Ruuth, “Simple computation of reaction– diffusion processes on point clouds,” Proceedings of the National Academy of Sciences, vol. 110, no. 23, pp. 9209–9214, 2013, ISSN: 0027-8424. DOI: 10.1073/pnas. 1221408110. [Online]. Available: http://www.pnas.org/lookup/doi/10.1073/pnas. 1221408110.

[53] R. Martin, D. J. Chappell, N. Chuzhanova, and J. J. Crofts, “A numerical simulation of neural fields on curved geometries,” Journal of Computational Neuroscience, vol. 45, no. 2, pp. 133–145, 2018, ISSN: 0929-5313. DOI: 10.1007/s10827- 018- 0697-5. [Online]. Available: http://link.springer.com/10.1007/s10827-018-0697-5.

[54] L. E. Martinet, G. Fiddyment, J. R. Madsen, E. N. Eskandar, W. Truccolo, U. T. Eden, S. S. Cash, and M. A. Kramer, “Human seizures couple across spatial scales through travelling wave dynamics,” Nature Communications, vol. 8, pp. 1–13, 2017, ISSN: 20411723. DOI: 10.1038/ncomms14896.

[55] M. Mimura and M. Nagayama, “Nonannihilation dynamics in an exothermic reactiondiffusion system with mono-stable excitability.,” Chaos (Woodbury, N.Y.), vol. 7, no. 4, pp. 817–826, 1997, ISSN: 1089-7682. DOI: 10 . 1063 / 1 . 166282. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/12779706.

[56] Z. Molnar, G. J. Clowry, N. ´ Sestan, A. Alzu’bi, T. Bakken, R. F. Hevner, P. S. H ˇ uppi, ¨ I. Kostovic, P. Rakic, E. S. Anton, D. Edwards, P. Garcez, A. Hoerder-Suabedissen, ´ and A. Kriegstein, “New insights into the development of the human cerebral cortex,” Journal of Anatomy, vol. 235, no. 3, pp. 432–451, 2019, ISSN: 14697580. DOI: 10.1111/joa.13055.

[57] Z. Molnar, H. J. Luhmann, and P. O. Kanold, “Transient cortical circuits match ´ spontaneous and sensory-driven activity during development,” Science, vol. 370, no. 6514, 2020, ISSN: 10959203. DOI: 10.1126/science.abb2153.

[58] A. R. Moore, W. L. Zhou, C. L. Sirois, G. S. Belinsky, N. Zecevic, and S. D. Antic, “Connexin hemichannels contribute to spontaneous electrical activity in the human fetal cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 37, E3919–E3928, 2014, ISSN: 10916490. DOI: 10.1073/ pnas.1405253111.

[59] J. Nagumo, S. Arimoto, and S. Yoshizawa, “An Active Pulse Transmission Line Simulating Nerve Axon,” Proceedings of the IRE, vol. 50, no. 10, pp. 2061–2070, 1962, ISSN: 0096-8390. DOI: 10.1109/JRPROC.1962.288235. [Online]. Available: http://ieeexplore.ieee.org/document/4066548/.

[60] A. Neic, F. O. Campos, A. J. Prassl, S. A. Niederer, M. J. Bishop, E. J. Vigmond, and G. Plank, “Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model,” Journal of Computational Physics, vol. 346, pp. 191–211, 2017, ISSN: 10902716. DOI: 10.1016/j.jcp.2017.06.020. [Online]. Available: http://dx.doi.org/10.1016/j.jcp.2017.06.020.

[61] C. Ohtaka-Maruyama, “Subplate Neurons as an Organizer of Mammalian Neocortical Development,” Frontiers in Neuroanatomy, vol. 14, no. March, pp. 1–9, 2020, ISSN: 16625129. DOI: 10.3389/fnana.2020.00008.

[62] C. Ohtaka-Maruyama, M. Okamoto, K. Endo, M. Oshima, N. Kaneko, K. Yura, H. Okado, T. Miyata, and N. Maeda, “Synaptic transmission from subplate neurons controls radial migration of neocortical neurons,” Science, vol. 360, no. 6386, pp. 313– 317, 2018, ISSN: 0036-8075. DOI: 10.1126/science.aar2866. [Online]. Available: https://www.sciencemag.org/lookup/doi/10.1126/science.aar2866.

[63] M. Ouyang, J. Dubois, Q. Yu, P. Mukherjee, and H. Huang, “Delineation of early brain development from fetuses to infants with diffusion MRI and beyond,” NeuroImage, vol. 185, no. April 2018, pp. 836–850, 2019, ISSN: 10959572. DOI: 10. 1016/j.neuroimage.2018.04.017. [Online]. Available: https://doi.org/10.1016/j. neuroimage.2018.04.017.

[64] a. de Padua, F. Parisio-Filho, and F. Moraes, “Geodesics around line defects in elastic solids,” Physics Letters A, vol. 238, no. 2-3, pp. 153–158, 1998, ISSN: 03759601. DOI: 10.1016/S0375- 9601(97)00871- 2. [Online]. Available: https://linkinghub. elsevier.com/retrieve/pii/S0375960197008712.

[65] J. A. Roberts, L. L. Gollo, R. G. Abeysuriya, G. Roberts, P. B. Mitchell, M. W. Woolrich, and M. Breakspear, “Metastable brain waves,” Nature Communications, vol. 10, no. 1, pp. 1–17, 2019, ISSN: 20411723. DOI: 10.1038/s41467-019-08999-0. [Online]. Available: http://dx.doi.org/10.1038/s41467-019-08999-0.

[66] L. Ronan and P. C. Fletcher, “From genes to folds: a review of cortical gyrification theory,” Brain Structure and Function, vol. 220, no. 5, pp. 2475–2483, 2015, ISSN: 18632661. DOI: 10.1007/s00429-014-0961-z.

[67] L. Ronan, N. Voets, C. Rua, A. Alexander-Bloch, M. Hough, C. Mackay, T. J. Crow, A. James, J. N. Giedd, and P. C. Fletcher, “Differential tangential expansion as a mechanism for cortical gyrification,” Cerebral Cortex, vol. 24, no. 8, pp. 2219–2228, 2014, ISSN: 14602199. DOI: 10.1093/cercor/bht082.

[68] D. Rubino, K. A. Robbins, and N. G. Hatsopoulos, “Propagating waves mediate information transfer in the motor cortex,” Nature Neuroscience, vol. 9, no. 12, pp. 1549– 1557, 2006, ISSN: 10976256. DOI: 10.1038/nn1802.

[69] E. Santos, M. Scholl, R. S ¨ anchez-Porras, M. a. Dahlem, H. Silos, A. Unterberg, H. ´ Dickhaus, and O. W. Sakowitz, “Radial, spiral and reverberating waves of spreading depolarization occur in the gyrencephalic brain,” NeuroImage, vol. 99, pp. 244– 255, 2014, ISSN: 10959572. DOI: 10.1016/j.neuroimage.2014.05.021. [Online]. Available: http://dx.doi.org/10.1016/j.neuroimage.2014.05.021.

[70] J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 4, pp. 1591–1595, 1996, ISSN: 00278424. DOI: 10.1073/pnas.93.4.1591.

[71] L. Song, V. Mishra, M. Ouyang, Q. Peng, M. Slinger, S. Liu, and H. Huang, “Human fetal brain Connectome: Structural network development from middle fetal stage to birth,” Frontiers in Neuroscience, vol. 11, no. OCT, pp. 1–14, 2017, ISSN: 1662453X. DOI: 10.3389/fnins.2017.00561.

[72] E. T. Stoeckli, “Understanding axon guidance: Are we nearly there yet?” Development (Cambridge), vol. 145, no. 10, 2018, ISSN: 14779129. DOI: 10.1242/dev. 151415.

[73] G. F. Striedter, S. Srinivasan, and E. S. Monuki, “Cortical Folding: When, Where, How, and Why?” Annual Review of Neuroscience, vol. 38, no. 1, pp. 291–307, 2015, ISSN: 0147-006X. DOI: 10.1146/annurev-neuro-071714-034128. [Online]. Available: http://www.annualreviews.org/doi/10.1146/annurev-neuro-071714-034128.

[74] E. Takahashi, R. D. Folkerth, A. M. Galaburda, and P. E. Grant, “Emerging cerebral connectivity in the human fetal Brain: An MR tractography study,” Cerebral Cortex, vol. 22, no. 2, pp. 455–464, 2012, ISSN: 10473211. DOI: 10.1093/cercor/bhr126.

[75] T. Tallinen and J. S. Biggins, “Mechanics of invagination and folding: hybridized instabilities when one soft tissue grows on another,” vol. 022720, pp. 1–8, 2015. DOI: 10.1103/PhysRevE.92.022720. arXiv: 1503.03843. [Online]. Available: http: //arxiv.org/abs/1503.03843http://dx.doi.org/10.1103/PhysRevE.92.022720.

[76] T. Tallinen, J. Y. Chung, J. S. Biggins, and L Mahadevan, “Gyrification from constrained cortical expansion.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 35, pp. 12 667–72, 2014, ISSN: 1091- 6490. DOI: 10 . 1073 / pnas . 1406015111. arXiv: 1503 . 03853. [Online]. Available: http://www.pnas.org/content/111/35/12667.short.

[77] T. Tallinen, J. Y. Chung, F. Rousseau, N. Girard, J. Lefevre, and L. Mahadevan, ` “On the growth and form of cortical convolutions,” Nature Physics, vol. 12, no. 6, pp. 588–593, 2016, ISSN: 1745-2473. DOI: 10.1038/nphys3632. [Online]. Available: http://www.nature.com/articles/nphys3632.

[78] D. Taniguchi, S. Ishihara, T. Oonuki, M. Honda-Kitahara, K. Kaneko, and S. Sawai, “Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells,” Proceedings of the National Academy of Sciences, vol. 110, no. 13, pp. 5016–5021, 2013, ISSN: 0027-8424. DOI: 10 . 1073 / pnas . 1218025110. [Online]. Available: http: //www.pnas .org /cgi/ doi/ 10. 1073/pnas . 1218025110.

[79] M. E. Thomason, “Development of Brain Networks In Utero: Relevance for Common Neural Disorders,” Biological Psychiatry, vol. 88, no. 1, pp. 40–50, 2020, ISSN: 18732402. DOI: 10.1016/j.biopsych.2020.02.007. [Online]. Available: https://doi. org/10.1016/j.biopsych.2020.02.007.

[80] R. Toro and Y. Burnod, “A morphogenetic model for the development of cortical convolutions,” Cerebral Cortex, vol. 15, no. 12, pp. 1900–1913, 2005, ISSN: 10473211. DOI: 10.1093/cercor/bhi068.

[81] C. A. Trujillo, R. Gao, P. D. Negraes, J. Gu, J. Buchanan, S. Preissl, A. Wang, W. Wu, G. G. Haddad, I. A. Chaim, A. Domissy, M. Vandenberghe, A. Devor, G. W. Yeo, B. Voytek, and A. R. Muotri, “Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development,” Cell Stem Cell, vol. 25, no. 4, 558–569.e7, 2019, ISSN: 18759777. DOI: 10.1016/j.stem.2019. 08.002. [Online]. Available: https://doi.org/10.1016/j.stem.2019.08.002.

[82] T. Tsujikawa, T. Nagai, M. Mimura, R. Kobayashi, and H. Ikeda, “Stability properties of traveling pulse solutions of the higher dimensional FitzHugh-Nagumo equations,” Japan Journal of Applied Mathematics, vol. 6, no. 3, pp. 341–366, 1989, ISSN: 09102043. DOI: 10.1007/BF03167885.

[83] A. M. Turing, “The Chemical Basis of Morphogenesis,” Phil. Trans. R. Soc. Lond. B, vol. 237, no. August, pp. 37–72, 1952.

[84] D. C. Van Essen, “A 2020 view of tension-based cortical morphogenesis,” Proceedings of the National Academy of Sciences, vol. 117, no. 52, pp. 32 868–32 879, 2020, ISSN: 0027-8424. DOI: 10.1073/pnas.2016830117.

[85] D. C. Van Essen, C. J. Donahue, T. S. Coalson, H. Kennedy, T. Hayashi, and M. F. Glasser, “Cerebral cortical folding, parcellation, and connectivity in humans, nonhuman primates, and mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 52, pp. 26 173–26 180, 2019, ISSN: 10916490. DOI: 10.1073/pnas.1902299116.

[86] D. C. Van Essen, C. J. Donahue, and M. F. Glasser, “Development and evolution of cerebral and cerebellar cortex,” Brain, Behavior and Evolution, vol. 91, no. 3, pp. 158–169, 2018, ISSN: 14219743. DOI: 10.1159/000489943.

[87] L. Vasung, E. Abaci Turk, S. L. Ferradal, J. Sutin, J. N. Stout, B. Ahtam, P. Y. Lin, and P. E. Grant, “Exploring early human brain development with structural and physiological neuroimaging,” NeuroImage, no. November 2017, pp. 1–29, 2018, ISSN: 10959572. DOI: 10.1016/j.neuroimage.2018.07.041. [Online]. Available: https: //doi.org/10.1016/j.neuroimage.2018.07.041.

[88] L. Vasung, M. Raguz, I. Kostovic, and E. Takahashi, “Spatiotemporal Relationship of Brain Pathways during Human Fetal Development Using High-Angular Resolution Diffusion MR Imaging and Histology,” Frontiers in Neuroscience, vol. 11, no. JUL, pp. 1–16, 2017, ISSN: 1662-453X. DOI: 10.3389/fnins.2017.00348. [Online]. Available: http://journal.frontiersin.org/article/10.3389/fnins.2017.00348/full.

[89] V. M. Verkhlyutov and V. V. Balaev, “The method of modeling the human EEG by calculating radial traveling waves on the folded surface of the human cerebral cortex,” bioRxiv, p. 242 412, 2018. DOI: 10.1101/242412. [Online]. Available: https: //www.biorxiv.org/content/early/2018/01/04/242412?rss=1.

[90] I. Zuni ˇ c I ´ sasegi, M. Rado ˇ s,ˇ Z. Krsnik, M. Rado ˇ s, V. Benjak, and I. Kostovi ˇ c, “In- ´ teractive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall,” Brain Structure and Function, vol. 223, no. 9, pp. 3919–3943, 2018, ISSN: 18632661. DOI: 10 . 1007 / s00429 - 018 - 1721 - 2. [Online]. Available: http : //dx.doi.org/10.1007/s00429-018-1721-2.

[91] F. Wallois, L. Routier, C. Heberle, M. Mahmoudzadeh, E. Bourel-Ponchel, and S. ´ Moghimi, “Back to basics: the neuronal substrates and mechanisms that underlie the electroencephalogram in premature neonates,” Neurophysiologie Clinique, vol. 51, no. 1, pp. 5–33, 2020, ISSN: 17697131. DOI: 10.1016/j.neucli.2020.10.006. [Online]. Available: https://doi.org/10.1016/j.neucli.2020.10.006.

[92] W. Welker, “Why Does Cerebral Cortex Fissure and Fold?,” pp. 3–136, 1990. DOI: 10.1007/978-1-4615-3824-0 1.

[93] J. M. Wess, A. Isaiah, P. V. Watkins, and P. O. Kanold, “Subplate neurons are the first cortical neurons to respond to sensory stimuli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 47, pp. 12 602– 12 607, 2017, ISSN: 10916490. DOI: 10.1073/pnas.1710793114.

[94] A. T. Winfree, The Geometry of Biological Time, ser. Interdisciplinary Applied Mathematics. New York, NY: Springer New York, 2001, vol. 12, ISBN: 978-1-4419-3196- 2. DOI: 10.1007/978-1-4757-3484-3. [Online]. Available: http://link.springer.com/ 10.1007/978-1-4757-3484-3.

[95] H. J. Yun, L. Vasung, T. Tarui, C. K. Rollins, C. M. Ortinau, P. E. Grant, and K. Im, “Temporal Patterns of Emergence and Spatial Distribution of Sulcal Pits During Fetal Life,” Cerebral cortex (New York, N.Y. : 1991), vol. 30, no. 7, pp. 4257–4268, 2020, ISSN: 14602199. DOI: 10.1093/cercor/bhaa053.

[96] T. P. Zanos, P. J. Mineault, K. T. Nasiotis, D. Guitton, and C. C. Pack, “A Sensorimotor Role for Traveling Waves in Primate Visual Cortex,” Neuron, vol. 85, no. 3, pp. 615–627, 2015, ISSN: 10974199. DOI: 10.1016/j.neuron.2014.12.043. [Online]. Available: http://dx.doi.org/10.1016/j.neuron.2014.12.043.

[97] T. Zhang, M. J. Razavi, X. Li, H. Chen, T. Liu, and X. Wang, “Mechanism of Consistent Gyrus Formation: an Experimental and Computational Study,” Scientific Reports, vol. 6, no. 1, p. 37 272, 2016, ISSN: 2045-2322. DOI: 10.1038/srep37272. [Online]. Available: http://www.nature.com/articles/srep37272.

[98] V. Zykov, “Analytical evaluation of the dependence of the speed of an excitation wave in a two-dimensional excitable medium on the curvature of its front,” Biofizika, vol. 25, pp. 888–892, 1980.

[99] V. Zykov and O. Morozova, “Speed of spread of excitation in two-dimensional excitable medium,” Biofizika, vol. 24, pp. 739–744, 1979.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る