リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ppGpp accumulation reduces the expression of the global nitrogen homeostasis-modulating NtcA regulon by affecting 2-oxoglutarate levels」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ppGpp accumulation reduces the expression of the global nitrogen homeostasis-modulating NtcA regulon by affecting 2-oxoglutarate levels

Hidese, Ryouta Ohbayashi, Ryudo Kato, Yuichi Matsuda, Mami Tanaka, Kan Imamura, Sousuke Ashida, Hiroki Kondo, Akihiko Hasunuma, Tomohisa 神戸大学

2023.12.25

概要

The cyanobacterium Synechococcus elongatus PCC 7942 accumulates alarmone guanosine tetraphosphate (ppGpp) under stress conditions, such as darkness. A previous study observed that artificial ppGpp accumulation under photosynthetic conditions led to the downregulation of genes involved in the nitrogen assimilation system, which is activated by the global nitrogen regulator NtcA, suggesting that ppGpp regulates NtcA activity. However, the details of this mechanism have not been elucidated. Here, we investigate the metabolic responses associated with ppGpp accumulation by heterologous expression of the ppGpp synthetase RelQ. The pool size of 2-oxoglutarate (2-OG), which activates NtcA, is significantly decreased upon ppGpp accumulation. De novo ¹³C-labeled CO₂ assimilation into the Calvin-Benson-Bassham cycle and glycolytic intermediates continues irrespective of ppGpp accumulation, whereas the labeling of 2-OG is significantly decreased under ppGpp accumulation. The low 2-OG levels in the RelQ overexpression cells could be because of the inhibition of metabolic enzymes, including aconitase, which are responsible for 2-OG biosynthesis. We propose a metabolic rearrangement by ppGpp accumulation, which negatively regulates 2-OG levels to maintain carbon and nitrogen balance.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K.

Recent functional insights into the role of (p)ppGpp in bacterial physiology.

Nat. Rev. Microbiol. 13, 298–309 (2015).

Potrykus, K. & Cashel, M. (p)ppGpp: still magical? Annu. Rev. Microbiol. 62,

35–51 (2008).

Srivatsan, A. & Wang, J. D. Control of bacterial transcription, translation and

replication by (p)ppGpp. Curr. Opin. Microbiol. 11, 100–105 (2008).

Kanjee, U., Ogata, K. & Houry, W. A. Direct binding targets of the stringent

response alarmone (p)ppGpp. Mol. Microbiol. 85, 1029–1043 (2012).

Cashel, M. & Gallant, J. Two compounds implicated in the function of the RC

gene of Escherichia coli. Nature 221, 838–841 (1969).

Laffler, T. & Gallant, J. spoT, a new genetic locus involved in the stringent

response in E. coli. Cell 1, 27–30 (1974).

Atkinson, G. C., Tenson, T. & Hauryliuk, V. The RelA/SpoT Homolog (RSH)

Superfamily: Distribution and Functional Evolution of ppGpp Synthetases and

Hydrolases across the Tree of Life. Plos One 6, e23479 (2011).

Akinyanju, J. & Smith, R. J. Accumulation of ppGpp and pppGpp during

nitrogen deprivation of the cyanophyte Anabaena cylindrica. FEBS lett. 107,

173–176 (1979).

Friga, G., Borbely, G. & Farkas, G. L. Accumulation of guanosine

tetraphosphate (ppGpp) under nitrogen starvation in Anacystis nidulans, a

cyanobacterium. Arch. Microbiol. 129, 341–343 (1981).

Doolittle, W. F. The cyanobacterial genome, its expression, and the control of

that expression. Adv. Microb. Physiol. 20, 1–102 (1980).

Surányi, G., Korcz, A., Pálfi, Z. & Borbély, G. Effects of light deprivation on

RNA synthesis, accumulation of guanosine 3’(2’)-diphosphate 5’-diphosphate,

and protein synthesis in heat-shocked Synechococcus sp. strain PCC 6301, a

cyanobacterium. J. Bacteriol. 169, 632–639 (1987).

Akinyanju, J. & Smith, R. J. The accumulation of phosphorylated guanosine

nucleotides in Anabaena cylindrica. N. Phytol. 105, 117–122 (1987).

Zhang, S. R., Lin, G. M., Chen, W. L., Wang, L. & Zhang, C. C. ppGpp

metabolism is involved in heterocyst development in the cyanobacterium

Anabaena sp. strain PCC 7120. J. Bacteriol. 195, 4536–4544 (2013).

Diamond, S., Jun, D., Rubin, B. E. & Golden, S. S. The circadian oscillator in

Synechococcus elongatus controls metabolite partitioning during diurnal

growth. Proc. Natl Acad. Sci. USA 112, E1916–E1925 (2015).

van der Biezen, E. A., Sun, J., Coleman, M. J., Bibb, M. J. & Jones, J. D.

Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proc.

Natl Acad. Sci. USA 97, 3747–3752 (2000).

Takahashi, K., Kasai, K. & Ochi, K. Identification of the bacterial alarmone

guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. Proc. Natl Acad.

Sci. USA 101, 4320–4324 (2004).

Maekawa, M. et al. Impact of the plastidial stringent response in plant growth

and stress responses. Nat. Plants 1, 15167 (2015).

Hood, R. D., Higgins, S. A., Flamholz, A., Nichols, R. J. & Savage, D. F. The

stringent response regulates adaptation to darkness in the cyanobacterium

Synechococcus elongatus. Proc. Natl Acad. Sci. USA 113, E4867–E4876 (2016).

Puszynska, A. M. & O’Shea, E. K. ppGpp Controls Global Gene Expression

in Light and in Darkness in S. elongatus. Cell Rep. 21, 3155–3165 (2017).

Nanamiya, H. et al. Identification and functional analysis of novel (p)ppGpp

synthetase genes in Bacillus subtilis. Mol. Microbiol. 67, 291–304 (2008).

Llop, A. et al. Pleiotropic effects of PipX, PipY, or RelQ overexpression on

growth, cell size, photosynthesis, and polyphosphate accumulation in the

cyanobacterium Synechococcus elongatus PCC7942. Front. Microbiol. 14,

1141775 (2023).

COMMUNICATIONS BIOLOGY | (2023)6:1285 | https://doi.org/10.1038/s42003-023-05632-1 | www.nature.com/commsbio

11

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05632-1

22. García-Domínguez, M., Reyes, J. C. & Florencio, F. J. NtcA represses

transcription of gifA and gifB, genes that encode inhibitors of glutamine

synthetase type I from Synechocystis sp. PCC 6803. Mol. Microbiol 35,

1192–1201 (2000).

23. Giner-Lamia, J. et al. Identification of the direct regulon of NtcA during early

acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp.

PCC 6803. Nucleic Acid Res. 45, 11800–11820 (2017).

24. Muro-Pastor, M. I., Reyes, J. C. & Florencio, F. J. Cyanobacteria perceive

nitrogen status by sensing intracellular 2-oxoglutarate levels. J. Biol. Chem.

276, 38320–38328 (2001).

25. Forchhammer, K. & Selim, K. A. Carbon/nitrogen homeostasis control in

cyanobacteria. FEMS Microbiol. Rev. 44, 33–53 (2020).

26. Forchhammer, K. & Schwarz, R. Nitrogen chlorosis in unicellular

cyanobacteria – a developmental program for surviving nitrogen deprivation.

Environ. Microbiol. 21, 1173–1184 (2019).

27. Laurent, S. et al. Nonmetabolizable analogue of 2-oxoglutarate elicits

heterocyst differentiation under repressive conditions in Anabaena sp. PCC

7120. Proc. Natl Acad. Sci. USA 102, 9907–9912 (2005).

28. Luque, I., Zabulon, G., Contreras, A. & Houmard, J. Convergence of two

global transcriptional regulators on nitrogen induction of the stressacclimation gene nblA in the cyanobacterium Synechococcus sp. PCC 7942.

Mol. Microbiol. 41, 937–947 (2001).

29. Espinosa, J. et al. PipX, the coactivator of NtcA, is a global regulator in

cyanobacteria. Proc. Natl Acad. Sci. USA 111, E2423–E2430 (2014).

30. Zhao, M. X. et al. Structural basis for the allosteric control of the global

transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate.

Proc. Natl Acad. Sci. USA 107, 12487–12492 (2010).

31. Llácer, J. L. et al. Structural basis for the regulation of NtcA-dependent

transcription by proteins PipX and PII. Proc. Natl Acad. Sci. USA 107,

15397–15402 (2010).

32. Hasunuma, T. et al. Dynamic metabolic profiling of cyanobacterial glycogen

biosynthesis under conditions of nitrate depletion. J. Exp. Bot. 64, 2943–2954

(2013).

33. Meeks, J. C. et al. The pathways of assimilation of 13NH4+ by the

cyanobacterium, Anabaena cylindrica. J. Biol. Chem. 252, 7894–7900 (1977).

34. Isabel Muro-Pastor, M., Reyes, J. C. & Florencio, F. J. Ammonium assimilation

in cyanobacteria. Photosyn. Res. 83, 135–150 (2005).

35. Hasunuma, T. et al. Metabolic turnover analysis by a combination of in vivo

13C-labelling from 13CO and metabolic profiling with CE-MS/MS reveals

rate-limiting steps of the C3 photosynthetic pathway in Nicotiana tabacum

leaves. J. Exp. Bot. 61, 1041–1051 (2010).

36. Nishii, M., Ito, S., Katayama, N. & Osanai, T. Biochemical elucidation of

citrate accumulation in Synechocystis sp. PCC 6803 via kinetic analysis of

aconitase. Sci. Rep. 11, 17131 (2021).

37. Lancien, M., Gadal, P. & Hodges, M. Enzyme redundancy and the importance

of 2-oxoglutarate in higher plant ammonium assimilation. Plant Physiol. 123,

817–824 (2000).

38. Tanaka, K. et al. Dark accumulation of downstream glycolytic intermediates

initiates robust photosynthesis in cyanobacteria. Plant Physiol. 191,

2400–2413 (2023).

39. Zhang, Y., Zborníková, E., Rejman, D. & Gerdes, K. Novel (p)ppGpp Binding

and Metabolizing Proteins of Escherichia coli. mBio 9, e02188–17 (2018).

40. Wang, B. et al. Affinity-based capture and identification of protein effectors of

the growth regulator ppGpp. Nat. Chem. Biol. 15, 141–150 (2019).

41. Görl, M., Sauer, J., Baier, T. & Forchhammer, K. Nitrogen-starvation-induced

chlorosis in Synechococcus PCC 7942: adaptation to long-term survival.

Microbiology 144, 2449–2458 (1998).

42. Zilliges, Y. Glycogen, a dynamic cellular sink and reservoir for carbon.

Herrero, A. (Ed.), The Cell Biology of Cyanobacteria, Caister Academic Press,

189–210 (2014).

43. Cano, M. et al. Glycogen Synthesis and Metabolite Overflow Contribute to

Energy Balancing in Cyanobacteria. Cell Rep. 23, 667–672 (2018).

44. Carrieri, D., Paddock, T., Maness, P.-C., Seibert, M. & Yu, J. Photo-catalytic

conversion of carbon dioxide to organic acids by a recombinant

cyanobacterium incapable of glycogen storage. Energy Environ. Sci. 5,

9457–9461 (2012).

45. Klotz, A., Reinhold, E., Doello, S. & Forchhammer, K. Nitrogen Starvation

Acclimation in Synechococcus elongatus: Redox-Control and the Role of

Nitrate Reduction as an Electron Sink. Life (Basel) 5, 888–904 (2015).

46. Karradt, A., Sobanski, J., Mattow, J., Lockau, W. & Baier, K. NblA, a key

protein of phycobilisome degradation, interacts with ClpC, a HSP100

chaperone partner of a cyanobacterial Clp. protease J. Biol. Chem. 283,

32394–32403 (2008).

47. Pernil, R., Picossi, S., Herrero, A., Flores, E. & Mariscal, V. Amino Acid

Transporters and Release of Hydrophobic Amino Acids in the HeterocystForming Cyanobacterium Anabaena sp. Strain PCC 7120. Life (Basel) 5,

1282–1300 (2015).

12

48. Iyer, S., Le, D., Park, R. & Kim, M. Distinct mechanisms coordinate

transcription and translation under carbon and nitrogen starvation in

Escherichia coli. Nat. Microbiol. 3, 741–748 (2018).

49. Hasunuma, T. et al. Overexpression of flv3 improves photosynthesis in the

cyanobacterium Synechocystis sp. PCC6803 by enhancement of alternative

electron flow. Biotechnol. Biofuels 7, 493 (2014).

50. Allen, M. M. & Stanier, R. Y. Growth and division of some unicellular bluegreen algae. J. Gen. Microbiol. 51, 199–202 (1968).

51. Watanabe, S. et al. Light-dependent and asynchronous replication of

cyanobacterial multi-copy chromosomes. Mol. Microbiol. 83, 856–865 (2012).

52. Clerico, E. M., Ditty, J. L. & Golden, S. S. Specialized techniques for sitedirected mutagenesis in cyanobacteria. Rosato, E. (Ed.), Circadian rhythms.

Methods Mol. BiolTM. 362, Humana Press, 155–171 (2007).

53. Wagner, G. P., Kin, K. & Lych, V. J. Measurement of mRNA abundance using

RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci.

131, 281–285 (2012).

54. Beinert, H., Kennedy, M. C. & Stout, C. D. Aconitase as Iron−Sulfur Protein,

Enzyme, and Iron-Regulatory Protein. Chem. Rev. 96, 2335–2374 (1996).

55. Bradford, M. M. A rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye binding.

Anal. Biochem. 72, 248–254 (1976).

56. Collos, Y. et al. An optical method for the rapid measurement of micromolar

concentrations of nitrate in marine phytoplankton cultures. J. Appl. Phycol.

11, 179–184 (1999).

Acknowledgements

The authors thank Ms. Hiroko Koizumi for their technical assistance. The RNA

sequencing was performed by Research Institute of Green Science and Technology,

Shizuoka University. This work was supported by Japan Science and Technology Agency

(JST)-Mirai Program Grant Number JPMJMI19E4, the Ministry of Education, Culture,

Sports, Science, and Technology (MEXT), Japan.

Author contributions

R.H. and R.O. contributed equally. R.O., H.A., and T.H. conceived and designed the research.

R.H., R.O., M.M, and Y.K. performed most experiments and M.M. conducted CE-TOFMS

analysis. S.I. and K.T. contributed to the interpretation of the results. R.H., R.O., Y.K., H.A., and

T.H. analyzed data. A.K. and T.H. supervised the research. R.H., Y.K., R.O., H.A., and T.H.

wrote the manuscript. All authors approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s42003-023-05632-1.

Correspondence and requests for materials should be addressed to Tomohisa

Hasunuma.

Peer review information Communications Biology thanks Cheng-Cai Zhang, Karl

Forchhammer and the other, anonymous, reviewer(s) for their contribution to the peer

review of this work. Primary Handling Editors: Haichun Gao and David Favero. A peer

review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons licence and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

COMMUNICATIONS BIOLOGY | (2023)6:1285 | https://doi.org/10.1038/s42003-023-05632-1 | www.nature.com/commsbio

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る