リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Methylocystis iwaonis sp. nov., a type II methane-oxidizing bacterium from surface soil of a rice paddy field in Japan, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Methylocystis iwaonis sp. nov., a type II methane-oxidizing bacterium from surface soil of a rice paddy field in Japan, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993

Kaise, Hirotaka Sawadogo, Joseph Benewindé Alam, Mohammad Saiful Ueno, Chihoko Dianou, Dayéri Shinjo, Rina Asakawa, Susumu 名古屋大学

2023.06.06

概要

Paddy fields are an important source of methane emission [1] and a habitat for ...

この論文で使われている画像

参考文献

372

1. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, et al. Carbon and Other

373

Biogeochemical Cycles. In: Stocker TF, Qin D, Plattner GK, Tignor M, et al.

374

(eds). Climate Change 2013: the Physical Science Basis. Contribution of Working

375

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate

376

Change: Cambridge University Press; 2013. pp. 465–570.

377

378

379

2. Hanson RS, Hanson TE. Methanotrophic bacteria. Microbiol Rev 1996;60:439–

471.

3. Bowman JP. The methanotrophs—The families Methylococcaceae and

380

Methylocystaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, et al.

381

(eds). The Prokaryotes: A Handbook on the Biology of Bacteria,3rd ed. Vol. 5:

382

Proteobacteria: Alpha and Beta Sublcalssses: Springer; 2006. pp. 266–289.

383

4. Dedysh SN, Knief C. Diversity and Phylogeny of Described Aerobic

384

Methanotrophs. In: Kalyuzhnaya MG, Xing X-H. (eds). Methane Biocatalysis:

385

Paving the Way to Sustainability: Springer; 2018. pp. 17–42.

386

5. Geymonat E, Ferrando L, Tarlera SE. Methylogaea oryzae gen. nov., sp. nov., a

387

novel mesophilic methanotroph from a rice paddy field in Uruguay. Int J Syst Evol

388

Microbiol 2011;61:2568–2572.

389

6. Ogiso T, Ueno C, Dianou D, Van Huy T, Katayama A, et al. Methylomonas

390

koyamae sp. nov., a type I methane-oxidizing bacterium from floodwater of a rice

391

paddy field. Int J Syst Evol Microbiol 2012;62:1832–1837.

19

392

7. Khalifa A, Lee CG, Ogiso T, Ueno C, Dianou D, et al. Methylomagnum ishizawai

393

gen. nov., sp. nov., a mesophilic type I methanotroph isolated form rice rhizosphere.

394

Int J Syst Evol Microbiol 2015;65:3527–3534.

395

8. Frindte K, Maarastawi SA, Lipski A, Hamacher J, Knief C. Characterization of

396

the first rice paddy cluster I isolate, Methyloterricola oryzae gen. nov., sp. nov. and

397

amended description of Methylomagnum ishizawai. Int J Syst Evol Microbiol

398

2017;67:4507–4514.

399

9. Pandit PS, Rahalkar MC. Renaming of ‘Candidatus Methylocucumis oryzae’ as

400

Methylocucumis oryzae gen. nov., sp. nov., a novel Type I methanotroph isolated

401

from India. Antonie van Leeuwenhoek 2019;112:955–959.

402

403

10. Asakawa S. Ecology of methanogenic and methane-oxidizing microorganisms in

paddy soil ecosystem. Soil Sci Plant Nutr 2021;67:520–526.

404

11. Le Mer J, Escoffier S, Chessel C, Roger PA. Microbiological aspects of methane

405

emission in a ricefield soil from the Camargue (France): 2. Methanotrophy and

406

related microflora. Eur J Soil Biol 1996;32:71–80.

407

12. Gilbert B, Aßmus B, Hartmann A, Frenzel P. In situ localization of two

408

methanorophic strains in the rhizosphere of rice plants. FEMS Microbiol Ecol

409

1998;25:117–128.

410

13. Takeda K, Suzuki S, Neko K, Tomiyama Y, Fujita T, et al. Enumeration and

411

characterization of methanotrophs in paddy soils and rice roots. Jpn J Soil Sci Plant

412

Nutr 1998;69:570–575. (in Japanese with English summary)

20

413

414

14. Dianou D, Adachi K. Characterization of methanotrophic bacteria isolated from a

subtropical paddy field. FEMS Microbiolo Lett 1999;173:163–173.

415

15. van Bodegom P, Stams F, Mollema L, Boeke S, Leffelaar P. Methane oxidation

416

and the composition for oxygen in the rice rhizosphere. Appl Environ Microbiol

417

2001;67:3586–3597.

418

16. Takeda K, Tonouchi A, Takada M, Suko T, Suzuki S, et al. Characterization of

419

cultivable methanotrophs from paddy soils and rice roots. Soil Sci Plant Nutr

420

2008;54:876–885.

421

17. Bao Z, Shinoda R, Minamisawa K. Draft genome sequence of Methylosinus sp.

422

strain 3S-1, an isolate from rice root in a low-nitrogen paddy field. Genome

423

Announc 2016;45:e00932-16.

424

18. Pandit PS, Rahalkar MC, Dhakephalkar PK, Ranade DR, Pore S, et al.

425

Deciphering community structure of methanotrophs dwelling in rice rhizospheres of

426

an Indian rice field using cultivation and cultivation-independent approaches.

427

Microb Ecol 2016;71:634–644.

428

19. Rahalkar MC, Patil S, Dhakephalkar PK, Bahulikar R. Cultivated

429

methanotrophs associated with rhizospheres of traditional rice landraces from

430

Western India belong to Methylocaldum and Methylocystis. 3 Biotech 2018;8:281.

431

20. Bowman JP, Sly LI, Nichols PD, Hayward AC. Revised taxonomy of the

432

methanotrophs: description of Methylobacter gen. nov., emendation of

433

Methylococcus, validation of Methylosinus and Methylocystis species, and a

21

434

proposal that the family Methylococcaceae includes only the group I methanotrophs.

435

Int J Syst Bacteriol 1993;43:735–753.

436

21. Bowman JP. Methylocystis. In Trujillo ME, Dedysh S, DeVos P, Hedlund B,

437

Kämpfer P, et al. (eds), Bergey's Manual of Systematics of Archaea and Bacteria:

438

John Wiley & Sons; 2015. https://doi.org/10.1002/9781118960608.gbm00832.

439

22. Wartiainen I, Hestnes AG, McDonald IR, Svenning MM. Methylocystis rosea sp.

440

nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway

441

(78º N). Int J Syst Evol Microbiol 2006;56:541–547.

442

23. Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN, et al.

443

Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing

444

‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol

445

2007;57:472–479.

446

24. Linder AS, Pacheco A, Aldrich HC, Staniec AC, Uz I, Hodson DJ. Methylocystis

447

hirsute sp. nov., a novel methanotroph isolated from a groundwater aquifer. Int J

448

Syst Evol Microbiol 2007;57:1891–1900.

449

25. Belova SE, Kulichevskaya IS, Bodelier PLE, Dedysh SN. Methylocystis

450

bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum

451

peat, and emended description of the genus Methylocystis (ex Whittenbury et al.

452

1970) Bowman et al. 1993. Int J Syst Evol Microbiol 2013;63:1096–1104.

453

26. Tikhonova EN, Grouzdev DS, Avtukh AN, Kravchenko IK. Methylocystis

454

silviterrae sp. nov., a high-affinity methanotrophic bacterium isolated from the

455

boreal forest soil. Int J Syst Evol Microbiol 2021;71:005166.

22

456

27. Dianou D, Ueno C, Ogiso T, Kimura M, Asakawa S. Diversity of cultivable

457

methane-oxidizing bacteria in microsites of a rice paddy field: investigation by

458

cultivation method and fluorescence in situ hybridization (FISH). Microbes Environ

459

2012;27:278–287.

460

28. Whittenbury R, Phillips KC, Wilkinson JF. Enrichment, isolation and some

461

properties of methane-utilizing bacteria. J Gen Microbiol 1970;61:205–218.

462

29. Bosse U, Frenzel P. Activity and distribution of methane-oxidizing bacteria in

463

flooded rice soil microcosms and in rice plants (Oryza sativa). Appl Environ

464

Microbiol 1997;63:1199–1207.

465

466

30. Leadbetter ER, Foster JW. Studies on some methane-utilizing bacteria. Arch

Mikrobiol 1958;30:91–118.

467

31. Sowers KR. Isolation of chromosomal and plasmid DNAs from methanogenic

468

archaea. In: Sowers KR, Schreier HI. (eds). Archaea: A Laboratory Manual:

469

Methanogens: Cold Spring Harbor Laboratory Press; 1995. pp. 369–378.

470

32. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA

471

amplification for phylogenetic study. J Bacteriol 1991;173:697–703.

472

33. Holmes AJ, Costello A, Lidstrom ME, Murrell JC. Evidence that particulate

473

methane monooxygenase and ammonia monooxygenase may be evolutionarily

474

related. FEMS Microbiol Lett 1995;132:203–208.

475

34. Costello AM. & Lidstrom ME. Molecular characterization of functional and

476

phylogenetic genes from natural populations of methanotrophs in lake sediments.

477

Appl Environ Microbiol 1999;65:5066–5074.

23

478

35. Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC. Analysis

479

of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ

480

Microbiol 2004; 6:111–120.

481

36. McDonald IR, Kenna EM, Murrell JC. Detection of methanotrophic bacteria in

482

environmental samples with PCR. Appl Environ Microbiol 1995;61:116–121.

483

37. Neufeld JD, Schäfer H, Cox MJ, Boden R, McDonald IR, et al. Stable-isotope

484

probing implicates Methylophaga spp and novel Gammaproteobacteria in marine

485

methanol and methylamine metabolism. ISME J 2007;1:480–491.

486

38. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, et al. Introducing EzBioCloud: a

487

taxonomically united database of 16S rRNA gene sequences and whole-genome

488

assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617.

489

39. Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, et al.

490

NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic

491

Acids Res 2019;47:W260–W265.

492

40. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical

493

user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol

494

2010;27:221–224.

495

41. Heyer J, Galchenko VF, Dunfield PF. Molecular phylogeny of type II methane-

496

oxidizing bacteria isolated from various environments. Microbiology

497

2002;148:2831–2846.

24

498

42. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome

499

assemblies from short and long sequencing reads. PLoS Comput Biol

500

2017;13:e1005595.

501

43. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:

502

assessing the quality of microbial genomes recovered from isolates, single cells, and

503

metagenomes. Genome Res 2015;25:1043–1055.

504

505

506

44. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinfomatics

2014;30:2068–2069.

45. Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: A fast and

507

scalable pangenomics toolbox for clustering diverged orthologues in

508

bacteria. Gigascience 2019;8:giz119.

509

46. Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN.

510

Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest

511

cambisol. Int J Syst Evol Microbiol 2003;53:1231–1239.

512

47. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, et al.

513

DNA–DNA hybridization values and their relationship to whole-genome sequence

514

similarities. Int J Syst Evol Microbiol 2007;57:81–91.

515

48. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based

516

species delimitation with confidence intervals and improved distance functions.

517

BMC Bioinformatics 2013;14:60.

518

519

49. Whittenbury R, Dalton H. The methylotrophic bacteria. In: Starr MP, Stolp H,

Trüper HG, Balows A, et al. (eds). The Prokaryotes: A Handbook on Habitats,

25

520

Isolation, and Identification of Bacteria. Vol 1: Springer-Verlag; 1981. pp. 894–

521

902.

522

523

50. Whittenbury R, Davies SL, Davey JF. Exospores and cysts formed by methaneutilizing bacteria. J Gen Microbiol 1970;61:219–226.

524

51. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of

525

the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and

526

Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002;52:1551–1558.

527

52. Brusseau GA, Tsien H-C, Hanson RS, Wackett LP. Optimization of

528

trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to

529

detect soluble methane monooxygenase activity. Biodegradation 1990;1:19–29.

530

53. Koh S-C, Bowman JP, Sayler GS. Soluble methane monooxygenase production

531

and trichloroethylene degradation by a type I methanotroph, Methylomonas

532

methanica 68-1. Appl Environ Microbiol 1993;59:960–967.

533

54. Nichols P, Guckert JB, White DC. Determination of monounsaturated fatty acid

534

double-bond position and geometry for microbial monocultures and complex

535

consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol

536

Meth 1986;5:49–55.

537

538

55. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can

J Biochem Physiol 1959;37:911–917.

539

56. Bowman JP. Family V. Methylocystaceae fam. nov. In: Brenner DJ, Krieg NR,

540

Staley JT, Garrity GM. (eds). Bergey’s Manual of Systematic Bacteriology: The

26

541

Proteobacteria, Part C, the Alpha-, Beta-, Delta-, and Epsilonbacteria, 2nd ed., vol.

542

2: New York, Springer; 2005. pp. 411–422.

543

57. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M, et al.

544

Analysis of 1,000+ type-strain genomes substantially improves taxonomic

545

classification of Alphaproteobacteria. Front Microbiol 2020;11:468.

546

58. Romanovskaya VA, Malashenko YR, Bogachenko VN. Corrected diagnosis of

547

the genera and species of methane-utilizing bacteria. Microbiology (translated from

548

Mikrobiologiya) 1978;47:96–103.

549

59. Oshkin IY, Miroshnikov KK, Grouzdev DS, Dedysh SN. Pan-genome-based

550

analysis as a framework for demarcating two closely related methanotroph genera

551

Methylocystis and Methylosinus. Microorganisms 2020;8:768.

552

60. Bodelier PLE, Gillisen M-JB, Hordijk K, Damsté JSS, et al. A reanalysis of

553

phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. ISME

554

J 2009;3:606–617.

555

61. Bowman JP, Skerrat JH, Nichols PD, Sly LI. Phospholipid fatty acid and

556

lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS

557

Microbiol Ecol 1991;85:15–22.

558

62. Gal’chenko VF, Shishkina VN, Suzina NE, Trotsenko A. Isolation and properties

559

of new strains of obligate methanotrophs. Microbiology (translated from

560

Mikrobiologiya) 1978;46:723–728.

561

27

562

Table 1. Genome relatedness indexes between strain SS37A-ReT and Methylocystis and Methylosinus species

563

ANI and dDDH values are shown in the upper and lower triangles, respectively. Accession number are presented in parentheses.

Strain

10

1. SS37A-ReT (GCA_027925385.1)

100

82.3

82.5

80.0

79.2

80.0

78.6

80.0

79.2

79.4

2. Methylocystis parva OBBPT (GCA_000283235.1)

24.8

100

82.2

79.7

78.9

79.8

78.7

79.8

78.7

78.9

24.9

24.3

100

80.0

79.0

80.1

78.9

79.9

79.1

78.7

4. Methylocystis rosea SV97T (GCA_000372845.1)

22.3

21.6

21.9

100

78.4

91.9

78.4

92.4

78.7

78.1

5. Methylocystis heyeri H2T (GCA_004802635.2)

22.5

21.2

21.6

20.8

100

78.7

78.7

78.3

78.5

78.2

6. Methylocystis hirsuta CSC1T (GCA_003722355.1)

22.0

21.7

22.2

47.2

21.9

100

78.3

94.1

78.6

78.3

7. Methylocystis bryophila H2sT (GCA_027925445.1)

21.7

21.3

21.9

21.5

21.4

21.5

100

78.6

78.7

78.4

8. Methylocystis silviterrae FST (GCA_013350005.1)

21.8

21.7

21.8

49.1

21.1

56.0

21.0

100

78.7

78.5

9. Methylosinus trichosporium OB3bT (GCA_002752655.1)

21.7

21.4

21.6

21.4

21.3

21.5

21.0

21.6

100

83.1

10. Methylosinus sporium 5T (GCA_009811675.1)

22.0

21.3

21.2

20.6

21.2

20.6

20.9

20.5

25.4

100

3. Methylocystis echinoides LMG27198T

(BSEC01000001–BSEC01000011)

564

28

565

566

567

568

569

570

Table 2. Cellular fatty acids composition of SS37A-ReT and type strains of

Methylocystis and Methylosinus

Strains: 1, strain SS37A-ReT; 2, Methylocystis parva OBBPT [25]; 3, Methylocystis echinoides IMET10491T [60]; 4, Methylocystis

rosea SV97T [26]; 5, Methylocystis heyeri H2T [23]; 6, Methylocystis hirsuta CSC1T [26]; 7, Methylocystis bryophila H2sT [25]; 8,

Methylocystis silviterrae FST [26]; 9, Methylosinus trichosporium OB3bT [61]; 10, Methylosinus sporium 5T [61].Values are

percentages of the total fatty acids. −, Not detected; tr, Trace component.

Fatty acid

10

iso-C14:0

0.1

iso-C15:0

0.2

0.5

anteiso-C15:0

3.5

C15:0

tr

0.7

iso-C16:0

1.4

10-Methyl C16:0

3.5

C16:1ω9c

0.6

C16:1ω9t

2.3

C16:1ω8c

29.0

C16:1ω7c

1.2*

0.5

0.8

3.4

15.4

14.2

9.3

C16:1ω6c

0.5

2.8

C16:1ω5t

C16:0

4.7

0.2

0.3

0.9

1.2

0.3

2.4

0.7

2.2

iso-C17:0

0.2

0.2

0.1

0.6

0.2

0.2

0.3

0.2

C17:0

0.4

tr

0.3

iso-C18:0

3.6

anteiso-C17:0

C17:1ω8c

C17:0 cyclo

571

572

573

C18:2ω7, 12c

8.0

22.7

7.8

C18:2ω6, 12c

22.1

4.4

(tr)†

C18:2ω6, 9c

9.0

(tr)†

C18:1ω9c

0.2

C18:1ω9t

1.5

14.7

C18:1ω8c

27.3‡

45.5

51.9

74.8

32.0

71.1

53.1

74.5

67.5

C18:1ω8t

51.8‡

0.8

C18:1ω7c

23.7

18.1

23.7

10.9

26.1

19.3

24.7

13.1

78.7

C18:1ω7t

4.6

C18:1ω5c

0.3

C18:0 2-OH

0.3

C18:0

1.4

0.2

0.7

0.3

0.8

1.2

C19:0 branched

0.8

C19:0 cyclo

0.2

C20:0

0.1

* The fatty acid was assigned to C16:1ω7c/ C16:1ω9t as “summed feature” in the report of the MIDI System.

† Bowman et al. [61] showed the fatty acid as “C18:2ω6”.

‡ The fatty acids were identified by the analysis of the DMDS derivatives (Fig. S9)

29

574

Table 3. Phenotypic characters of type strains of Methylocystis and Methylosinus species

575

576

577

Strains: 1, strain SS37A-ReT; 2, Methylocystis parva OBBPT [20, 57, 60]; 3, Methylocystis echinoides IMET10491T [20, 60, 62, this study]; 4, Methylocystis rosea SV97T [22, 26]; 5,

Methylocystis heyeri H2T [23]; 6, Methylocystis hirsuta CSC1T [24, 26]; 7, Methylocystis bryophila H2sT [25, this study]; 8, Methylocystis silviterrae FST [26]; 9, Methylosinus

trichosporium OB3bT [20, 57]; 10, Methylosinus sporium 5T [20, 57, 61]. +, Positive; -, negative; NR, Not reported.

Characteristic

10

Cell shape

Rods

Reniform,

coccobacilli

Straight,

Reniform,

coccobacilli,

Rods

rods

polymorphic or

regularly curved

Small curved

Dumbbell

coccoids,

short rods

rods, ovoids

Small curved

Pear

Vibrioids,

coccoids/rods

(pyriform)

rods

Cell width (µm)

1.1

0.3–0.5

0.6

0.8–1.1

0.8–1.2

0.3–0.6

0.9–1.4

0.5–0.7

0.5–1.5

0.5–1.0

Cell length (µm)

2.7

0.5–1.5

0.8–1.2

1.1–2.5

1.4–4.0

0.7–1.0

1.8–3.4

1.7–3.4

2.0–3.0

1.5–3.0

Motility

Single polar

NR

NR

NR

NR

Polar tuft

Polar tuft

Lipid cyst formation

NR

NR

Exospore formation

NR

NR

Rosette formation

NR

Temperature (ºC)

25–30

30

30

27

25

30

25–30

25–30

30

30

pH

7.0–8.0

7.0

7.0

5.5–9.0

5.8–6.2

7.0

6.0–6.5

6.0–6.5

6.5–7.0

6.5–7.0

Growth at 37 ºC

sMMO

Predominant fatty acids

C18:1ω8t

C18:1ω8c

C18:1ω8c

C18:1ω8c

C18:1ω8c

C18:1ω8c

C18:1ω8c

C18:1ω8c

C18:1ω7c

G+C content (mol%)*

63.2

63.9

63.9

62.5

62.4

63.2

62.6

65.9

65.2

Flagellum

Optimum growth

condition:

578

C18:1ω8c

C16:1ω8c

63.0

* Determined by genome analysis.

30

579

Figure legends

580

Fig. 1. Maximum-likelihood phylogenetic tree of 16S rRNA gene sequences showing

581

the relationships between strain SS37A-ReT and related bacteria. Bar represents 0.02

582

substitutions per nucleotide sequence position. Closed circles indicate internal nodes

583

with at least 50% bootstrap support from 1000 data resampling. The tree was rooted

584

using Rhodoplanes elegans AS130T as the outgroup. GenBank accession numbers are

585

given in parentheses.

586

587

Fig. 2. Maximum-likelihood phylogenetic tree of pmoA gene sequences showing the

588

relationships between strain SS37A-ReT and related bacteria. Bar represents 0.1

589

substitutions per nucleotide sequence position. Closed circles indicate internal nodes

590

with at least 50% bootstrap support from 1000 data resampling. The tree was rooted

591

using Methylomonas koyamae Fw12E-YT as the outgroup. GenBank accession numbers

592

are given in parentheses.

593

594

Fig. 3. Phylogenomic tree based on the concatenated nucleotide sequence of core genes

595

of Methylocystis and Methylosinus species by the distance method. The bar shows

596

nucleotide substitutions per site. Closed circles indicate internal nodes with at least 70%

597

bootstrap support from 1000 data resamplings. The tree was rooted using Methylomonas

598

koyamae Fw12E-YT as the outgroup. GenBank accession numbers are given in

599

parentheses.

600

601

Fig. 4. (a) Transmission electron micrograph of negatively stained cells of strain

602

SS37A-ReT. Bar, 1 µm. (b) Phase-contrast micrograph of strain SS37A-ReT cells. Bar, 5

603

µm. (c) Phase-contrast micrograph of rosettes of strain SS37A-ReT cells. Bar, 5 µm. (d)

604

Transmission electron micrograph of ultrathin sections of strain SS37A-ReT cells. Bar,

605

200 nm. Arrow shows the intracytoplasmic membrane structure.

31

606

607

Supplementary figures

608

609

Fig. S1. Phylogenetic trees of 16S rRNA gene sequences showing the relationships

610

between strain SS37A-ReT and related bacteria by the parsimony (a) and distance (b)

611

methods. Bars represent 0.01 (a) and 0.005 (b) substitutions per nucleotide sequence

612

position. Closed circles indicate internal nodes with at least 50% bootstrap support from

613

1000 data resamplings. The tree was rooted using Rhodoplanes elegans AS130T as the

614

outgroup. GenBank accession numbers are given in parentheses.

615

616

Fig. S2. Phylogenetic trees of pmoA gene sequences showing the relationships between

617

strain SS37A-ReT and related bacteria by the parsimony (a) and distance (b) methods.

618

Bars represent 0.02 (a) and 0.01 (b) substitutions per nucleotide sequence position.

619

Closed circles indicate internal nodes with at least 50% bootstrap support from 1000

620

data resamplings. The tree was rooted using Methylomonas koyamae Fw12E-YT as the

621

outgroup. GenBank accession numbers are given in parentheses.

622

623

Fig. S3. Phylogenetic trees of mxaF gene sequences showing the relationships between

624

strain SS37A-ReT and related bacteria by the maximum-likelihood (a), parsimony (b),

625

and distance (c) methods. Bars represent 0.05 (a) and 0.02 (b and c) substitutions per

626

nucleotide sequence position. Closed circles indicate internal nodes with at least 50%

627

bootstrap support from 1000 data resamplings. The tree was rooted using Methylomonas

628

koyamae Fw12E-YT as the outgroup. GenBank accession numbers are given in

629

parentheses.

630

631

Fig. S4. Phylogenetic trees of mmoX gene sequences showing the relationships between

632

strain SS37A-ReT and related bacteria by the maximum-likelihood (a), parsimony (b)

32

633

and distance (c) methods. Bars represent 0.1 (a) and 0.02 (b and c) substitutions per

634

nucleotide sequence position. Closed circles indicate internal nodes with at least 50%

635

bootstrap support from 1000 data resamplings. The tree was rooted using

636

Methylomagnum ishizawai RS11D-PrT as the outgroup. GenBank accession numbers

637

are given in parentheses.

638

639

Fig. S5. Phylogenetic trees of 16S rRNA gene sequences showing the relationships

640

between strain SS37A-ReT and related Methylocystis and Methylosinus strains isolated

641

from various environments [41] by the maximum-likelihood (a), parsimony (b), and

642

distance (c) methods. Bars represent 0.02 (a), 0.01 (b) and 0.002 (c) substitutions per

643

nucleotide sequence position. Closed circles indicate internal nodes with at least 50%

644

bootstrap support from 1000 (a and c) or 100 (b) data resamplings. The tree was rooted

645

using Methylocapsa palsarum NE2T as the outgroup. GenBank accession numbers are

646

given in parentheses.

647

648

Fig. S6. Phylogenetic trees of pmoA gene sequences showing the relationships between

649

strain SS37A-ReT and related Methylocystis and Methylosinus strains isolated from

650

various environments [41] by the maximum-likelihood (a), parsimony (b), and distance

651

(c) methods. Bars represent 0.01 (a) and 0.02 (b and c) substitutions per nucleotide

652

sequence position. Closed circles indicate internal nodes with at least 50% bootstrap

653

support from 1000 (a and c) or 100 (b) data resamplings. The tree was rooted using

654

Methylomonas koyamae Fw12E-YT as the outgroup. GenBank accession numbers are

655

given in parentheses.

656

657

Fig. S7. Phylogenetic trees of mxaF gene sequences showing the relationships between

658

strain SS37A-ReT and related Methylocystis and Methylosinus strains isolated from

659

various environments [41] by the maximum-likelihood (a), parsimony (b), and distance

33

660

(c) methods. Bars represent 0.05 (a and b) and 0.02 (c) substitutions per nucleotide

661

sequence position. Closed circles indicate internal nodes with at least 50% bootstrap

662

support from 1000 (a and c) or 100 (b) data resamplings. The tree was rooted using

663

Methylomonas koyamae Fw12E-YT as the outgroup. GenBank accession numbers are

664

given in parentheses.

665

666

Fig. S8. Phylogenetic trees of mmoX gene sequences showing the relationships between

667

strain SS37A-ReT and related Methylocystis and Methylosinus strains isolated from

668

various environments [41] by the maximum-likelihood (a), parsimony (b), and distance

669

(c) methods. Bars represent 0.1 (a), 0.02 (b) and 0.01 (c) substitutions per nucleotide

670

sequence position. Closed circles indicate internal nodes with at least 50% bootstrap

671

support from 1000 (a and c) or 100 (b) data resamplings. The tree was rooted using

672

Methylomagnum ishizawai RS11D-PrT as the outgroup. GenBank accession numbers

673

are given in parentheses.

674

675

Fig. S9. (a) Total ion current chromatogram of dimethyl disulphide adducts from strain

676

SS37A-ReT monounsaturated fatty acids. Mass spectra of dimethyl disulphide adducts

677

of C18:1 fatty acids eluted at the retention times 10.23 min (b) and 10.44 min (c),

678

respectively, on the chromatogram (a). Ions at m/z 159, 231, and 390 correspond to ω-

679

fragment, D-fragment, and M+ of the dimethyl disulphide adduct of C18:1ω8 [54].

680

34

681

682

Figure 1

683

35

684

685

Figure 2

686

36

687

688

Figure 3

689

37

690

691

Figure 4

38

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る