リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Molecular mechanism by which Djplac8-A controls proliferation/differentiation of planarian pluripotent stem cells during regeneration」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Molecular mechanism by which Djplac8-A controls proliferation/differentiation of planarian pluripotent stem cells during regeneration

Lee, Hayoung 京都大学 DOI:10.14989/doctor.k24081

2022.05.23

概要

Stem cells are defined by two major characteristics: 1) proliferative ability (produce two identical daughter cells) and 2) differentiative ability (transition to different cell type than itself). Thus, stem cells can perform cell proliferation and generate differentiated cells. Generally, stem cells are classified into several types depending on their differentiative ability:

1) totipotent, 2) pluripotent, 3) multipotent, 4) oligopotent, and 5) unipotent (Fig 1, Zakrzewski et al., 2019). Totipotent stem cells are the highest potential type of stem cells since a single totipotent stem cell can form a complete organism. Totipotency is a typical characteristic of plant cells because they have high dedifferentiation ability, which is going back to the undifferentiated state from a differentiated state, and a single dedifferentiated cell can differentiate into a single complete organism (Grafi et al., 2011). On the other hand, in animals, totipotentcy is observed in only in the very early stage of development, which is the fertilized egg (Bindu A and B, 2011). Pluripotent stem cells (PSCs), for example embryonic stem cells (ESCs) or induced pluripotent stem cell (iPSCs), can differentiate into all types of cells constructing individuals except for extraembryonic cells (Smith et al., 2009; Takahashi and Yamanaka, 2006). For example, ESCs can differentiate into not only all types of somatic cells, but also germ cells (Keller, 1995; Smith, 2001). Multipotent stem cells having a narrower spectrum of differentiative potentiality than that of pluripotent stem cells can differentiate into multiple types of cells in a restricted lineage. For example, hematopoietic stem cells, which are a kind of somatic tissue stem cell, can differentiate into all types of blood cells and lymph cells (Seita and Weissman, 2010; Zakrzewski et al., 2019). Oligopotent stem cells have a narrower spectrum of differentiation than that of multipotent stem cells, thus they can differentiate into a few types of cells. For example, myeloid stem cells can differentiate into blood cells including basophils and red blood cells and so on, or lymphoid stem cells differentiate into lymphocytes, including T cells and B cells (Seita and Weissman, 2010; Zakrzewski et al, 2019). Unipotent stem cells have limited potential to differentiate into only one type of differentiated cell, for example, germline stem cells (GSCs) are a type of unipotent stem cell which differentiate into only sperm or egg (Lehmann, 2012).

Since plant cells have totipotency, as mentioned above, they can dedifferentiate, reenter the cell cycle, and differentiate into the other cell types required for regenerating tissues, organs, and even entire plants under certain conditions (Grafi et al., 2011). On the other hand, the differentiative potency of stem cells in animals becomes more limited along the developmental process and then most adult animals have a small population of stem cells with limited differentiative ability such as multipotency or unipotency (Fig. 1) (Bonnet, 2002).

この論文で使われている画像

参考文献

Agata, K., Nakajima, E., Funayama, N., Shibata, N., Saito, Y., Umesono, Y., 2006. Two different evolutionary origins of stem cell systems and their molecular basis. Semin. Cell Dev. Biol. 17, 503–509. https://doi.org/https://doi.org/10.1016/j.semcdb.2006.05.004

Agata, K., Soejima, Y., Kato, K., Kobayashi, C., Umesono, Y., Watanabe, K., 1998. Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zoolog. Sci. 15, 433–440. https://doi.org/10.2108/zsj.15.433

Agata, K., Tanaka, T., Kobayashi, C., Kato, K., Saitoh, Y., 2003. Intercalary regeneration in planarians. Dev. Dyn. 226, 308–16. https://doi.org/10.1002/dvdy.10249

Agata, K., Watanabe, K., 1999. Molecular and cellular aspects of planarian regeneration.

Semin. Cell Dev. Biol. 10, 377–383. https://doi.org/10.1006/scdb.1999.0324 An, Y., Kawaguchi, A., Zhao, C., Toyoda, A., Sharifi-Zarchi, A., Mousavi, S.A.,

Bagherzadeh, R., Inoue, T., Ogino, H., Fujiyama, A., Chitsaz, H., Baharvand, H., Agata, K., 2018. Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians. Zool. Lett. 4, 1–12. https://doi.org/10.1186/s40851-018-0102-2

Baguñà, J., 1976. Mitosis in the intact and regenerating planarianDugesia mediterranea n.sp.

I. Mitotic studies during growth, feeding and starvation. J. Exp. Zool. 195, 53–64. https://doi.org/10.1002/jez.1401950106

Baguna, J., Salo, E., Auladell, C., 1989. Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells.Development 107, 77–86.

Baricordi, O.R., Melchiorri, L., Adinolfi, E., Falzoni, S., Chiozzi, P., Buell, G., Di Virgilio, F., 1999. Increased proliferation rate of lymphoid cells transfected with the P2X7 ATP receptor. J. Biol. Chem. 274, 33206–33208. https://doi.org/10.1074/jbc.274.47.33206

Bedell, V.M., Person, A.D., Larson, J.D., McLoon, A., Balciunas, D., Clark, K.J., Neff, K.I., Nelson, K.E., Bill, B.R., Schimmenti, L.A., Beiraghi, S., Ekker, S.C., 2012. The lineage- specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development. Development 139, 793–804. https://doi.org/10.1242/dev.071720

Bindu A, H., B, S., 2011. Potency of Various Types of Stem Cells and their Transplantation.

J. Stem Cell Res. Ther. 01, 1–6. https://doi.org/10.4172/2157-7633.1000115 Bonnet, D., 2002. Adult stem cell plasticity. J. Pathol. 197, 441–456. https://doi.org/10.1002/path.1176

Bowman, S.K., Rolland, V., Betschinger, J., Kinsey, K.A., Emery, G., Knoblich, J.A., 2008.

The Tumor Suppressors Brat and Numb Regulate Transit-Amplifying Neuroblast Lineages in Drosophila. Dev. Cell 14, 535–546. https://doi.org/10.1016/j.devcel.2008.03.004

Cabreira-Cagliari, C., Dias, N.D.C., Bohn, B., Fagundes, D.G.D.S., Margis-Pinheiro, M., Bodanese-Zanettini, M.H., Cagliari, A., 2018. Revising the PLAC8 gene family: From a central role in differentiation, proliferation, and apoptosis in mammals to a multifunctional role in plants. Genome 61, 857–865. https://doi.org/10.1139/gen-2018- 0035

Chambers, I., Smith, A., 2004. Self-renewal of teratocarcinoma and embryonic stem cells.Oncogene 23, 7150–7160. https://doi.org/10.1038/sj.onc.1207930

Cong, B., Liu, J., Tanksley, S.D., 2002. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc. Natl. Acad. Sci. U. S. A. 99, 13606–13611. https://doi.org/10.1073/pnas.172520999

Cong, B., Tanksley, S.D., 2006. FW2.2 and cell cycle control in developing tomato fruit: A possible example of gene co-option in the evolution of a novel organ. Plant Mol. Biol. 62, 867–880. https://doi.org/10.1007/s11103-006-9062-6

Di Virgilio, F., Adinolfi, E., 2017. Extracellular purines, purinergic receptors and tumor growth. Oncogene 36, 293–303. https://doi.org/10.1038/onc.2016.206

Di Virgilio, F., Ferrari, D., Adinolfi, E., 2009. P2X7: a growth-promoting receptor— implications for cancer. Purinergic Signal. 5, 251–256. https://doi.org/10.1007/s11302- 009-9145-3

Favata, M.F., Horiuchi, K.Y., Manos, E.J., Daulerio, A.J., Stradley, D.A., Feeser, W.S., Van Dyk, D.E., Pitts, W.J., Earl, R.A., Hobbs, F., Copeland, R.A., Magolda, R.L., Scherle, P.A., Trzaskos, J.M., 1998. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623–32.

Frary, Anne, Nesbitt, T.C., Frary, Amy, Grandillo, S., Van Der Knaap, E., Cong, B., Liu, J., Meller, J., Elber, R., Alpert, K.B., Tanksley, S.D., 2000. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science (80-. ). 289, 85–88. https://doi.org/10.1126/science.289.5476.85

Grafi, G., Florentin, A., Ransbotyn, V., Morgenstern, Y., 2011. The stem cell state in plant development and in response to stress. Front. Plant Sci. 2, 1–10. https://doi.org/10.3389/fpls.2011.00053

Gokhale, R. H. and Shingleton, A. W. (2015). Size control: the developmental physiology of body and organ size regulation. Wiley Interdiscip. Rev. Dev. Biol. 4, 335-356. doi:10.1002/wdev.181

Guo, M., Rupe, M.A., Dieter, J.A., Zou, J., Spielbauer, D., Duncan, K.E., Howard, R.J., Hou, Z., Simmons, C.R., 2010. Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell 22, 1057–73. https://doi.org/10.1105/tpc.109.073676

Guo, M., Simmons, C.R., 2011. Cell number counts--the fw2.2 and CNR genes and implications for controlling plant fruit and organ size. Plant Sci. 181, 1–7. https://doi.org/10.1016/j.plantsci.2011.03.010

Guo, T., Peters, A.H.F.M., Newmark, P.A., 2006. A bruno-like Gene Is Required for Stem Cell Maintenance in Planarians. Dev. Cell 11, 159–169. https://doi.org/10.1016/j.devcel.2006.06.004

Gurley, K.A., Elliott, S.A., Simakov, O., Schmidt, H.A., Holstein, T.W., Alvarado, A.S., 2010. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Dev. Biol. 347, 24–39. https://doi.org/10.1016/j.ydbio.2010.08.007

Harada, H., Chan, C.M., Loesch, A., Unwin, R., Burnstock, G., 2000. Induction of proliferation and apoptotic cell death via P2Y and P2X receptors, respectively, in rat glomerular mesangial cells. Kidney Int. 57, 949–958. https://doi.org/10.1046/j.1523- 1755.2000.00911.x

Hasegawa, K., Namekawa, S.H., Saga, Y., 2013. MEK/ERK signaling directly and indirectly contributes to the cyclical self-renewal of spermatogonial stem cells. Stem Cells 31, 2517–27. https://doi.org/10.1002/stem.1486

Hayashi, T., Asami, M., Higuchi, S., Shibata, N., Agata, K., 2006. Isolation of planarian X- ray-sensitive stem cells by fluorescence-activated cell sorting. Dev. Growth Differ. 48, 371–80. https://doi.org/10.1111/j.1440-169X.2006.00876.x

Hayashi, T., Motoishi, M., Yazawa, S., Itomi, K., Tanegashima, C., Nishimura, O., Agata, K., Tarui, H., 2011. A LIM-homeobox gene is required for differentiation of Wnt- expressing cells at the posterior end of the planarian body. Development 138, 3679–88. https://doi.org/10.1242/dev.060194

Hayashi, T., Shibata, N., Okumura, R., Kudome, T., Nishimura, O., Tarui, H., Agata, K., 2010. Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its “index sorting” function for stem cell research. Dev. Growth Differ. 52, 131–44. https://doi.org/10.1111/j.1440-169X.2009.01157.x

Huang, M.L., Qi, C.L., Zou, Y., Yang, R., Jiang, Y., Sheng, J.F., Kong, Y.G., Tao, Z.Z., Chen, S.M., 2020. Plac8-mediated autophagy regulates nasopharyngeal carcinoma cell function via AKT/mTOR pathway. J. Cell. Mol. Med. 24, 7778–7788. https://doi.org/10.1111/jcmm.15409

Iglesias, M., Felix, D.A., Gutiérrez-Gutiérrez, Ó., De Miguel-Bonet, M. del M., Sahu, S., Fernández-Varas, B., Perona, R., Aboobaker, A.A., Flores, I., González-Estévez, C., 2019. Downregulation of mTOR Signaling Increases Stem Cell Population Telomere

Length during Starvation of Immortal Planarians. Stem Cell Reports 13, 405–418. https://doi.org/10.1016/j.stemcr.2019.06.005

Inaba, M., Yamashita, Y.M., 2012. Asymmetric stem cell division: Precision for robustness. Cell Stem Cell 11, 461–469. https://doi.org/10.1016/j.stem.2012.09.003 Jimenez-Preitner, M., Berney, X., Uldry, M., Vitali, A., Cinti, S., Ledford, J.G., Thorens, B., 2011. Plac8 is an inducer of C/EBPβ required for brown fat differentiation, thermoregulation, and control of body weight. Cell Metab. 14, 658–70. https://doi.org/10.1016/j.cmet.2011.08.008

Kato, K., Orii, H., Watanabe, K., Agata, K., 2001. Dorsal and ventral positional cues required for the onset of planarian regeneration may reside in differentiated cells. Dev. Biol. 233, 109–121. https://doi.org/10.1006/dbio.2001.0226

Keller, G.M., 1995. In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869. https://doi.org/https://doi.org/10.1016/0955-0674(95)80071-9

Knoblich, J.A., 2008. Mechanisms of Asymmetric Stem Cell Division. Cell 132, 583–597. https://doi.org/10.1016/j.cell.2008.02.007

Kunath, T., Saba-El-Leil, M.K., Almousailleakh, M., Wray, J., Meloche, S., Smith, A., 2007.

FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134, 2895–2902. https://doi.org/10.1242/dev.02880

Lahiri, V., Hawkins, W.D., Klionsky, D.J., 2019. Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. Cell Metab. 29, 803–826. https://doi.org/10.1016/j.cmet.2019.03.003

Lehmann, R., 2012. Germline stem cells: Origin and destiny. Cell Stem Cell 10, 729–739. https://doi.org/10.1016/j.stem.2012.05.016

Lei, K., Thi-Kim Vu, H., Mohan, R.D., McKinney, S.A., Seidel, C.W., Alexander, R., Gotting, K., Workman, J.L., Sánchez Alvarado, A., 2016. Egf Signaling Directs Neoblast Repopulation by Regulating Asymmetric Cell Division in Planarians. Dev. Cell 38, 413–429. https://doi.org/10.1016/j.devcel.2016.07.012

Li, Y., Rogulski, K., Zhou, Q., Sims, P.J., Prochownik, E. V., 2006. The Negative c-Myc Target Onzin Affects Proliferation and Apoptosis via Its Obligate Interaction with Phospholipid Scramblase I. Mol. Cell. Biol. 26, 3401–3413. https://doi.org/10.1128/mcb.26.9.3401-3413.2006

Li, Z., He, C., 2015. Physalis floridana Cell Number Regulator1 encodes a cell membrane- anchored modulator of cell cycle and negatively controls fruit size. J. Exp. Bot. 66, 257–270. https://doi.org/10.1093/jxb/eru415

Libault, M., Zhang, X.C., Govindarajulu, M., Qiu, J., Ong, Y.T., Brechenmacher, L., Berg, R.H., Hurley-Sommer, A., Taylor, C.G., Stacey, G., 2010. A member of the highly

conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. Plant J. 62, 852–864. https://doi.org/10.1111/j.1365-313X.2010.04201.x

Lin, H., 2008. Cell biology of stem cells: An enigma of asymmetry and self-renewal. J. Cell Biol. 180, 257–260. https://doi.org/10.1083/jcb.200712159

Liu, L., Michowski, W., Kolodziejczyk, A., Sicinski, P., 2019. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat. Cell Biol. 21, 1060–1067. https://doi.org/10.1038/s41556-019-0384-4

Mao, M., Chen, Y., Jia, Y., Yang, J., Wei, Q., Li, Z., Chen, L., Chen, C., Wang, L., 2019. PLCA8 suppresses breast cancer apoptosis by activating the PI3k/AKT/NF-κB pathway. J. Cell. Mol. Med. 23, 6930–6941. https://doi.org/10.1111/jcmm.14578

Miller, C.M., Newmark, P.A., 2012. An insulin-like peptide regulates size and adult stem cells in planarians. Int. J. Dev. Biol. 56, 75–82. https://doi.org/10.1387/ijdb.113443cm

Morgan, T.H., 1898. Experimental studies of the regeneration of Planaria maculata. Roux’s Arch. Dev. Biol. 7, 364–397. https://doi.org/10.1007/BF02161491

Morita, M., Best, J.B., Noel, J., 1969. Electron microscopic studies of planarian regeneration:

I. Fine structure of neoblasts in Dugesia dorotocephala. J. Ultrastruct. Res. 27, 7–23. https://doi.org/https://doi.org/10.1016/S0022-5320(69)90017-3

Neganova, I., Zhang, X., Atkinson, S., Lako, M., 2009. Expression and functional analysis of G1 to S regulatory components reveals an important role for CDK2 in cell cycle regulation in human embryonic stem cells. Oncogene 28, 20–30. https://doi.org/10.1038/onc.2008.358

Newmark, P.A., Sánchez Alvarado, A., 2000. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev. Biol. 220, 142–53. https://doi.org/10.1006/dbio.2000.9645

Nishimura, O., Hosoda, K., Kawaguchi, E., Yazawa, S., Hayashi, T., Inoue, T., Umesono, Y., Agata, K., 2015. Unusually large number of mutations in asexually reproducing clonal planarian Dugesia japonica. PLoS One 10, 1–23. https://doi.org/10.1371/journal.pone.0143525

Ohtani, M., Ohura, K., Oka, T., 2011. Cellular Physiology Biochemistry and Biochemistr y Involvement of P2X Receptors in the Regulation of Insulin Secretion , Proliferation and Survival in Mouse Pancreatic E -Cells. Cell. Physiol. Biochem. 1195, 355–366.

Orii, H., Ito, H., Watanabe, K., 2002. Anatomy of the planarian Dugesia japonica I. The muscular system revealed by antisera against myosin heavy chains. Zoolog. Sci. 19, 1123–1131. https://doi.org/10.2108/zsj.19.1123

Palakodeti, D., Smielewska, M., Lu, Y.C., Yeo, G.W., Graveley, B.R., 2008. The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. Rna 14, 1174–1186. https://doi.org/10.1261/rna.1085008

Pang, Q., Gao, L., Bai, Y., Deng, H., Han, Y., Hu, W., Zhang, Y., Yuan, S., Sun, W., Lu, Y., Zhang, X., Liu, B., Zhao, B., 2017. Identification and characterization of a novel multifunctional placenta specific protein 8 in Dugesia japonica. Gene 613, 1–9. https://doi.org/10.1016/j.gene.2017.02.024

Pascual-Carreras, E., Marin-Barba, M., Herrera-Úbeda, C., Font-Martın, D., Eckelt, K., de Sousa, N., Garcıá-Fernández, J., Saló, E., Adell, T., 2020. Planarian cell number depends on blitzschnell, a novel gene family that balances cell proliferation and cell death. Dev. 147, 1–14. https://doi.org/10.1242/dev.184044

Pedersen, K.J., 1959. Cytological studies on the planarian neoblast. Zeitschrift für Zellforsch. und Mikroskopische Anat. 1959 506 50, 799–817. https://doi.org/10.1007/BF00342367

Piccin, D., Morshead, C.M., 2011. Wnt signaling regulates symmetry of division of neural stem cells in the adult brain and in response to injury. Stem Cells 29, 528–538. https://doi.org/10.1002/stem.589

Raz, A.A., Wurtzel, O., Reddien, P.W., 2021. Planarian stem cells specify fate yet retain potency during the cell cycle. Cell Stem Cell 28, 1307-1322.e5. https://doi.org/10.1016/j.stem.2021.03.021

Reddien, P.W., Oviedo, N.J., Jennings, J.R., Jenkin, J.C., Sánchez Alvarado, A., 2005.

Developmental biology: SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science (80-. ). 310, 1327–1330. https://doi.org/10.1126/science.1116110

Rolls, M.M., Albertson, R., Shih, H.P., Lee, C.Y., Doe, C.Q., 2003. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J. Cell Biol. 163, 1089–1098. https://doi.org/10.1083/jcb.200306079

Rossi, L., Salvetti, A., Lena, A., Batistoni, R., Deri, P., Pugliesi, C., Loreti, E., Gremigni, V., 2006. DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Dev. Genes Evol. 216, 335–346. https://doi.org/10.1007/s00427- 006-0060-0

Rouhana, L., Weiss, J.A., Forsthoefel, D.J., Lee, H., King, R.S., Inoue, T., Shibata, N., Agata, K., Newmark, P.A., 2013. RNA interference by feeding in vitro-synthesized double- stranded RNA to planarians: methodology and dynamics. Dev. Dyn. 242, 718–30. https://doi.org/10.1002/dvdy.23950

Sakurai, T., Lee, H., Kashima, M., Saito, Y., Hayashi, T., Kudome-Takamatsu, T., Nishimura, O., Agata, K., Shibata, N., 2012. The planarian P2X homolog in the regulation of asexual reproduction. Int. J. Dev. Biol. 56, 173–182.

Saló, E., Baguñà, J., 1984. Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrina, and a new proposal for blastema formation. J. Embryol. Exp. Morphol. 83, 63–80.

Salvetti, A., Rossi, L., Lena, A., Batistoni, R., Deri, P., Rainaldi, G., Locci, M.T.,Evangelista, M., Gremigni, V., 2005. DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132, 1863–1874. https://doi.org/10.1242/dev.01785

Sato, K., Shibata, N., Orii, H., Amikura, R., Sakurai, T., Agata, K., Kobayashi, S., Watanabe, K., 2006. Identification and origin of the germline stem cells as revealed by the expression of nanos-related gene in planarians. Dev. Growth Differ. 48, 615–28. https://doi.org/10.1111/j.1440-169X.2006.00897.x

Sato, Y., Umesono, Y., Kuroki, Y., Agata, K., Hashimoto, C., 2021. Proliferation maintains the undifferentiated status of stem cells: the role of the planarian cell cycle regulator Cdh1. bioRxiv 2021.06.13.448266. https://doi.org/10.1101/2021.06.13.448266

Seita, J., Weissman, I.L., 2010. Published in final edited form as: Hematopoietic Stem Cell: Self-renewal versus Differentiation. Wiley Interdiscip Rev.Syst. Biol.Med. 2, 1–20. https://doi.org/10.1002/wsbm.86.Hematopoietic

Shahriyari, L., Komarova, N.L., 2013. Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer? PLoS One 8. https://doi.org/10.1371/journal.pone.0076195

Shibata, N., Hayashi, T., Fukumura, R., Fujii, J., Kudome-Takamatsu, T., Nishimura, O., Sano, S., Son, F., Suzuki, N., Araki, R., Abe, M., Agata, K., 2012. Comprehensive gene expression analyses in pluripotent stem cells of a planarian, Dugesia japonica. Int. J. Dev. Biol. 56, 93–102. https://doi.org/10.1387/ijdb.113434ns

Shibata, N., Kashima, M., Ishiko, T., Nishimura, O., Rouhana, L., Misaki, K., Yonemura, S., Saito, K., Siomi, H., Siomi, M.C., Agata, K., 2016. Inheritance of a Nuclear PIWI from Pluripotent Stem Cells by Somatic Descendants Ensures Differentiation by Silencing Transposons in Planarian. Dev. Cell 37, 226–237. https://doi.org/10.1016/j.devcel.2016.04.009

Shibata, N., Rouhana, L., Agata, K., 2010. Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians. Dev. Growth Differ. 52, 27–41. https://doi.org/10.1111/j.1440-169X.2009.01155.x

Shibata, N., Umesono, Y., Orii, H., Sakurai, T., Watanabe, K., Agata, K., 1999. Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev. Biol. 206, 73–87. https://doi.org/10.1006/dbio.1998.9130

Smith, A.G., 2001. Embryo-Derived Stem Cells: Of Mice and Men. Annu. Rev. Cell Dev. Biol. 17, 435–462. https://doi.org/10.1146/annurev.cellbio.17.1.435

Smith, K.P., Luong, M.X., Stein, G.S., 2009. Pluripotency: Toward a gold standard for human ES and iPS cells. J. Cell. Physiol. 220, 21–29. https://doi.org/10.1002/jcp.21681

Solana, J., Lasko, P., Romero, R., 2009. Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev. Biol. 328, 410–421. https://doi.org/10.1016/j.ydbio.2009.01.043

Takahashi, K., Yamanaka, S., 2006. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126, 663–676. https://doi.org/10.1016/j.cell.2006.07.024

Takeda, H., Nishimura, K., Agata, K., 2009. Planarians maintain a constant ratio of different cell types during changes in body size by using the stem cell system. Zoolog. Sci. 26, 805–13. https://doi.org/10.2108/zsj.26.805

Tasaki, J., Shibata, N., Nishimura, O., Itomi, K., Tabata, Y., Son, F., Suzuki, N., Araki, R., Abe, M., Agata, K., Umesono, Y., 2011a. ERK signaling controls blastema cell differentiation during planarian regeneration. Development 138, 2417–27. https://doi.org/10.1242/dev.060764

Tasaki, J., Shibata, N., Sakurai, T., Agata, K., Umesono, Y., 2011b. Role of c-Jun N-terminal kinase activation in blastema formation during planarian regeneration. Dev. Growth Differ. 53, 389–400. https://doi.org/10.1111/j.1440-169X.2011.01254.x

Umesono, Y., Agata, K., 2009. Evolution and regeneration of the planarian central nervous system. Dev. Growth Differ. 51, 185–95. https://doi.org/10.1111/j.1440- 169X.2009.01099.x

Umesono, Y., Tasaki, J., Nishimura, Y., Hrouda, M., Kawaguchi, E., Yazawa, S., Nishimura, O., Hosoda, K., Inoue, T., Agata, K., 2013. The molecular logic for planarian

regeneration along the anterior-posterior axis. Nature 500, 73–6. https://doi.org/10.1038/nature12359

Van Wolfswinkel, J.C., Wagner, D.E., Reddien, P.W., 2014. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15, 326–339. https://doi.org/10.1016/j.stem.2014.06.007

Wagner, D.E., Wang, I.E., Reddien, P.W., 2011. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science (80-. ). 332, 811–816. https://doi.org/10.1126/science.1203983

Wang, Y., Zayas, R.M., Guo, T., Newmark, P.A., 2007. Nanos Function Is Essential for Development and Regeneration of Planarian Germ Cells. Proc. Natl. Acad. Sci. U. S. A. 104, 5901–5906. https://doi.org/10.1073/pnas.0609708104

Wenemoser, D., Lapan, S.W., Wilkinson, A.W., Bell, G.W., Reddien, P.W., 2012. A molecular wound response program associated with regeneration initiation in planarians. Genes Dev. 26, 988–1002. https://doi.org/10.1101/gad.187377.112

Wenemoser, D., Reddien, P.W., 2010. Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Dev. Biol. 344, 979–91. https://doi.org/10.1016/j.ydbio.2010.06.017

Wilson, A., Laurenti, E., Oser, G., van der Wath, R.C., Blanco-Bose, W., Jaworski, M.,Offner, S., Dunant, C.F., Eshkind, L., Bockamp, E., Lió, P., Macdonald, H.R., Trumpp,

A., 2008. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–29. https://doi.org/10.1016/j.cell.2008.10.048

Wolff, E., Dubois, F., 1948. Mise en évidence d’un système de corrélations intervenant dans la régénération des Planaires d’eau douce. Experientia 4, 273–274. https://doi.org/10.1007/BF02164407

Yazawa, S., Umesono, Y., Hayashi, T., Tarui, H., Agata, K., 2009. Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling. Proc. Natl. Acad. Sci. U. S. A. 106, 22329–34. https://doi.org/10.1073/pnas.0907464106

Ying, Q.-L., Nichols, J., Chambers, I., Smith, A., 2003. BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3. Cell 115, 281–292. https://doi.org/https://doi.org/10.1016/S0092-8674(03)00847-X

Yoshida-Kashikawa, M., Shibata, N., Takechi, K., Agata, K., 2007. DjCBC-1, a conserved DEAD box RNA helicase of the RCK/p54/Me31B family, is a component of RNA- protein complexes in planarian stem cells and neurons. Dev. Dyn. 236, 3436–3450. https://doi.org/10.1002/dvdy.21375

Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., Rybak, Z., 2019. Stem cells: past, present, and future. Stem Cell Res. Ther. 10, 68. https://doi.org/10.1186/s13287-019- 1165-5

Zeng, A., Li, H., Guo, L., Gao, X., McKinney, S., Wang, Y., Yu, Z., Park, J., Semerad, C.,Ross, E., Cheng, L.C., Davies, E., Lei, K., Wang, W., Perera, A., Hall, K., Peak, A., Box, A., Sánchez Alvarado, A., 2018. Prospectively Isolated Tetraspanin + Neoblasts Are Adult Pluripotent Stem Cells Underlying Planaria Regeneration. Cell 173, 1593- 1608.e20. https://doi.org/10.1016/j.cell.2018.05.006

Zeng, X., Liu, Q., Yang, Y., Jia, W., Li, S., He, D., Ma, R., 2019. Placenta-specific protein 8 promotes the proliferation of lung adenocarcinoma PC-9 cells and their tolerance to an epidermal growth factor receptor tyrosine kinase inhibitor by activating the ERK signaling pathway. Oncol. Lett. 18, 5621–5627. https://doi.org/10.3892/ol.2019.10911

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る