リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pluripotent stem cells for the study of early human embryology」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pluripotent stem cells for the study of early human embryology

Semi, Katsunori Takashima, Yasuhiro 京都大学 DOI:10.1111/dgd.12715

2021.02

概要

Forty years have passed since the first pluripotent stem cells (PSCs), mouse embryonic stem cells (ESCs), were established. Since then, several PSCs have been reported, including human ESCs in 1998, mouse epiblast stem cells (EpiSCs) in 2007, induced PSCs (iPSCs) in 2006 and 2007, and naïve human PSCs in 2014. Naïve PSCs are thought to correspond to pre-implantation epiblast cells, whereas conventional (or primed) human PSCs correspond to post-implantation epiblast cells. Thus, naïve and primed PSCs are classified by their developmental stages and have stage-specific characteristics, despite sharing the common feature of pluripotency. In this review, we discuss the current status of PSCs and their use to model human peri-implantation development.

この論文で使われている画像

参考文献

Bedzhov, I., Leung, C. Y., Bialecka, M., & Zernicka-­

Goetz, M. (2014,

Dec). In vitro culture of mouse blastocysts beyond the implantation stages. Nat Protoc, 9(12), 2732–­2739. https://doi.org/10.1038/

nprot.2014.186

Blakeley, P., Fogarty, N. M., del Valle, I., Wamaitha, S. E., Hu, T. X.,

Elder, K., Snell, P., Christie, L., Robson, P., & Niakan, K. K. (2015,

Sep 15). Defining the three cell lineages of the human blastocyst by

single-­cell RNA-­seq. Development, 142(18), 3151–­3165. https://doi.

org/10.1242/dev.123547

Boroviak, T., & Nichols, J. (2014, Dec 5). The birth of embryonic pluripotency. Philos Trans RSocof Lond B Biol Sci, 369(1657), https://doi.

org/10.1098/rstb.2013.0541

Boroviak, T., & Nichols, J. (2017, Jan 15). Primate embryogenesis predicts

the hallmarks of human naive pluripotency. Development, 144(2),

175–­186. https://doi.org/10.1242/dev.145177

Boroviak, T., Stirparo, G. G., Dietmann, S., Hernando-­

Herraez, I.,

Mohammed, H., Reik, W., Smith, A., Sasaki, E., Nichols, J., & Bertone,

P. (2018, Nov 9). Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features

of preimplantation development. Development, 145(21), https://doi.

org/10.1242/dev.167833

Bredenkamp, N., Stirparo, G. G., Nichols, J., Smith, A., & Guo, G. (2019,

Jun 11). The cell-­surface marker sushi containing domain 2 facilitates

establishment of human naive pluripotent stem cells. Stem Cell Rep,

12(6), 1212–­1222. https://doi.org/10.1016/j.stemcr.2019.03.014

Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-­Gunn, P., Sun, B., de

Sousa, C., Lopes, S. M., Howlett, S. K., Clarkson, A., Ahrlund-­Richter,

L., Pedersen, R. A., & Vallier, L. (2007, Jul 12). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448(7150),

191–­195. https://doi.org/10.1038/natur​e 05950

Buehr, M., Meek, S., Blair, K., Yang, J., Ure, J., Silva, J., McLay, R., Hall, J.,

Ying, Q. L., & Smith, A. (2008, Dec 26). Capture of authentic embryonic stem cells from rat blastocysts. Cell, 135(7), 1287–­1298. https://

doi.org/10.1016/j.cell.2008.12.007

Chan, Y. S., Goke, J., Ng, J. H., Lu, X., Gonzales, K. A., Tan, C. P., Tng,

W. Q., Hong, Z. Z., Lim, Y. S., & Ng, H. H. (2013, Dec 5). Induction

of a human pluripotent state with distinct regulatory circuitry that

resembles preimplantation epiblast. Cell Stem Cell, 13(6), 663–­675.

https://doi.org/10.1016/j.stem.2013.11.015

Chen, D., Liu, W., Zimmerman, J., Pastor, W. A., Kim, R., Hosohama, L.,

Ho, J., Aslanyan, M., Gell, J. J., Jacobsen, S. E., & Clark, A. T. (2018,

Dec 26). The TFAP2C-­regulated OCT4 naive enhancer is involved

in human germline formation. Cell Rep, 25(13), 3591–­3602 e3595.

https://doi.org/10.1016/j.celrep.2018.12.011

Chen, H., Aksoy, I., Gonnot, F., Osteil, P., Aubry, M., Hamela, C., Rognard,

C., Hochard, A., Voisin, S., Fontaine, E., Mure, M., Afanassieff, M.,

Cleroux, E., Guibert, S., Chen, J., Vallot, C., Acloque, H., Genthon,

C., & Donnadieu, C., … Savatier, P. (2015, May 13). Reinforcement of

STAT3 activity reprogrammes human embryonic stem cells to naive-­

like pluripotency. Nat Commun, 6(1), 7095. https://doi.org/10.1038/

ncomm​s8095

SEMI and TAKASHIMA

Collier, A. J., Panula, S. P., Schell, J. P., Chovanec, P., Plaza Reyes, A.,

Petropoulos, S., Corcoran, A. E., Walker, R., Douagi, I., Lanner, F.,

& Rugg-­Gunn, P. J. (2017, Jun 1). Comprehensive cell surface protein profiling identifies specific markers of human naive and primed

pluripotent states. Cell Stem Cell, 20(6), 874–­890 e877. https://doi.

org/10.1016/j.stem.2017.02.014

Deglincerti, A., Croft, G. F., Pietila, L. N., Zernicka-­Goetz, M., Siggia, E.

D., & Brivanlou, A. H. (2016, May 12). Self-­organization of the in vitro

attached human embryo. Nature, 533(7602), 251–­254. https://doi.

org/10.1038/natur​e17948

Di Stefano, B., Ueda, M., Sabri, S., Brumbaugh, J., Huebner, A. J.,

Sahakyan, A., Clement, K., Clowers, K. J., Erickson, A. R., Shioda, K.,

Gygi, S. P., Gu, H., Shioda, T., Meissner, A., Takashima, Y., Plath, K., &

Hochedlinger, K. (2018, Aug 20). Reduced MEK inhibition preserves

genomic stability in naive human embryonic stem cells. Nat Methods,

15(9), 732–­740. https://doi.org/10.1038/s4159​2-­018-­0104-­1

Evans, M. J., & Kaufman, M. H. (1981, Jul 9). Establishment in culture

of pluripotential cells from mouse embryos. Nature, 292(5819),

154–­156.

Festuccia, N., Osorno, R., Halbritter, F., Karwacki-­Neisius, V., Navarro, P.,

Colby, D., Wong, F., Yates, A., Tomlinson, S. R., & Chambers, I. (2012,

Oct 5). Esrrb is a direct Nanog target gene that can substitute for

Nanog function in pluripotent cells. Cell Stem Cell, 11(4), 477–­490.

https://doi.org/10.1016/j.stem.2012.08.002

Fogarty, N. M. E., McCarthy, A., Snijders, K. E., Powell, B. E., Kubikova,

N., Blakeley, P., Lea, R., Elder, K., Wamaitha, S. E., Kim, D., Maciulyte,

V., Kleinjung, J., Kim, J. S., Wells, D., Vallier, L., Bertero, A., Turner, J.

M. A., & Niakan, K. K. (2017, Oct 5). Genome editing reveals a role for

OCT4 in human embryogenesis. Nature, 550(7674), 67–­73. https://

doi.org/10.1038/natur​e24033

Fort, A., Hashimoto, K., Yamada, D., Salimullah, M. D., Keya, C. A., Saxena,

A., Bonetti, A., Voineagu, I., Bertin, N., Kratz, A., Noro, Y., Wong, C.-­

H., de Hoon, M., Andersson, R., Sandelin, A., Suzuki, H., Wei, C.-­L .,

Koseki, H., Hasegawa, Y., … Carninci, P. (2014). Jun). Deep transcriptome profiling of mammalian stem cells supports a regulatory role

for retrotransposons in pluripotency maintenance. Nat Genet, 46(6),

558–­566. https://doi.org/10.1038/ng.2965

Gafni, O., Weinberger, L., Mansour, A. A., Manor, Y. S., Chomsky, E., Ben-­

Yosef, D., Kalma, Y., Viukov, S., Maza, I., Zviran, A., Rais, Y., Shipony,

Z., Mukamel, Z., Krupalnik, V., Zerbib, M., Geula, S., Caspi, I., Schneir,

D., Shwartz, T., … Hanna, J. H. (2013, Dec 12). Derivation of novel

human ground state naive pluripotent stem cells. Nature, 504(7479),

282–­286. https://doi.org/10.1038/natur​e12745

Goke, J., Lu, X., Chan, Y. S., Ng, H. H., Ly, L. H., Sachs, F., & Szczerbinska,

I. (2015, Feb 5). Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early

human embryonic cells. Cell Stem Cell, 16(2), 135–­141. https://doi.

org/10.1016/j.stem.2015.01.005

Guo, G., & Smith, A. (2010, Oct). A genome-­wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency. Development, 137(19), 3185–­3192. https://doi.org/10.1242/

dev.052753

Guo, G., Stirparo, G. G., Strawbridge, S., Spindlow, D., Yang, J., Clarke, J.,

Dattani, A., Yanagida, A., Li, M. A., Myers, S., Özel, B. N., Nichols, J.,

& Smith, A. (2020). Human naïve epiblast cells possess unrestricted

lineage potential. BioRxiv, 2020.2002.2004.933812. https://doi.

org/10.1101/2020.02.04.933812

Guo, G., von Meyenn, F., Rostovskaya, M., Clarke, J., Dietmann, S.,

Baker, D., Sahakyan, A., Myers, S., Bertone, P., Reik, W., Plath, K.,

& Smith, A. (2017, Aug 1). Epigenetic resetting of human pluripotency. Development, 144(15), 2748–­2763. https://doi.org/10.1242/

dev.146811

Guo, G., von Meyenn, F., Santos, F., Chen, Y., Reik, W., Bertone, P., Smith,

A., & Nichols, J. (2016, Apr 12). Naive pluripotent stem cells derived

SEMI and TAKASHIMA

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

directly from isolated cells of the human inner cell mass. Stem Cell

Rep, 6(4), 437–­4 46. https://doi.org/10.1016/j.stemcr.2016.02.005

Guo, G., Yang, J., Nichols, J., Hall, J. S., Eyres, I., Mansfield, W., & Smith, A.

(2009, Apr). Klf4 reverts developmentally programmed restriction of

ground state pluripotency. Development, 136(7), 1063–­1069. https://

doi.org/10.1242/dev.030957

Hall, J., Guo, G., Wray, J., Eyres, I., Nichols, J., Grotewold, L., Morfopoulou,

S., Humphreys, P., Mansfield, W., Walker, R., Tomlinson, S., & Smith,

A. (2009, Dec 4). Oct4 and LIF/Stat3 additively induce Kruppel factors to sustain embryonic stem cell self-­renewal. Cell Stem Cell, 5(6),

597–­609. https://doi.org/10.1016/j.stem.2009.11.003

Han, D. W., Tapia, N., Joo, J. Y., Greber, B., Arauzo-­

Bravo, M. J.,

Bernemann, C., Ko, K., Wu, G., Stehling, M., Do, J. T., & Scholer, H. R.

(2010, Nov 12). Epiblast stem cell subpopulations represent mouse

embryos of distinct pregastrulation stages. Cell, 143(4), 617–­627.

https://doi.org/10.1016/j.cell.2010.10.015

Hanna, J., Cheng, A. W., Saha, K., Kim, J., Lengner, C. J., Soldner, F.,

Cassady, J. P., Muffat, J., Carey, B. W., & Jaenisch, R. (2010, May 18).

Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A,

107(20), 9222–­9227. https://doi.org/10.1073/pnas.10045​8 4107

Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C., & Zernicka-­

Goetz, M. (2017, Apr 14). Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science, 356, 6334.

https://doi.org/10.1126/scien​ce.aal1810

Hayashi, K., Ogushi, S., Kurimoto, K., Shimamoto, S., Ohta, H., & Saitou,

M. (2012, Nov 16). Offspring from oocytes derived from in vitro

primordial germ cell-­like cells in mice. Science, 338(6109), 971–­975.

https://doi.org/10.1126/scien​ce.1226889

Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., & Saitou, M. (2011, Aug

19). Reconstitution of the mouse germ cell specification pathway in

culture by pluripotent stem cells. Cell, 146(4), 519–­532. https://doi.

org/10.1016/j.cell.2011.06.052

Hertig, A. T., & Rock, J. (1949, Feb). Two human ova of the pre-­villous

stage, having a developmental age of about 8 and 9 days respectively. Contrib Embryol, 33(213–­221), 169–­186.

Hotta, A., Cheung, A. Y., Farra, N., Vijayaragavan, K., Seguin, C. A.,

Draper, J. S., Pasceri, P., Maksakova, I. A., Mager, D. L., Rossant, J.,

Bhatia, M., & Ellis, J. (2009, May). Isolation of human iPS cells using

EOS lentiviral vectors to select for pluripotency. Nat Methods, 6(5),

370–­376. https://doi.org/10.1038/nmeth.1325

Hsu, Y. C. (1972, Sep 22). Differentiation in vitro of mouse embryos beyond the implantation stage. Nature, 239(5369), 200–­202. https://

doi.org/10.1038/239200a0

Huang, K., Maruyama, T., & Fan, G. (2014, Oct 2). The naive state of

human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell, 15(4), 410–­415.

https://doi.org/10.1016/j.stem.2014.09.014

Hyun, I., Munsie, M., Pera, M. F., Rivron, N. C., & Rossant, J. (2020,

Feb 11). Toward guidelines for research on human embryo models

formed from stem cells. Stem Cell Rep, 14(2), 169–­174. https://doi.

org/10.1016/j.stemcr.2019.12.008

Hyun, I., Wilkerson, A., & Johnston, J. (2016, May 12). Embryology policy: revisit the 14-­day rule. Nature, 533(7602), 169–­171. https://doi.

org/10.1038/533169a

Io, S., Kabata, M., Iemura, Y., Semi, K., Morone, N., Okamoto, I.,

Nakamura, T., Kojima, Y., Iwatani, C., Tsuchiya, H., Kaswandy, B.,

Kondoh, E., Saitou, M., Yamamoto, T., Mandai, M., & Takashima,

Y. (2020). Capturing human trophoblast development with naïve

pluripotent stem cells in vitro. BioRxiv, 2020.2012.2017.416800.

https://doi.org/10.1101/2020.12.17.416800

Irie, N., Weinberger, L., Tang, W. W., Kobayashi, T., Viukov, S., Manor, Y.

S., Dietmann, S., Hanna, J. H., & Surani, M. A. (2015, Jan 15). SOX17

is a critical specifier of human primordial germ cell fate. Cell, 160(1–­2),

253–­268. https://doi.org/10.1016/j.cell.2014.12.013

113

Kalkan, T., & Smith, A. (2014, Dec 5). Mapping the route from naive pluripotency to lineage specification. Philos Trans R Soc Lond B Biol Sci,

369(1657), https://doi.org/10.1098/rstb.2013.0540

Kinoshita, M., Barber, M., Mansfield, W., Cui, Y., Spindlow, D., Stirparo, G.

G., Dietmann, S., Nichols, J., & Smith, A. (2020, Nov 24). Capture of

mouse and human stem cells with features of formative pluripotency.

Cell Stem Cell, https://doi.org/10.1016/j.stem.2020.11.005

Kinoshita, M., & Smith, A. (2018, Jan). Pluripotency deconstructed. Dev

Growth Differ, 60(1), 44–­52. https://doi.org/10.1111/dgd.12419

Li, P., Tong, C., Mehrian-­Shai, R., Jia, L., Wu, N., Yan, Y., Maxson, R. E.,

Schulze, E. N., Song, H., Hsieh, C. L., Pera, M. F., & Ying, Q. L. (2008,

Dec 26). Germline competent embryonic stem cells derived from

rat blastocysts. Cell, 135(7), 1299–­1310. https://doi.org/10.1016/j.

cell.2008.12.006

Liu, X., Nefzger, C. M., Rossello, F. J., Chen, J., Knaupp, A. S., Firas, J.,

Ford, E., Pflueger, J., Paynter, J. M., Chy, H. S., O'Brien, C. M., Huang,

C., Mishra, K., Hodgson-­Garms, M., Jansz, N., Williams, S. M., Blewitt,

M. E., Nilsson, S. K., Schittenhelm, R. B., … Polo, J. M. (2017, Nov).

Comprehensive characterization of distinct states of human naive

pluripotency generated by reprogramming. Nat Methods, 14(11),

1055–­1062. https://doi.org/10.1038/nmeth.4436

Lu, X., Sachs, F., Ramsay, L., Jacques, P. E., Goke, J., Bourque, G., & Ng,

H. H. (2014, Apr). The retrovirus HERVH is a long noncoding RNA

required for human embryonic stem cell identity. Nat Struct Mol Biol,

21(4), 423–­425. https://doi.org/10.1038/nsmb.2799

Ludwig, T. E., Levenstein, M. E., Jones, J. M., Berggren, W. T., Mitchen, E.

R., Frane, J. L., Crandall, L. J., Daigh, C. A., Conard, K. R., Piekarczyk,

M. S., Llanas, R. A., & Thomson, J. A. (2006, Feb). Derivation of

human embryonic stem cells in defined conditions. Nat Biotechnol,

24(2), 185–­187. https://doi.org/10.1038/nbt1177

Ma, H., Zhai, J., Wan, H., Jiang, X., Wang, X., Wang, L., Xiang, Y., He, X.,

Zhao, Z. A., Zhao, B., Zheng, P., Li, L., & Wang, H. (2019, Nov 15). In

vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science, 366(6467), https://doi.org/10.1126/scien​ce.aax7890

Maksakova, I. A., & Mager, D. L. (2005, Nov). Transcriptional regulation of

early transposon elements, an active family of mouse long terminal

repeat retrotransposons. J Virol, 79(22), 13865–­13874. https://doi.

org/10.1128/JVI.79.22.13865​-­13874.2005

Martin, G. R. (1981, Dec). Isolation of a pluripotent cell line from early

mouse embryos cultured in medium conditioned by teratocarcinoma

stem cells. Proc Natl Acad Sci U S A, 78(12), 7634–­7638. https://doi.

org/10.1073/pnas.78.12.7634

Masaki, H., Kato-­Itoh, M., Umino, A., Sato, H., Hamanaka, S., Kobayashi, T.,

Yamaguchi, T., Nishimura, K., Ohtaka, M., Nakanishi, M., & Nakauchi,

H. (2015, Sep 15). Interspecific in vitro assay for the chimera-­forming

ability of human pluripotent stem cells. Development, 142(18), 3222–­

3230. https://doi.org/10.1242/dev.124016

Moris, N., Anlas, K., van den Brink, S. C., Alemany, A., Schroder, J.,

Ghimire, S., Balayo, T., van Oudenaarden, A., & Martinez Arias, A.

(2020, Jun). An in vitro model of early anteroposterior organization

during human development. Nature, 582(7812), 410–­415. https://

doi.org/10.1038/s4158​6-­020-­2383-­9

Morris, S. A., Grewal, S., Barrios, F., Patankar, S. N., Strauss, B., Buttery,

L., Alexander, M., Shakesheff, K. M., & Zernicka-­Goetz, M. (2012, Feb

14). Dynamics of anterior-­posterior axis formation in the developing mouse embryo. Nat Commun, 3, 673. https://doi.org/10.1038/

ncomm​s1671

Nagy, A., Gocza, E., Diaz, E. M., Prideaux, V. R., Ivanyi, E., Markkula, M.,

& Rossant, J. (1990, Nov). Embryonic stem cells alone are able to support fetal development in the mouse. Development, 110(3), 815–­821.

Nakamura, T., Okamoto, I., Sasaki, K., Yabuta, Y., Iwatani, C., Tsuchiya,

H., Seita, Y., Nakamura, S., Yamamoto, T., & Saitou, M. (2016, Sep 1).

A developmental coordinate of pluripotency among mice, monkeys

and humans. Nature, 537(7618), 57–­

62. https://doi.org/10.1038/

natur​e19096

114 A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Nichols, J., Jones, K., Phillips, J. M., Newland, S. A., Roode, M., Mansfield,

W., Smith, A., & Cooke, A. (2009, Jul). Validated germline-­competent

embryonic stem cell lines from nonobese diabetic mice. Nat Med,

15(7), 814–­818. https://doi.org/10.1038/nm.1996

Nichols, J., & Smith, A. (2009, Jun 5). Naive and primed pluripotent

states. Cell Stem Cell, 4(6), 487–­

492. https://doi.org/10.1016/j.

stem.2009.05.015

Niu, Y., Sun, N., Li, C., Lei, Y., Huang, Z., Wu, J., Si, C., Dai, X., Liu, C., Wei,

J., Liu, L., Feng, S., Kang, Y., Si, W., Wang, H., Zhang, E., Zhao, L., Li,

Z., Luo, X., … Tan, T. (2019, Nov 15). Dissecting primate early post-­

implantation development using long-­term in vitro embryo culture.

Science, 366(6467), https://doi.org/10.1126/scien​ce.aaw5754

O’Rahilly, R., & Muller, F. (1987). Development Stages in Human Embryos:

Including a Revision of Streeter’s “Horizons” and a Survey of the Carnegie

Collection. Carnegie Institution of Washington. https://www.ehd.

org/devel​opmen​t al-­stage​s/stage0.php

Ohinata, Y., Ohta, H., Shigeta, M., Yamanaka, K., Wakayama, T., &

Saitou, M. (2009, May 1). A signaling principle for the specification

of the germ cell lineage in mice. Cell, 137(3), 571–­584. https://doi.

org/10.1016/j.cell.2009.03.014

Ohnuki, M., Tanabe, K., Sutou, K., Teramoto, I., Sawamura, Y., Narita, M.,

Nakamura, M., Tokunaga, Y., Nakamura, M., Watanabe, A., Yamanaka,

S., & Takahashi, K. (2014, Aug 26). Dynamic regulation of human endogenous retroviruses mediates factor-­induced reprogramming and

differentiation potential. Proc Natl Acad Sci U S A, 111(34), 12426–­

12431. https://doi.org/10.1073/pnas.14132​99111

Pastor, W. A., Liu, W., Chen, D., Ho, J., Kim, R., Hunt, T. J., Lukianchikov,

A., Liu, X., Polo, J. M., Jacobsen, S. E., & Clark, A. T. (2018, May).

TFAP2C regulates transcription in human naive pluripotency by

opening enhancers. Nat Cell Biol, 20(5), 553–­

564. https://doi.

org/10.1038/s4155​6-­018-­0 089-­0

Qin, H., Hejna, M., Liu, Y., Percharde, M., Wossidlo, M., Blouin, L.,

Durruthy-­Durruthy, J., Wong, P., Qi, Z., Yu, J., Qi, L. S., Sebastiano,

V., Song, J. S., & Ramalho-­Santos, M. (2016, Mar 15). YAP induces

human naive pluripotency. Cell Rep, 14(10), 2301–­2312. https://doi.

org/10.1016/j.celrep.2016.02.036

Rivron, N. C., Frias-­Aldeguer, J., Vrij, E. J., Boisset, J. C., Korving, J., Vivie,

J., Truckenmuller, R. K., van Oudenaarden, A., van Blitterswijk, C.

A., & Geijsen, N. (2018, May). Blastocyst-­like structures generated

solely from stem cells. Nature, 557(7703), 106–­

111. https://doi.

org/10.1038/s4158​6-­018-­0 051-­0

Rostovskaya, M., Stirparo, G. G., & Smith, A. (2019, Apr 3). Capacitation

of human naive pluripotent stem cells for multi-­lineage differentiation. Development, 146(7), https://doi.org/10.1242/dev.172916

Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y.,

Kurimoto, K., Ohta, H., Moritoki, Y., Iwatani, C., Tsuchiya, H.,

Nakamura, S., Sekiguchi, K., Sakuma, T., Yamamoto, T., Mori, T.,

Woltjen, K., Nakagawa, M., Yamamoto, T., Takahashi, K., … Saitou,

M. (2015, Aug 6). Robust in vitro induction of human germ cell fate

from pluripotent stem cells. Cell Stem Cell, 17(2), 178–­194. https://

doi.org/10.1016/j.stem.2015.06.014

Sato, K., Oiwa, R., Kumita, W., Henry, R., Sakuma, T., Ito, R., Nozu, R.,

Inoue, T., Katano, I., Sato, K., Okahara, N., Okahara, J., Shimizu, Y.,

Yamamoto, M., Hanazawa, K., Kawakami, T., Kametani, Y., Suzuki, R.,

Takahashi, T., … Sasaki, E. (2016, Jul 7). Generation of a nonhuman

primate model of severe combined immunodeficiency using highly

efficient genome editing. Cell Stem Cell, 19(1), 127–­138. https://doi.

org/10.1016/j.stem.2016.06.003

Shahbazi, M. N., Jedrusik, A., Vuoristo, S., Recher, G., Hupalowska, A.,

Bolton, V., Fogarty, N. N. M., Campbell, A., Devito, L., Ilic, D., Khalaf,

Y., Niakan, K. K., Fishel, S., & Zernicka-­Goetz, M. (2016. Jun). Self-­

organization of the human embryo in the absence of maternal tissues. Nat Cell Biol, 18(6), 700–­708. https://doi.org/10.1038/ncb3347

Silva, J., Nichols, J., Theunissen, T. W., Guo, G., van Oosten, A. L.,

Barrandon, O., Wray, J., Yamanaka, S., Chambers, I., & Smith, A.

SEMI and TAKASHIMA

(2009, Aug 21). Nanog is the gateway to the pluripotent ground state.

Cell, 138(4), 722–­737. https://doi.org/10.1016/j.cell.2009.07.039

Smith, A. (2017, Feb 1). Formative pluripotency: the executive phase in

a developmental continuum. Development, 144(3), 365–­373. https://

doi.org/10.1242/dev.142679

Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J.,

Stahl, M., & Rogers, D. (1988, Dec 15). Inhibition of pluripotential

embryonic stem cell differentiation by purified polypeptides. Nature,

336(6200), 688–­690. https://doi.org/10.1038/336688a0

Sozen, B., Amadei, G., Cox, A., Wang, R., Na, E., Czukiewska, S., Chappell,

L., Voet, T., Michel, G., Jing, N., Glover, D. M., & Zernicka-­Goetz, M.

(2018, Aug). Self-­assembly of embryonic and two extra-­embryonic

stem cell types into gastrulating embryo-­like structures. Nat Cell Biol,

20(8), 979–­989. https://doi.org/10.1038/s4155​6- ­018- ­0147-­7

Stirparo, G. G., Boroviak, T., Guo, G., Nichols, J., Smith, A., & Bertone, P.

(2018, Feb 7). Integrated analysis of single-­cell embryo data yields

a unified transcriptome signature for the human pre-­implantation

epiblast. Development, 145(3), https://doi.org/10.1242/dev.158501

Szczerbinska, I., Gonzales, K. A. U., Cukuroglu, E., Ramli, M. N. B., Lee,

B. P. G., Tan, C. P., Wong, C. K., Rancati, G. I., Liang, H., Goke, J.,

Ng, H. H., & Chan, Y. S. (2019, Oct 8). A chemically defined feeder-­

free system for the establishment and maintenance of the human

naive pluripotent state. Stem Cell Rep, 13(4), 612–­626. https://doi.

org/10.1016/j.stemcr.2019.08.005

Takahashi, K., & Yamanaka, S. (2006, Aug 25). Induction of pluripotent

stem cells from mouse embryonic and adult fibroblast cultures by

defined factors. Cell, 126(4), 663–­

676. https://doi.org/10.1016/j.

cell.2006.07.024

Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley,

D., Santos, F., Clarke, J., Mansfield, W., Reik, W., Bertone, P., & Smith,

A. (2014, Sep 11). Resetting transcription factor control circuitry toward ground-­state pluripotency in human. Cell, 158(6), 1254–­1269.

https://doi.org/10.1016/j.cell.2014.08.029

Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., Mack,

D. L., Gardner, R. L., & McKay, R. D. (2007, Jul 12). New cell lines

from mouse epiblast share defining features with human embryonic

stem cells. Nature, 448(7150), 196–­

199. https://doi.org/10.1038/

natur​e 05972

Theunissen, T. W., Friedli, M., He, Y., Planet, E., O'Neil, R. C., Markoulaki,

S., Pontis, J., Wang, H., Iouranova, A., Imbeault, M., Duc, J., Cohen,

M. A., Wert, K. J., Castanon, R., Zhang, Z., Huang, Y., Nery, J. R.,

Drotar, J., Lungjangwa, T., … Jaenisch, R. (2016, Oct 6). Molecular

criteria for defining the naive human pluripotent state. Cell Stem Cell,

19(4), 502–­515. https://doi.org/10.1016/j.stem.2016.06.011

Theunissen, T. W., Powell, B. E., Wang, H., Mitalipova, M., Faddah, D.

A., Reddy, J., Fan, Z. P., Maetzel, D., Ganz, K., Shi, L., Lungjangwa, T.,

Imsoonthornruksa, S., Stelzer, Y., Rangarajan, S., D'Alessio, A., Zhang,

J., Gao, Q., Dawlaty, M. M., Young, R. A., … Jaenisch, R. (2014, Oct

2). Systematic identification of culture conditions for induction and

maintenance of naive human pluripotency. Cell Stem Cell, 15(4), 471–­

487. https://doi.org/10.1016/j.stem.2014.07.002

Thomson, J. A., Itskovitz-­

Eldor, J., Shapiro, S. S., Waknitz, M. A.,

Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998, Nov 6). Embryonic

stem cell lines derived from human blastocysts. Science, 282(5391),

1145–­1147.

Vallier, L., Alexander, M., & Pedersen, R. A. (2005, Oct 1). Activin/Nodal

and FGF pathways cooperate to maintain pluripotency of human

embryonic stem cells. J Cell Sci, 118(Pt 19), 4495–­4509. https://doi.

org/10.1242/jcs.02553

Wang, J., Xie, G., Singh, M., Ghanbarian, A. T., Rasko, T., Szvetnik, A.,

Cai, H., Besser, D., Prigione, A., Fuchs, N. V., Schumann, G. G., Chen,

W., Lorincz, M. C., Ivics, Z., Hurst, L. D., & Izsvak, Z. (2014, Dec 18).

Primate-­

specific endogenous retrovirus-­

driven transcription defines naive-­like stem cells. Nature, 516(7531), 405–­4 09. https://doi.

org/10.1038/natur​e13804

SEMI and TAKASHIMA

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Wang, W., Yang, J., Liu, H., Lu, D., Chen, X., Zenonos, Z., Campos, L. S.,

Rad, R., Guo, G., Zhang, S., Bradley, A., & Liu, P. (2011, Nov 8). Rapid

and efficient reprogramming of somatic cells to induced pluripotent

stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc Natl Acad Sci U S A, 108(45), 18283–­18288. https://doi.

org/10.1073/pnas.11008​93108

Wang, Z. Q., Kiefer, F., Urbanek, P., & Wagner, E. F. (1997, Mar). Generation

of completely embryonic stem cell-­derived mutant mice using tetraploid blastocyst injection. Mech Dev, 62(2), 137–­145. https://doi.

org/10.1016/s0925​- ­4773(97)00655​-­2

Ware, C. B., Nelson, A. M., Mecham, B., Hesson, J., Zhou, W., Jonlin, E. C.,

Jimenez-­C aliani, A. J., Deng, X., Cavanaugh, C., Cook, S., Tesar, P. J.,

Okada, J., Margaretha, L., Sperber, H., Choi, M., Blau, C. A., Treuting,

P. M., Hawkins, R. D., Cirulli, V., & Ruohola-­Baker, H. (2014, Mar 25).

Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U

S A, 111(12), 4484–­4 489. https://doi.org/10.1073/pnas.13197​38111

Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L.,

Gearing, D. P., Wagner, E. F., Metcalf, D., Nicola, N. A., & Gough, N.

M. (1988, Dec 15). Myeloid leukaemia inhibitory factor maintains the

developmental potential of embryonic stem cells. Nature, 336(6200),

684–­687. https://doi.org/10.1038/336684a0

Wu, T. C., Wan, Y. J., & Damjanov, I. (1981, Oct). Positioning of inner cell

mass determines the development of mouse blastocysts in vitro. J

Embryol Exp Morphol, 65, 105–­117.

Xiang, L., Yin, Y., Zheng, Y., Ma, Y., Li, Y., Zhao, Z., Guo, J., Ai, Z., Niu, Y.,

Duan, K., He, J., Ren, S., Wu, D., Bai, Y., Shang, Z., Dai, X., Ji, W., &

Li, T. (2020, Jan). A developmental landscape of 3D-­cultured human

pre-­gastrulation embryos. Nature, 577(7791), 537–­542. https://doi.

org/10.1038/s4158​6-­019-­1875-­y

115

Yeom, Y. I., Fuhrmann, G., Ovitt, C. E., Brehm, A., Ohbo, K., Gross, M.,

Hubner, K., & Scholer, H. R. (1996, Mar). Germline regulatory element of Oct-­4 specific for the totipotent cycle of embryonal cells.

Development, 122(3), 881–­894.

Ying, Q. L., Wray, J., Nichols, J., Batlle-­Morera, L., Doble, B., Woodgett,

J., Cohen, P., & Smith, A. (2008, May 22). The ground state of embryonic stem cell self-­renewal. Nature, 453(7194), 519–­523. https://doi.

org/10.1038/natur​e 06968

Zhang, S., Chen, T., Chen, N., Gao, D., Shi, B., Kong, S., West, R. C., Yuan,

Y., Zhi, M., Wei, Q., Xiang, J., Mu, H., Yue, L., Lei, X., Wang, X., Zhong,

L., Liang, H., Cao, S., Belmonte, J. C. I., … Han, J. (2019, Jan 30).

Implantation initiation of self-­assembled embryo-­like structures generated using three types of mouse blastocyst-­derived stem cells. Nat

Commun, 10(1), 496. https://doi.org/10.1038/s4146​7-­019-­0 8378​-­9

Zimmerlin, L., Park, T. S., Huo, J. S., Verma, K., Pather, S. R., Talbot, C.

C. Jr, Agarwal, J., Steppan, D., Zhang, Y. W., Considine, M., Guo,

H., Zhong, X., Gutierrez, C., Cope, L., Canto-­Soler, M. V., Friedman,

A. D., Baylin, S. B., & Zambidis, E. T. (2016, Dec 1). Tankyrase inhibition promotes a stable human naive pluripotent state with improved functionality. Development, 143(23), 4368–­4380. https://doi.

org/10.1242/dev.138982

How to cite this article: Semi K, Takashima Y. Pluripotent stem

cells for the study of early human embryology. Develop Growth

Differ. 2021;63:104–­115. https://doi.org/10.1111/dgd.12715

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る