リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nuclear structure at the border of the island of inversion : in-beam γ-ray spectroscopy of 30Mg」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nuclear structure at the border of the island of inversion : in-beam γ-ray spectroscopy of 30Mg

北村, 徳隆 東京大学 DOI:10.15083/0002000895

2021.08.17

概要

魔法数の概念は、陽子と中性子から構成される量子多体系である原子核を特徴づける上で最も基本的である。不安定核領域においては、原子核の殻構造が陽子数と中性子数の関数として変化することに伴い、安定核領域で確立していた魔法数が成り立たなくなることが知られている。その一例として、32Mg周辺の中性子過剰な不安定核には中性子数N=20に対応する魔法性が失われている領域が存在する。この領域に属する原子核の基底状態ではN=20の殻ギャップを超えた配位が支配的となっていることから、32Mgの周辺核は「反転の島」と名付けられている。反転の島の発見は1975年の中性子過剰Na同位体の質量測定に遡る[1]。それ以来、反転の島の出現機構および反転の島近傍核の核構造の統一的な理解に向けて、理論と実験の両方の側面から研究が進められてきた。

 本論文は反転の島の境界近傍に位置する30Mgの核構造をより明らかにするための詳細な核分光測定に関するものである。30Mgの分光学的情報は安定核から反転の島にかけて核構造がどのように変化するのかを追跡するために特に重要である。30Mgの励起状態はNa同位体のβ崩壊を利用したγ線核分光によって調べられてきた[2–5]。近年、核融合反応14C(18O,2p)を用いたインビームγ線核分光[6]、さらに最近には31Mgによる一中性子ノックアウト反応を用いたインビームγ線核分光[7]の結果が報告された。これらのインビーム測定においては、30Mgの励起エネルギー2.5MeV付近に負パリティを持った状態が存在することが示唆された。負パリティ状態は奇数個の中性子をN=20のギャップを超えて励起することによって生成されるため、負パリティ状態の励起エネルギーはN=20のギャップの実効的な大きさに関連している。実験的に観測された2.5MeVという励起エネルギーは周辺核の系統性から考えても1MeV程度低いものであり、加えてこの状態の励起エネルギーが殻模型による理論計算で再現できないことから、現状の30Mgの理解とその理論的記述について疑問が投げかけられている状況にあった。

 本研究では、30Mgの励起準位のスピン・パリティをより高い精度で決定することを目的として、詳細なインビームγ線核分光測定をミシガン州立大学にて行った。不安定核31Mg、32Mg、34Siおよび35Pを安定核48Caビームの入射核破砕反応によって高速二次ビームとして生成し、これらを反応標的に照射することで30Mgの励起状態を一中性子ノックアウト反応および多核子除去反応によって生成した。励起状態から放出される脱励起γ線をGe検出器アレイGRETINAによって検出すると同時に、反応後の残留核30MgをS800磁気スペクトログラフによって同定、運動量分析した。強力な二次ビームの利用により高統計量のデータが得られ、γ線のコインシデンス解析によって信頼性の高い30Mgのレベルスキームが構築された。31Mgによる一中性子ノックアウト反応においては、剥ぎ取られた中性子の軌道角運動量が残留核30Mgの運動量分布に反映される。核反応計算と実験的に得られた運動量分布を比較することにより、30Mgの励起状態のスピン・パリティの決定が可能となった。

 解析の結果、負パリティ状態の現れる位置が新たに決定され、今回の実験データは負パリティ状態が3.3MeV以上の領域に現れることの裏付けとなっている。特に、以前のノックアウト反応を用いた測定[7]において2−状態の候補とされていた準位は2+状態であると結論づけた。新たに得られた励起準位の構造をN=18同調体の系統性と比較したところ、32Siから30Mgにかけて、以前に提唱されていたほど急激ではないにせよ負パリティ状態の励起エネルギーの低下が認められた。これは、N=20のギャップの縮小に伴って生じる、反転の島出現に向けた前駆的な核構造の変化を示すものであると考えられる。また、一中性子ノックアウト反応における各準位に対応する断面積を核反応計算と比較することにより、31Mgの基底状態と30Mgの状態間の波動関数の重なりを反映する分光学的因子を導出した。負パリティ状態に対応する分光学的因子は大きな値を示しており、これは31Mgの基底状態においてN=20のギャップを超えた励起が支配的になっており、f7/2軌道、さらにはp3/2軌道にも多数の中性子が励起していることが明らかになった。

 30Mgの核構造についてより深い理解を得るために大規模殻模型計算を行い、実験的に得られた励起準位のエネルギー、スピン・パリティと比較した。その結果、殻模型計算に用いた有効相互作用[8,9]によらず30Mgの準位構造は非常に良く再現されることが分かった。その一方で、分光学的因子の再現はどの相互作用も完全ではなく、加えて相互作用によって30Mgにおける変形共存の描像が大きく異なることも明らかとなった。これらの結果は、現状の殻模型計算では反転の島への遷移の様相がまだ完全に理解できていないことを示しており、今後より理論的な発展が望まれる。今回得られた実験データは、反転の島の出現の様相のより深い理解と、将来のさらなる実験的研究に向けた礎石となるものである。

この論文で使われている画像

参考文献

[1] W. M. Elsasser. Sur le principe de pauli dans les noyaux. Journal de physique et Le Radium, 4:549, 1933.

[2] S. Wong. Introductory Nuclear Physics. Wiley, 1999.

[3] Meng Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and Xing Xu. The AME2016 atomic mass evaluation (II). tables, graphs and references. Chinese Physics C, 41(3):030003, 2017.

[4] Evaluated Nuclear Structure Data File. https://www.nndc.bnl.gov/ensdf/.

[5] Maria Goeppert Mayer. On closed shells in nuclei. II. Physical Review, 75:1969–1970, 1949.

[6] Otto Haxel, J. Hans D. Jensen, and Hans E. Suess. On the “magic numbers” in nuclear structure. Physical Review, 75:1766–1766, 1949.

[7] O. Sorlin and M.-G. Porquet. Nuclear magic numbers: New features far from stability. Progress in Particle and Nuclear Physics, 61(2):602–673, 2008.

[8] I. Talmi and I. Unna. Order of levels in the shell model and spin of Be11. Physical Review Letters, 4:469–470, 1960.

[9] A. Navin, D. W. Anthony, T. Aumann, T. Baumann, D. Bazin, Y. Blumenfeld, B. A. Brown, T. Glasmacher, P. G. Hansen, R. W. Ibbotson, P. A. Lofy, V. Maddalena, K. Miller, T. Nakamura, B. V. Pritychenko, B. M. Sherrill, E. Spears, M. Steiner, J. A. Tostevin, J. Yurkon, and A. Wagner. Direct evidence for the breakdown of the N = 8 shell closure in 12Be. Physical Review Letters, 85:266–269, 2000.

[10] B. Bastin, S. Grévy, D. Sohler, O. Sorlin, Zs. Dombrádi, N. L. Achouri, J. C. Angélique, F. Azaiez, D. Baiborodin, R. Borcea, C. Bourgeois, A. Buta, A. Bürger, R. Chapman, J. C. Dalouzy, Z. Dlouhy, A. Drouard, Z. Elekes, S. Franchoo, S. Iacob, B. Laurent, M. Lazar, X. Liang, E. Liénard, J. Mrazek, L. Nalpas, F. Negoita, N. A. Orr, Y. Penionzhkevich, Zs. Podolyák, F. Pougheon, P. Roussel-Chomaz, M. G. Saint-Laurent, M. Stanoiu, I. Stefan, F. Nowacki, and A. Poves. Collapse of the N = 28 shell closure in 42Si. Physical Review Letters, 99:022503, 2007.

[11] R. Kanungo, C. Nociforo, A. Prochazka, T. Aumann, D. Boutin, D. Cortina-Gil, B. Davids, M. Diakaki, F. Farinon, H. Geissel, R. Gernhäuser, J. Gerl, R. Janik, B. Jonson, B. Kindler, R. Knöbel, R. Krücken, M. Lantz, H. Lenske, Y. Litvinov, B. Lommel, K. Mahata, P. Maierbeck, A. Musumarra, T. Nilsson, T. Otsuka, C. Perro, C. Scheidenberger, B. Sitar, P. Strmen, B. Sun, I. Szarka, I. Tanihata, Y. Utsuno, H. Weick, and M. Winkler. One- neutron removal measurement reveals 24O as a new doubly magic nucleus. Physical Review Letters, 102:152501, 2009.

[12] E. K. Warburton, J. A. Becker, and B. A. Brown. Mass systematics for A = 29–44 nuclei: The deformed A ∼ 32 region. Physical Review C, 41:1147–1166, 1990.

[13] E. Caurier, F. Nowacki, and A. Poves. Merging of the islands of inversion at N = 20 and N = 28. Physical Review C, 90:014302, 2014.

[14] G. Neyens, M. Kowalska, D. Yordanov, K. Blaum, P. Himpe, P. Lievens, S. Mallion, R. Neugart, N. Vermeulen, Y. Utsuno, and T. Otsuka. Measurement of the spin and magnetic moment of 31Mg: Evidence for a strongly deformed intruder ground state. Physical Review Letters, 94:022501, 2005.

[15] R. Klapisch, C. Thibault-Philippe, C. Detraz, J. Chaumont, R. Bernas, and E. Beck. Half-life of 11Li, of 27Na, and of the new isotopes 28Na, 29Na, 30Na, and 31Na produced in high-energy nuclear reactions. Physical Review Letters, 23:652–655, 1969.

[16] C. Thibault, R. Klapisch, C. Rigaud, A. M. Poskanzer, R. Prieels, L. Lessard, and W. Reisdorf. Direct measurement of the masses of 11Li and 26–32Mg with an on-line mass spectrometer. Physical Review C, 12:644–657, 1975.

[17] C. Détraz, M. Langevin, D. Guillemaud, M. Epherre, G. Audi, C. Thibault, and F. Touchard. Mapping of the onset of a new region of deformation: The masses of 31Mg and 32Mg. Nuclear Physics A, 394(3):378–386, 1983.

[18] N. A. Orr, W. Mittig, L. K. Fifield, M. Lewitowicz, E. Plagnol, Y. Schutz, Zhan Wen Long, L. Bianchi, A. Gillibert, A. V. Belozyorov, S. M. Lukyanov, Yu. E. Penionzhkevich, A. C. C. Villari, A. Cunsolo, A. Foti, G. Audi, C. Stephan, and L. Tassan-Got. New mass measurements of neutron-rich nuclei near N = 20. Physics Letters B, 258(1):29–34, 1991.

[19] C. Détraz, D. Guillemaud, G. Huber, R. Klapisch, M. Langevin, F. Naulin, C. Thibault, L. C. Carraz, and F. Touchard. Beta decay of 27-32Na and their descendants. Physical Review C, 19:164–176, 1979.

[20] H. Iwasaki, T. Motobayashi, H. Sakurai, K. Yoneda, T. Gomi, N. Aoi, N. Fukuda, Zs. Fülöp, U. Futakami, Z. Gacsi, Y. Higurashi, N. Imai, N. Iwasa, T. Kubo, M. Kunibu, M. Kurokawa, Z. Liu, T. Minemura, A. Saito, M. Serata, S. Shimoura, S. Takeuchi, Y. X. Watanabe, K. Yamada, Y. Yanagisawa, and M. Ishihara. Large collectivity of 34Mg. Physics Letters B, 522(3):227–232, 2001.

[21] Y. Yanagisawa, M. Notani, H. Sakurai, M. Kunibu, H. Akiyoshi, N. Aoi, H. Baba, K. Demichi, N. Fukuda, H. Hasegawa, Y. Higurashi, M. Ishihara, N. Iwasa, H. Iwasaki, T. Gomi, S. Kanno, M. Kurokawa, Y. U. Matsuyama, S. Michimasa, T. Minemura, T. Mizoi, T. Nakamura, A. Saito, M. Serata, S. Shimoura, T. Sugimoto, E. Takeshita, S. Takeuchi, K. Ue, K. Yamada, K. Yoneda, and T. Motobayashi. The first excited state of 30Ne studied by proton inelastic scattering in reversed kinematics. Physics Letters B, 566(1):84–89, 2003.

[22] T. Motobayashi, Y. Ikeda, K. Ieki, M. Inoue, N. Iwasa, T. Kikuchi, M. Kurokawa, S. Moriya, S. Ogawa, H. Murakami, S. Shimoura, Y. Yanagisawa, T. Nakamura, Y. Watan- abe, M. Ishihara, T. Teranishi, H. Okuno, and R. F. Casten. Large deformation of the very neutron-rich nucleus 32Mg from intermediate-energy coulomb excitation. Physics Letters B, 346(1):9–14, 1995.

[23] X. Campi, H. Flocard, A. K. Kerman, and S. Koonin. Shape transition in the neutron rich sodium isotopes. Nuclear Physics A, 251(2):193–205, 1975.

[24] B. H. Wildenthal and W. Chung. Collapse of the conventional shell-model ordering in the very-neutron-rich isotopes of na and mg. Physical Review C, 22:2260–2262, 1980.

[25] J. R. Terry, B. A. Brown, C. M. Campbell, J. M. Cook, A. D. Davies, D.-C. Dinca, A. Gade, T. Glasmacher, P. G. Hansen, B. M. Sherrill, H. Zwahlen, D. Bazin, K. Yoneda, J. A. Tostevin, T. Otsuka, Y. Utsuno, and B. Pritychenko. Single-neutron knockout from intermediate energy beams of 30,32Mg: Mapping the transition into the “island of inversion”. Physical Review C, 77:014316, 2008.

[26] Kris Heyde and John L. Wood. Shape coexistence in atomic nuclei. Review of Modern Physics, 83:1467–1521, 2011.

[27] W. Schwerdtfeger, P. G. Thirolf, K. Wimmer, D. Habs, H. Mach, T. R. Rodriguez, V. Bildstein, J. L. Egido, L. M. Fraile, R. Gernhäuser, R. Hertenberger, K. Heyde, P. Hoff, H. Hübel, U. Köster, T. Kröll, R. Krücken, R. Lutter, T. Morgan, and P. Ring. Shape coexistence near neutron number N = 20: First identification of the E0 decay from the deformed first excited Jπ = 0+ state in 30Mg. Physical Review Letters, 103:012501, 2009.

[28] K. Wimmer, T. Kröll, R. Krücken, V. Bildstein, R. Gernhäuser, B. Bastin, N. Bree, J. Diriken, P. Van Duppen, M. Huyse, N. Patronis, P. Vermaelen, D. Voulot, J. Van de Walle, F. Wenander, L. M. Fraile, R. Chapman, B. Hadinia, R. Orlandi, J. F. Smith, R. Lut- ter, P. G. Thirolf, M. Labiche, A. Blazhev, M. Kalkühler, P. Reiter, M. Seidlitz, N. Warr, A. O. Macchiavelli, H. B. Jeppesen, E. Fiori, G. Georgiev, G. Schrieder, S. Das Gupta, G. Lo Bianco, S. Nardelli, J. Butterworth, J. Johansen, and K. Riisager. Discovery of the shape coexisting 0+ state in 32Mg by a two neutron transfer reaction. Physical Review Letters, 105:252501, 2010.

[29] F. Rotaru, F. Negoita, S. Grévy, J. Mrazek, S. Lukyanov, F. Nowacki, A. Poves, O. Sorlin, C. Borcea, R. Borcea, A. Buta, L. Cáceres, S. Calinescu, R. Chevrier, Zs. Dombrádi, J. M. Daugas, D. Lebhertz, Y. Penionzhkevich, C. Petrone, D. Sohler, M. Stanoiu, and J. C. Thomas. Unveiling the intruder deformed 0+ state in 34Si. Physical Review Letters, 109:092503, 2012.

[30] N. A. Smirnova, B. Bally, K. Heyde, F. Nowacki, and K. Sieja. Shell evolution and nuclear forces. Physics Letters B, 686(2):109–113, 2010.

[31] Takaharu Otsuka, Toshio Suzuki, Rintaro Fujimoto, Hubert Grawe, and Yoshinori Akaishi. Evolution of nuclear shells due to the tensor force. Physical Review Letters, 95:232502, 2005.

[32] Takaharu Otsuka, Alexandra Gade, Olivier Sorlin, Toshio Suzuki, and Yutaka Ut- suno. Evolution of nuclear structure in exotic nuclei driven by nuclear forces, 2018. arXiv:1805.06501.

[33] Takaharu Otsuka, Rintaro Fujimoto, Yutaka Utsuno, B. Alex Brown, Michio Honma, and Takahiro Mizusaki. Magic numbers in exotic nuclei and spin-isospin properties of the nn interaction. Physical Review Letters, 87:082502, 2001.

[34] Takaharu Otsuka, Toshio Suzuki, Michio Honma, Yutaka Utsuno, Naofumi Tsunoda, Koshiroh Tsukiyama, and Morten Hjorth-Jensen. Novel features of nuclear forces and shell evolution in exotic nuclei. Physical Review Letters, 104:012501, 2010.

[35] B. H. Wildenthal. Empirical strengths of spin operators in nuclei. Progress in Particle and Nuclear Physics, 11:5–51, 1984.

[36] B. A. Brown and B. H. Wildenthal. Status of the nuclear shell model. Annual Review of Nuclear and Particle Science, 38(1):29–66, 1988.

[37] Yutaka Utsuno, Takaharu Otsuka, Takahiro Mizusaki, and Michio Honma. Varying shell gap and deformation in N 20 unstable nuclei studied by the monte carlo shell model. Physical Review C, 60:054315, 1999.

[38] T. T. S. Kuo and G. E. Brown. Reaction matrix elements for the 0f-1p shell nuclei. Nuclear Physics A, 114(2):241–279, 1968.

[39] D. J. Millener and D. Kurath. The particle-hole interaction and the beta decay of 14B. Nuclear Physics A, 255(2):315–338, 1975.

[40] F. Nowacki and A. Poves. New effective interaction for 0kω shell-model calculations in the sd-p f valence space. Physical Review C, 79:014310, 2009.

[41] Naofumi Tsunoda, Takaharu Otsuka, Noritaka Shimizu, Morten Hjorth-Jensen, Kazuo Takayanagi, and Toshio Suzuki. Exotic neutron-rich medium-mass nuclei with realistic nuclear forces. Physical Review C, 95:021304, 2017.

[42] R. Rodríguez-Guzmán, J. L. Egido, and L. M. Robledo. Correlations beyond the mean field in magnesium isotopes: angular momentum projection and configuration mixing. Nuclear Physics A, 709(1):201–235, 2002.

[43] Tomás R. Rodríguez and J. Luis Egido. New beyond-mean-field theories: Examination of the potential shell closures at N = 32 or 34. Physical Review Letters, 99:062501, 2007.

[44] T. Rodriguez and J. L. Egido. private communication.

[45] Nobuo Hinohara, Koichi Sato, Kenichi Yoshida, Takashi Nakatsukasa, Masayuki Matsuo, and Kenichi Matsuyanagi. Shape fluctuations in the ground and excited 0+ states of 30,32,34Mg. Physical Review C, 84:061302, 2011.

[46] H. Iwasaki, T. Motobayashi, H. Akiyoshi, Y. Ando, N. Fukuda, H. Fujiwara, Zs. Fülöp, K. I. Hahn, Y. Higurashi, M. Hirai, I. Hisanaga, N. Iwasa, T. Kijima, A. Mengoni, T. Minemura, T. Nakamura, M. Notani, S. Ozawa, H. Sagawa, H. Sakurai, S. Shimoura, S. Takeuchi, T. Teranishi, Y. Yanagisawa, and M. Ishihara. Low-lying intruder 1− state in 12Be and the melting of the N = 8 shell closure. Physics Letters B, 491(1):8–14, 2000.

[47] A. N. Deacon, J. F. Smith, S. J. Freeman, R. V. F. Janssens, M. P. Carpenter, B. Hadinia, C. R. Hoffman, B. P. Kay, T. Lauritsen, C. J. Lister, D. O’Donnell, J. Ollier, T. Otsuka, D. Seweryniak, K.-M. Spohr, D. Steppenbeck, S. L. Tabor, V. Tripathi, Y. Utsuno, P. T. Wady, and S. Zhu. Cross-shell excitations near the “island of inversion”: Structure of 30Mg. Physical Review C, 82:034305, 2010.

[48] B. Fernández-Domínguez, B. Pietras, W. N. Catford, N. A. Orr, M. Petri, M. Chartier, S. Paschalis, N. Patterson, J. S. Thomas, M. Caamaño, T. Otsuka, A. Poves, N. Tsunoda, N. L. Achouri, J.-C. Angélique, N. I. Ashwood, A. Banu, B. Bastin, R. Borcea, J. Brown, F. Delaunay, S. Franchoo, M. Freer, L. Gaudefroy, S. Heil, M. Labiche, B. Laurent, R. C. Lemmon, A. O. Macchiavelli, F. Negoita, E. S. Paul, C. Rodríguez-Tajes, P. P. Roussel- Chomaz, M. Staniou, M. J. Taylor, L. Trache, and G. L. Wilson. Re-examining the transition into the N = 20 island of inversion: Structure of 30Mg. Physics Letters B, 779:124–129, 2018.

[49] Vandana Tripathi, S. L. Tabor, P. Bender, C. R. Hoffman, Sangjin Lee, K. Pepper, M. Perry, P. F. Mantica, J. M. Cook, J. Pereira, J. S. Pinter, J. B. Stoker, D. Weisshaar, Y. Utsuno, and T. Otsuka. Excited intruder states in 32Mg. Physical Review C, 77:034310, 2008.

[50] D. Guillemaud-Mueller, C. Detraz, M. Langevin, F. Naulin, M. de Saint-Simon, C. Thibault, F. Touchard, and M. Epherre. β-decay schemes of very neutron-rich sodium isotopes and their descendants. Nuclear Physics A, 426(1):37–76, 1984.

[51] P. Baumann, Ph. Dessagne, A. Huck, G. Klotz, A. Knipper, Ch. Miehé, M. Ramdane, G. Walter, G. Marguier, H. Gabelmann, C. Richard-Serre, K. Schlösser, and A. Poves. Beta decay of 30Na: Experiment and theory. Physical Review C, 39:626–635, 1989.

[52] G. Klotz, P. Baumann, M. Bounajma, A. Huck, A. Knipper, G. Walter, G. Marguier, C. Richard-Serre, A. Poves, and J. Retamosa. Beta decay of 31,32Na and 31Mg: Study of the N = 20 shell closure. Physical Review C, 47:2502–2516, 1993.

[53] H. Mach, L. M. Fraile, O. Tengblad, R. Boutami, C. Jollet, W. A. Płóciennik, D. T. Yordanov, M. Stanoiu, M. J. G. Borge, P. A. Butler, J. Cederkäll, Ph. Dessagne, B. Fogel- berg, H. Fynbo, P. Hoff, A. Jokinen, A. Korgul, U. Köster, W. Kurcewicz, F. Marechal, T. Motobayashi, J. Mrazek, G. Neyens, T. Nilsson, S. Pedersen, A. Poves, B. Rubio, E. Ruchowska, and the ISOLDE Collaboration. New structure information on 30Mg, 31Mg and 32Mg. European Physical Journal A, 25(1):105–109, 2005.

[54] C. M. Mattoon, F. Sarazin, G. Hackman, E. S. Cunningham, R. A. E. Austin, G. C. Ball, R. S. Chakrawarthy, P. Finlay, P. E. Garrett, G. F. Grinyer, B. Hyland, K. A. Koopmans, J. R. Leslie, A. A. Phillips, M. A. Schumaker, H. C. Scraggs, J. Schwarzenberg, M. B. Smith, C. E. Svensson, J. C. Waddington, P. M. Walker, B. Washbrook, and E. Zganjar. β decay of 32Na. Physical Review C, 75:017302, 2007.

[55] T. Shimoda, K. Tajiri, K. Kura, A. Odahara, M. Suga, Y. Hirayama, N. Imai, H. Miy- atake, M. Pearson, C. D. P. Levy, K. P. Jackson, R. Legillon, C. Petrache, T. Fukuchi, N. Hamatani, T. Hori, M. Kazato, Y. Kenmoku, T. Masue, H. Nishibata, T. Suzuki, A. Takashima, and R. Yokoyama. Nuclear structure explored by β-delayed decay spec- troscopy of spin-polarized radioactive nuclei at TRIUMF ISAC-1. Hyperfine Interactions, 225(1):183–191, 2014.

[56] B. V. Pritychenko, T. Glasmacher, P. D. Cottle, M. Fauerbach, R. W. Ibbotson, K. W. Kemper, V. Maddalena, A. Navin, R. Ronningen, A. Sakharuk, H. Scheit, and V. G. Zelevinsky. Role of intruder configurations in 26,28Ne and 30,32Mg. Physics Letters B, 461(4):322–328, 1999.

[57] V. Chisté, A. Gillibert, A Lépine-Szily, N. Alamanos, F. Auger, J. Barrette, F. Braga, M. D.-Gil Cortina, Z. Dlouhy, V. Lapoux, M. Lewitowicz, R. Lichtenthäler, R. Liguori Neto, S. M. Lukyanov, M. MacCormick, F. Marie, W. Mittig, F. de Oliveira San- tos, N. A. Orr, A. N. Ostrowski, S. Ottini, A. Pakou, Yu. E. Penionzhkevich, P. Roussel- Chomaz, and J. L. Sida. Electric and nuclear transition strength in 30,32Mg. Physics Letters B, 514(3):233–239, 2001.

[58] O. Niedermaier, H. Scheit, V. Bildstein, H. Boie, J. Fitting, R. von Hahn, F. Köck, M. Lauer, U. K. Pal, H. Podlech, R. Repnow, D. Schwalm, C. Alvarez, F. Ames, G. Bollen, S. Emhofer, D. Habs, O. Kester, R. Lutter, K. Rudolph, M. Pasini, P. G. Thirolf, B. H. Wolf, J. Eberth, G. Gersch, H. Hess, P. Reiter, O. Thelen, N. Warr, D. Weisshaar, F. Aksouh, P. Van den Bergh, P. Van Duppen, M. Huyse, O. Ivanov, P. Mayet, J. Van de Walle, J. Äystö, P. A. Butler, J. Cederkäll, P. Delahaye, H. O. U. Fynbo, L. M. Fraile, O. Forstner, S. Franchoo, U. Köster, T. Nilsson, M. Oinonen, T. Sieber, F. Wenander, M. Pantea, A. Richter, G. Schrieder, H. Simon, T. Behrens, R. Gernhäuser, T. Kröll, R. Krücken, M. Münch, T. Davinson, J. Gerl, G. Huber, A. Hurst, J. Iwanicki, B. Jonson, P. Lieb, L. Liljeby, A. Schempp, A. Scherillo, P. Schmidt, and G. Walter. “safe” coulomb excitation of 30Mg. Physical Review Letters, 94:172501, 2005.

[59] S. Takeuchi, N. Aoi, T. Motobayashi, S. Ota, E. Takeshita, H. Suzuki, H. Baba, T. Fukui, Y. Hashimoto, K. Ieki, N. Imai, H. Iwasaki, S. Kanno, Y. Kondo, T. Kubo, K. Kurita, T. Minemura, T. Nakabayashi, T. Nakamura, T. Okumura, T. K. Onishi, H. Sakurai, S. Shimoura, R. Sugou, D. Suzuki, M. K. Suzuki, M. Takashina, M. Tamaki, K. Tanaka, Y. Togano, and K. Yamada. Low-lying states in 32Mg studied by proton inelastic scattering. Physical Review C, 79:054319, 2009.

[60] M. Shamsuzzoha Basunia. Nuclear data sheets for A = 30. Nuclear Data Sheets, 111(9):2331–2424, 2010.

[61] A. G. Artukh, V. V. Avdeichikov, G. F. Gridnev, V. L. Mikheev, V. V. Volkov, and J. Wilczyński. New isotopes 29,30Mg, 31,32,33Al, 33,34,35,36Si, 35,36,37,38P, 39,40S and 41,42Cl produced in bombardment of a 232Th target with 290 MeV 40Ar ions. Nuclear Physics A, 176(2):284–288, 1971.

[62] E. Roeckl, P. F. Dittner, C. Détraz, R. Klapisch, C. Thibault, and C. Rigaud. Decay properties of the neutron-rich isotopes, 11Li and 27–31Na. Physical Review C, 10:1181– 1188, 1974.

[63] I. Paschopoulos, Eckhardt Müller, H. J. Körner, I. C. Oelrich, K. E. Rehm, and H. J. Scheerer. Energy levels of 27Na and masses of 29,30Mg observed in 18O-induced transfer reactions on 26Mg. Physical Review C, 18:1277–1281, 1978.

[64] H. Morinaga and P. C. Gugelot. Gamma rays following (α, xn) reactions. Nuclear Physics, 46:210–224, 1963.

[65] T. Shibata, H. Ejiri, J. Chiba, S. Nagamiya, K. Nakai, R. Anholt, H. Bowman, J. G. Ingersoll, E. A. Rauscher, and J. O. Rasmussen. In-beam nuclear gamma-ray studies of relativistic heavy ion reactions. Nuclear Physics A, 308(3):513–531, 1978.

[66] M. de Jong, A. V. Ignatyuk, and K.-H. Schmidt. Angular momentum in peripheral fragmentation reactions. Nuclear Physics A, 613(4):435–444, 1997.

[67] M. Belleguic, M. J. Lopez-Jimenez, M. Stanoiu, F. Azaiez, M. G. Saint-Laurent, O. Sor- lin, N. L. Achouri, J. C. Angélique, C. Borcea, C. Bourgeois, J. M. Daugas, C. Donzaud, F De Oliveira-Santos, Z. Dlouhy, J. Duprat, S. Grevy, D. Guillemaud-Mueller, S. Leen- hardt, M. Lewitowicz, W. Mittig, A. C. Mueller, N. Orr, Yu. E. Penionzhkevich, M. G. Porquet, F. Pougheon, P. Roussel-Chomaz, J. E. Sauvestre, H. Savajols, and Yu. Sobolov. In-beam gamma spectroscopy of very neutron-rich nuclei at GANIL. Physica Scripta, T88(1):122, 2000.

[68] Alexandra Gade and Thomas Glasmacher. In-beam nuclear spectroscopy of bound states with fast exotic ion beams. Progress in Particle and Nuclear Physics, 60(1):161–224, 2008.

[69] J. A. Tostevin. Single-nucleon knockout reactions at fragmentation beam energies. Nu- clear Physics A, 682(1):320–331, 2001.

[70] P. G. Hansen and J. A. Tostevin. Direct reactions with exotic nuclei. Annual Review of Nuclear and Particle Science, 53(1):219–261, 2003.

[71] C. A. Bertulani and A. Gade. MOMDIS: a glauber model computer code for knockout reactions. Computer Physics Communications, 175(5):372–380, 2006.

[72] Jim Al-Khalili and Filomena Nunes. Reaction models to probe the structure of light exotic nuclei. Journal of Physics G: Nuclear and Particle Physics, 29(11):R89–R132, 2003.

[73] I. J. Thompson and F. M. Nunes. Nuclear Reactions for Astrophysics. Cambridge University Press, New Yor, 2009.

[74] B. Alex Brown. New skyrme interaction for normal and exotic nuclei. Physical Review C, 58:220–231, 1998.

[75] A. Gade, P. Adrich, D. Bazin, M. D. Bowen, B. A. Brown, C. M. Campbell, J. M. Cook, T. Glasmacher, P. G. Hansen, K. Hosier, S. McDaniel, D. McGlinchery, A. Obertelli, K. Siwek, L. A. Riley, J. A. Tostevin, and D. Weisshaar. Reduction of spectroscopic strength: Weakly-bound and strongly-bound single-particle states studied using one- nucleon knockout reactions. Physical Review C, 77:044306, 2008.

[76] H. Esbensen. Momentum distributions in stripping reactions of single-nucleon halo nuclei. Physical Review C, 53:2007–2010, 1996.

[77] A. E. L. Dieperink and T. de Forest. Center-of-mass effects in single-nucleon knock-out reactions. Physical Review C, 10:543–549, 1974.

[78] J. A. Tostevin and A. Gade. Systematics of intermediate-energy single-nucleon removal cross sections. Physical Review C, 90:057602, 2014.

[79] Vijay R. Pandharipande, Ingo Sick, and Peter K. A. deWitt Huberts. Independent particle motion and correlations in fermion systems. Review of Modern Physics, 69:981–991, 1997.

[80] Jenny Lee, J. A. Tostevin, B. A. Brown, F. Delaunay, W. G. Lynch, M. J. Saelim, and M. B. Tsang. Reduced neutron spectroscopic factors when using potential geometries constrained by hartree-fock calculations. Physical Review C, 73:044608, 2006.

[81] A. Gade and B. M. Sherrill. NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability. Physica Scripta, 91(5):053003, 2016.

[82] Y. Blumenfeld, T. Nilsson, and P Van Duppen. Facilities and methods for radioactive ion beam production. Physica Scripta, T152:014023, 2013.

[83] W. Gelletly, David J. Morrissey, and Bradley M. Sherrill. Radioactive nuclear beam facilities based on projectile fragmentation. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering, 356(1744):1985–2006, 1998.

[84] H. Nishibata, T. Shimoda, A. Odahara, S. Morimoto, S. Kanaya, A. Yagi, H. Kanaoka, M. R. Pearson, C. D. P. Levy, and M. Kimura. Shape coexistence in the N = 19 neutron- rich nucleus 31Mg explored by β-γ spectroscopy of spin-polarized 31Na. Physics Letters B, 767:81–85, 2017.

[85] D. J. Morrissey. The coupled cyclotron project at the NSCL. Nuclear Physics A, 616(1):45–55, 1997.

[86] A. S. Goldhaber and H. H. Heckman. High energy interactions of nuclei. Annual Review of Nuclear and Particle Science, 28(1):161–205, 1978.

[87] D. J. Morrissey, B. M. Sherrill, M. Steiner, A. Stolz, and I. Wiedenhoever. Commissioning the A1900 projectile fragment separator. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 204:90–96, 2003.

[88] A. Stolz, T. Baumann, T. N. Ginter, D. J. Morrissey, M. Portillo, B. M. Sherrill, M. Steiner, and J. W. Stetson. Production of rare isotope beams with the NSCL fragment separator. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 241(1):858–861, 2005.

[89] K.-H. Schmidt, E. Hanelt, H. Geissel, G. Münzenberg, and J. P. Dufour. The momentum- loss achromat — a new method for the isotopical separation of relativistic heavy ions. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec- trometers, Detectors and Associated Equipment, 260(2):287–303, 1987.

[90] D. Bazin, J. A. Caggiano, B. M. Sherrill, J. Yurkon, and A. Zeller. The S800 spectrograph. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 204:629–633, 2003.

[91] T. R. Baugher. Neutron-rich Chromium and Manganese Isotopes and the Role of the 0g9 2 and 1d5 2 Neutron Orbitals in the Region Below 68Ni. PhD thesis, Michigan State University, 2014.

[92] J. Yurkon, D. Bazin, W. Benenson, D. J. Morrissey, B. M. Sherrill, D. Swan, and R. Swanson. Focal plane detector for the S800 high-resolution spectrometer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 422(1):291–295, 1999.

[93] M. Berz, K. Joh, J. A. Nolen, B. M. Sherrill, and A. F. Zeller. Reconstructive correction of aberrations in nuclear particle spectrographs. Physical Review C, 47:537–544, 1993.

[94] Kyoko Makino and Martin Berz. Cosy infinity version 9. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 558(1):346–350, 2006.

[95] I. Y. Lee, R. M. Clark, M. Cromaz, M. A. Deleplanque, M. Descovich, R. M. Diamond, P. Fallon, A. O. Macchiavelli, F. S. Stephens, and D. Ward. GRETINA: A gamma ray energy tracking array. Nuclear Physics A, 746:255–259, 2004.

[96] I-Yang Lee. Gamma-ray tracking detectors: physics opportunities and status of GRETINA. Nuclear Physics A, 834(1):743c–746c, 2010.

[97] Paul Fallon, Alexandra Gade, and I-Yang Lee. GRETINA and its early science. Annual Review of Nuclear and Particle Science, 66(1):321–339, 2016.

[98] D. Weisshaar, D. Bazin, P. C. Bender, C. M. Campbell, F. Recchia, V. Bader, T. Baugher, J. Belarge, M. P. Carpenter, H. L. Crawford, M. Cromaz, B. Elman, P. Fallon, A. Forney, Gade, J. Harker, N. Kobayashi, C. Langer, T. Lauritsen, I. Y. Lee, A. Lemasson, Longfellow, E. Lunderberg, A. O. Macchiavelli, K. Miki, S. Momiyama, S. Noji, D. C. Radford, M. Scott, J. Sethi, S. R. Stroberg, C. Sullivan, R. Titus, A. Wiens, S. Williams, K. Wimmer, and S. Zhu. The performance of the γ-ray tracking array GRETINA for γ-ray spectroscopy with fast beams of rare isotopes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 847:187–198, 2017.

[99] S. Paschalis, I. Y. Lee, A. O. Macchiavelli, C. M. Campbell, M. Cromaz, S. Gros, J. Pavan, J. Qian, R. M. Clark, H. L. Crawford, D. Doering, P. Fallon, C. Lionberger, T. Loew, M. Petri, T. Stezelberger, S. Zimmermann, D. C. Radford, K. Lagergren, D. Weisshaar, R. Winkler, T. Glasmacher, J. T. Anderson, and C. W. Beausang. The performance of the gamma-ray energy tracking in-beam nuclear array GRETINA. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 709:44–55, 2013.

[100] Zhong He. Review of the shockleyramo theorem and its application in semiconductor gamma-ray detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 463(1):250–267, 2001.

[101] W. F. Mueller, J. A. Church, T. Glasmacher, D. Gutknecht, G. Hackman, P. G. Hansen, Z. Hu, K. L. Miller, and P. Quirin. Thirty-two-fold segmented germanium detectors to identify γ-rays from intermediate-energy exotic beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 466(3):492–498, 2001.

[102] L. A. Riley. UCGretina.

[103] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degt- yarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez, Cadenas, I. González, G Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Ha- sui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamat, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai, Tehrani, M. Tro- peano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250–303, 2003.

[104] UPDATE OF X RAY AND GAMMA RAY DECAY DATA STANDARDS FOR DETECTOR CALIBRATION AND OTHER APPLICATIONS. International Atomic Energy Agency, Vienna, 2017.

[105] J. Anderson, R. Brito, D. Doering, T. Hayden, B. Holmes, J. Joseph, H. Yaver, and S. Zimmermann. Data acquisition and trigger system of the Gamma Ray Energy Tracking In-Beam Nuclear Array (GRETINA). IEEE Transactions on Nuclear Science, 56(1):258– 265, 2009. A. M. Cromaz, V. J. Riot, P. Fallon, S. Gros, B. Holmes, I. Y. Lee, A. O. Macchiavelli, Vu, H. Yaver, and S. Zimmermann. A digital signal processing module for gamma- ray tracking detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 597(2):233–237, 2008.

[106] S. Zimmermann, J. T. Anderson, D. Doering, J. Joseph, C. Lionberger, T. Stezelberger, and H. Yaver. Implementation and performance of the electronics and computing system of the Gamma Ray Energy Tracking In-Beam Nuclear Array (GRETINA). IEEE Transactions on Nuclear Science, 59(5):2494–2500, 2012.

[107] K. Wimmer and E. Lunderberg. GrROOT.

[108] S. R. Stroberg, A. Gade, J. A. Tostevin, V. M. Bader, T. Baugher, D. Bazin, J. S. Berryman, B. A. Brown, C. M. Campbell, K. W. Kemper, C. Langer, E. Lunderberg, A. Lemasson, S. Noji, F. Recchia, C. Walz, D. Weisshaar, and S. J. Williams. Single-particle structure of silicon isotopes approaching 42Si. Physical Review C, 90:034301, 2014.

[109] Steven Ragnar Stroberg. Single-particle structure of neutron-rich silicon isotopes and the breakdown of the N = 28 shell closure. PhD thesis, Michigan State University, 2014.

[110] V. Vaquero, A. Jungclaus, J. L. Rodríguez-Sánchez, J. A. Tostevin, P. Doornenbal, K. Wimmer, S. Chen, E. Nácher, E. Sahin, Y. Shiga, D. Steppenbeck, R. Taniuchi, Z. Y. Xu, T. Ando, H. Baba, F. L. Bello, Garrote, S. Franchoo, A. Gargano, K. Hadynska- Klek, A. Kusoglu, J. Liu, T. Lokotko, S. Momiyama, T. Motobayashi, S. Nagamine, N. Nakatsuka, M. Niikura, R. Orlandi, T. Saito, H. Sakurai, P. A. Söderström, G. M. Tveten, Zs. Vajta, and M. Yalcinkaya. Inclusive cross sections for one- and multi-nucleon removal from Sn, Sb, and Te projectiles beyond the N = 82 shell closure. Physics Letters B, 795:356–361, 2019. B. A. Gade, J. A. Tostevin, V. Bader, T. Baugher, D. Bazin, J. S. Berryman, B. A. Brown, J. Hartley, E. Lunderberg, F. Recchia, S. R. Stroberg, Y. Utsuno, D. Weisshaar, and K. Wimmer. One-neutron pickup into 49Ca: Bound neutron g9 2 spectroscopic strength at N = 29. Physical Review C, 93:031601, 2016.

[111] Satoru Momiyama. Collapse of the N = 28 shell closure: single-particle structure of 43S. PhD thesis, The University of Tokyo, 2018.

[112] K. Yoneda, H. Sakurai, T. Gomi, T. Motobayashi, N. Aoi, N. Fukuda, U. Futakami, Z. Gacsi, Y. Higurashi, N. Imai, N. Iwasa, H. Iwasaki, T. Kubo, M. Kunibu, M. Kurokawa, Z. Liu, T. Minemura, A. Saito, M. Serata, S. Shimoura, S. Takeuchi, Y. X. Watanabe, K. Yamada, Y. Yanagisawa, K. Yogo, A. Yoshida, and M. Ishihara. Deformation of 34Mg studied via in-beam γ-ray spectroscopy using radioactive-ion projectile fragmentation. Physics Letters B, 499(3):233–237, 2001.

[113] H. L. Crawford, P. Fallon, A. O. Macchiavelli, A. Poves, V. M. Bader, D. Bazin, M. Bowry, C. M. Campbell, M. P. Carpenter, R. M. Clark, M. Cromaz, A. Gade, E. Ideguchi, H. Iwasaki, C. Langer, I. Y. Lee, C. Loelius, E. Lunderberg, C. Morse, A. L. Richard, J. Rissanen, D. Smalley, S. R. Stroberg, D. Weisshaar, K. Whitmore, A. Wiens, S. J. Williams, K. Wimmer, and T. Yamamato. Rotational band structure in 32mg. Physical Review C, 93:031303, 2016.

[114] J. C. Hardy, L. C. Carraz, B. Jonson, and P. G. Hansen. The essential decay of pande- monium: A demonstration of errors in complex beta-decay schemes. Physics Letters B, 71(2):307–310, 1977.

[115] A. Gade, R. V. F. Janssens, J. A. Tostevin, D. Bazin, J. Belarge, P. C. Bender, S. Bottoni, M. P. Carpenter, B. Elman, S. J. Freeman, T. Lauritsen, S. M. Lenzi, B. Longfellow, Lunderberg, A. Poves, L. A. Riley, D. K. Sharp, D. Weisshaar, and S. Zhu. Structure of 70Fe: Single-particle and collective degrees of freedom. Physical Review C, 99:011301, 2019.

[116] G. Huber, F. Touchard, S. Büttgenbach, C. Thibault, R. Klapisch, H. T. Duong, S. Liber- man, J. Pinard, J. L. Vialle, P. Juncar, and P. Jacquinot. Spins, magnetic moments, and isotope shifts of 21–31Na by high resolution laser spectroscopy of the atomic D1 line. Physical Review C, 18:2342–2354, 1978.

[117] Hiroki Nishibata. Variety of nuclear structures in neutron-rich nuclei 30Mg and 31Mg investigated by spin-polarized Na beams. PhD thesis, Osaka University, 2016.

[118] M. Shamsuzzoha Basunia. Nuclear data sheets for A = 28. Nuclear Data Sheets, 114(10):1189–1291, 2013.

[119] Noritaka Shimizu. Nuclear shell-model code for massive parallel computation, “KSHELL”, 2013. arXiv:1310.5431.

[120] P. Himpe, G. Neyens, D. L. Balabanski, G. Bélier, J. M. Daugas, F. de Oliveira Santos, M. De Rydt, K. T. Flanagan, I. Matea, P. Morel, Yu. E. Penionzhkevich, L. Perrot, N. A. Smirnova, C. Stodel, J. C. Thomas, N. Vermeulen, D. T. Yordanov, Y. Utsuno, and T. Otsuka. g factor of the exotic N = 21 isotope 34Al: probing the N = 20 and N = 28 shell gaps at the border of the “island of inversion”. Physics Letters B, 658(5):203–208, 2008.

[121] Z. Y. Xu, H. Heylen, K. Asahi, F. Boulay, J. M. Daugas, R. P. de Groote, W. Gins, O. Ka- malou, Á. Koszorús, M. Lykiardopoulou, T. J. Mertzimekis, G. Neyens, H. Nishibata, T. Otsuka, R. Orset, A. Poves, T. Sato, C. Stodel, J. C. Thomas, N. Tsunoda, Y. Utsuno, M. Vandebrouck, and X. F. Yang. Nuclear moments of the low-lying isomeric 1+ state of 34Al: Investigation on the neutron 1p1h excitation across N = 20 in the island of inversion. Physics Letters B, 782:619–626, 2018.

[122] R. Kanungo, C. Nociforo, A. Prochazka, Y. Utsuno, T. Aumann, D. Boutin, D. Cortina-Gil, B. Davids, M. Diakaki, F. Farinon, H. Geissel, R. Gernhäuser, J. Gerl, R. Janik, B. Jonson, B. Kindler, R. Knöbel, R. Krücken, M. Lantz, H. Lenske, Y. Litvinov, K. Mahata, P. Maierbeck, A. Musumarra, T. Nilsson, T. Otsuka, C. Perro, C. Scheidenberger, B. Sitar, P. Strmen, B. Sun, I. Szarka, I. Tanihata, H. Weick, and M. Winkler. Structure of 33Mg sheds new light on the N = 20 island of inversion. Physics Letters B, 685(4):253–257, 2010.

[123] Yusuke Tsunoda, Takaharu Otsuka, Noritaka Shimizu, Michio Honma, and Yutaka Ut- suno. Novel shape evolution in exotic ni isotopes and configuration-dependent shell structure. Physical Review C, 89:031301, 2014.

[124] T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, and Y. Utsuno. Monte carlo shell model for atomic nuclei. Progress in Particle and Nuclear Physics, 47(1):319–400, 2001.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る