リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「All reported non-canonical splice site variants in GLA cause aberrant splicing」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

All reported non-canonical splice site variants in GLA cause aberrant splicing

Okada, Eri Horinouchi, Tomoko Yamamura, Tomohiko Aoto, Yuya Suzuki, Ryota Ichikawa, Yuta Tanaka, Yu Masuda, Chika Kitakado, Hideaki Kondo, Atsushi Sakakibara, Nana Ishiko, Shinya Nagano, China Ishimori, Shingo Usui, Joichi Yamagata, Kunihiro Matsuo, Masafumi Nozu, Kandai 神戸大学

2023.09

概要

Background: Fabry disease is an X-linked lysosomal storage disorder caused by insufficient α-galactosidase A (GLA) activity resulting from variants in the GLA gene, which leads to glycosphingolipid accumulation and life-threatening, multi-organ complications. Approximately 50 variants have been reported that cause splicing abnormalities in GLA. Most were found within canonical splice sites, which are highly conserved GT and AG splice acceptor and donor dinucleotides, whereas one-third were located outside canonical splice sites, making it difficult to interpret their pathogenicity. In this study, we aimed to investigate the genetic pathogenicity of variants located in non-canonical splice sites within the GLA gene. Methods: 13 variants, including four deep intronic variants, were selected from the Human Gene Variant Database Professional. We performed an in vitro splicing assay to identify splicing abnormalities in the variants. Results: All candidate non-canonical splice site variants in GLA caused aberrant splicing. Additionally, all but one variant was protein-truncating. The four deep intronic variants generated abnormal transcripts, including a cryptic exon, as well as normal transcripts, with the proportion of each differing in a cell-specific manner. Conclusions: Validation of splicing effects using an in vitro splicing assay is useful for confirming pathogenicity and determining associations with clinical phenotypes.

この論文で使われている画像

参考文献

1. Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL,

Laster L. Enzymatic defect in Fabry’s disease: ceramidetrihexosidase deficiency. N Engl J Med. 1967;276:1163–7.

2. Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30.

3. Nakao S, Takenaka T, Maeda M, Kodama C, Tanaka A, Tahara

M, et al. An atypical variant of Fabry’s disease in men with left

ventricular hypertrophy. N Engl J Med. 1995;333:288–93.

4. Elleder M, Bradová V, Smíd F, Budĕsínský M, Harzer K,

Kustermann-Kuhn B, et al. Cardiocyte storage and hypertrophy as a sole manifestation of Fabry’s disease. Report on a

case simulating hypertrophic non-obstructive cardiomyopathy.

Virchows Arch A Pathol Anat Histopathol. 1990;417:449–55.

5. Nakao S, Kodama C, Takenaka T, Tanaka A, Yasumoto Y,

Yoshida A, et al. Fabry disease: detection of undiagnosed hemodialysis patients and identification of a “renal variant” phenotype. Kidney Int. 2003;64:801–7.

6. Anna A, Monika G. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genet.

2018;59:253–68.

7. Thusberg J, Olatubosun A, Vihinen M. Performance of mutation

pathogenicity prediction methods on missense variants. Hum

Mutat. 2011;32:358–68.

8. Jian X, Boerwinkle E, Liu X. In silico tools for splicing defect

prediction: a survey from the viewpoint of end users. Genet

Med. 2014;16:497–503.

9. Yamamura T, Horinouchi T, Aoto Y, Lennon R, Nozu K. The

contribution of COL4A5 splicing variants to the pathogenesis of X-linked Alport syndrome. Front Med (Lausanne).

2022;9:841391.

10. Horinouchi T, Nozu K, Yamamura T, Minamikawa S, Omori

T, Nakanishi K, et al. Detection of splicing abnormalities and

genotype-phenotype correlation in X-linked Alport syndrome.

J Am Soc Nephrol. 2018;29:2244–54.

11. Tsuji Y, Yamamura T, Nagano C, Horinouchi T, Sakakibara N,

Ishiko S, et al. Systematic review of genotype-phenotype correlations in Frasier syndrome. Kidney Int Rep. 2021;6:2585–93.

12. Aoto Y, Horinouchi T, Yamamura T, Kondo A, Nagai S, Ishiko

S, et al. Last nucleotide substitutions of COL4A5 exons cause

aberrant splicing. Kidney Int Rep. 2022;7:108–16.

13. Rossanti R, Horinouchi T, Yamamura T, Nagano C, Sakakibara

N, Ishiko S, et al. Evaluation of suspected autosomal Alport

syndrome synonymous variants. Kidney360. 2022;3:497–505.

14. Inoue T, Nagano C, Matsuo M, Yamamura T, Sakakibara N,

Horinouchi T, et al. Functional analysis of suspected splicing

variants in CLCN5 gene in Dent disease 1. Clin Exp Nephrol.

2020;24:606–12.

15. Tang R, Prosser DO, Love DR. Evaluation of bioinformatic programmes for the analysis of variants within splice site consensus

regions. Adv Bioinform. 2016;2016:5614058.

16. Wai HA, Lord J, Lyon M, Gunning A, Kelly H, Cibin P, et al.

Blood RNA analysis can increase clinical diagnostic rate

and resolve variants of uncertain significance. Genet Med.

2020;22:1005–14.

17. Wang Z, Burge CB. Splicing regulation: from a parts list of

regulatory elements to an integrated splicing code. RNA.

2008;14:802–13.

18. Wang GS, Cooper TA. Splicing in disease: disruption of the

splicing code and the decoding machinery. Nat Rev Genet.

2007;8:749–61.

19. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M,

Lander ES, Getz G, Mesirov JP. Integrative genomics viewer.

Nat Biotechnol. 2011;29:24–6.

745

20. Sakaguchi N, Suyama M. In silico identification of pseudo-exon

activation events in personal genome and transcriptome data.

RNA Biol. 2021;18:382–90.

21. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J,

et al. Standards and guidelines for the interpretation of sequence

variants: a joint consensus recommendation of the American

College of Medical Genetics and Genomics and the Association

for Molecular Pathology. Genet Med. 2015;17:405–24.

22. Ortiz A, Germain DP, Desnick RJ, Politei J, Mauer M, Burlina

A, et al. Fabry disease revisited: management and treatment recommendations for adult patients. Mol Genet Metab.

2018;123:416–27.

23. Seo J, Kim M, Hong GR, Kim DS, Son JW, Cho IJ, et al. Fabry

disease in patients with hypertrophic cardiomyopathy: a practical

approach to diagnosis. J Hum Genet. 2016;61:775–80.

24. Topaloglu AK, Ashley GA, Tong B, Shabbeer J, Astrin KH, Eng

CM, et al. Twenty novel mutations in the alpha-galactosidase A

gene causing Fabry disease. Mol Med. 1999;5:806–11.

25. Zizzo C, Monte I, Pisani A, Fatuzzo P, Riccio E, Rodolico MS,

et al. Molecular and clinical studies in five index cases with novel

mutations in the GLA gene. Gene. 2016;578:100–4.

26. Choi JH, Lee BH, Heo SH, Kim GH, Kim YM, Kim DS, et al.

Clinical characteristics and mutation spectrum of GLA in Korean

patients with Fabry disease by a nationwide survey: underdiagnosis of late-onset phenotype. Medicine. 2017;96:e7387.

27. Lee BH, Heo SH, Kim GH, Park JY, Kim WS, Kang DH, et al.

Mutations of the GLA gene in Korean patients with Fabry disease

and frequency of the E66Q allele as a functional variant in Korean

newborns. J Hum Genet. 2010;55:512–7.

28. Riera C, Lois S, Domínguez C, Fernandez-Cadenas I, Montaner

J, Rodríguez-Sureda V, de la Cruz X. Molecular damage in Fabry

disease: characterization and prediction of alpha-galactosidase A

pathological mutations. Proteins. 2015;83:91–104.

29. Nowak A, Mechtler TP, Hornemann T, Gawinecka J, Theswet E,

Hilz MJ, Kasper DC. Genotype, phenotype and disease severity

reflected by serum LysoGb3 levels in patients with Fabry disease.

Mol Genet Metab. 2018;123:148–53.

30. Shabbeer J, Yasuda M, Benson SD, Desnick RJ. Fabry disease:

identification of 50 novel alpha-galactosidase A mutations causing

the classic phenotype and three-dimensional structural analysis of

29 missense mutations. Hum Genom. 2006;2:297–309.

31. Cooper TA. Use of minigene systems to dissect alternative splicing elements. Methods. 2005;37:331–40.

32. Higuchi T, Kobayashi M, Ogata J, Kaneshiro E, Shimada Y, Kobayashi H, et al. Identification of cryptic novel α-galactosidase A

gene mutations: abnormal mRNA splicing and large deletions.

JIMD Rep. 2016;30:63–72.

33. Filoni C, Caciotti A, Carraresi L, Donati MA, Mignani R, Parini

R, et al. Unbalanced GLA mRNAs ratio quantified by real-time

PCR in Fabry patients’ fibroblasts results in Fabry disease. Eur J

Hum Genet. 2008;16:1311–7.

34. Ishii S, Nakao S, Minamikawa-Tachino R, Desnick RJ, Fan JQ.

Alternative splicing in the alpha-galactosidase A gene: increased

exon inclusion results in the Fabry cardiac phenotype. Am J Hum

Genet. 2002;70:994–1002.

35. Horinouchi T, Yamamura T, Minamikawa S, Nagano C, Sakakibara N, Nakanishi K, et al. Pathogenic evaluation of synonymous

COL4A5 variants in X-linked Alport syndrome using a minigene

assay. Mol Genet Genom Med. 2020;8:e1342.

36. Oliveira JP, Ferreira S. Multiple phenotypic domains of Fabry

disease and their relevance for establishing genotype- phenotype

correlations. Appl Clin Genet. 2019;12:35–50.

37. Dai X, Zong X, Pan X, Lu W, Jiang GR, Lin F. Identification and

functional characterization of the first deep intronic GLA mutation (IVS4+1326C>T) causing renal variant of Fabry disease.

Orphanet J Rare Dis. 2022;17:237.

13

746

38. Liao HC, Hsu TR, Young L, Chiang CC, Huang CK, Liu HC, et al.

Functional and biological studies of α-galactosidase A variants

with uncertain significance from newborn screening in Taiwan.

Mol Genet Metab. 2018;123:140–7.

39. Chiang HL, Wang NH-H, Song IW, Chang CP, Wen MS, Chien

YH, et al. Genetic epidemiological study doesn’t support GLA

IVS4+919G>A variant is a significant mutation in Fabry disease.

Mol Genet Metab. 2017;121:22–7.

40. Ferri L, Covello G, Caciotti A, Guerrini R, Denti MA, Morrone

A. Double-target antisense U1snRNAs correct mis-splicing due

to c.639+861C>T and c.639+919G>A GLA deep intronic mutations. Mol Ther Nucleic Acids. 2016;5:e380.

41. Chang WH, Niu DM, Lu CY, Lin SY, Liu TC, Chang JG. Modulation the alternative splicing of GLA (IVS4+919G>A) in Fabry

disease. PLoS ONE. 2017;12:e0175929.

42. Whybra C, Kampmann C, Krummenauer F, Ries M, Mengel

E, Miebach E, et al. The Mainz Severity Score Index: a new

13

Clinical and Experimental Nephrology (2023) 27:737–746

instrument for quantifying the Anderson–Fabry disease phenotype, and the response of patients to enzyme replacement therapy.

Clin Genet. 2004;65:299–307.

43. Auray-Blais C, Blais CM, Ramaswami U, Boutin M, Germain DP,

Dyack S, et al. Urinary biomarker investigation in children with

Fabry disease using tandem mass spectrometry. Clin Chim Acta.

2015;438:195–204.

4 4. Lee SH, Li CF, Lin HY, Lin CH, Liu HC, Tsai SF, Niu DM. Highthroughput detection of common sequence variations of Fabry disease in Taiwan using DNA mass spectrometry. Mol Genet Metab.

2014;111:507–12.

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る