リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Usefulness of functional splicing analysis to confirm precise disease pathogenesis in Diamond-Blackfan anemia caused by intronic variants in RPS19」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Usefulness of functional splicing analysis to confirm precise disease pathogenesis in Diamond-Blackfan anemia caused by intronic variants in RPS19

髙藤, 哲 森, 健 西村, 範行 山本, 暢之 植村, 優 野津, 寛大 Terui, Kiminori Toki, Tsutomu Ito, Etsuro Muramatsu, Hideki Takahashi, Yoshiyuki Matsuo, Masafumi Yamamura, Tomohiko 飯島, 一誠 神戸大学

2021.02.24

概要

Diamond-Blackfan anemia (DBA) is mainly caused by pathogenic variants in ribosomal proteins and 22 responsible genes have been identified to date. The most common causative gene of DBA is RPS19 [NM_001022.4]. Nearly 180 RPS19 variants have been reported, including three deep intronic variants outside the splicing consensus sequence (c.72-92A > G, c.356 + 18G > C, and c.411 + 6G > C). We also identified one case with a c.412-3C > G intronic variant. Without conducting transcript analysis, the pathogenicity of these variants is unknown. However, it is difficult to assess transcripts because of their fragility. In such cases, in vitro functional splicing assays can be used to assess pathogenicity. Here, we report functional splicing analysis results of four RPS19 deep intronic variants identified in our case and in previously reported cases. One splicing consensus variant (c.411 + 1G > A) was also examined as a positive control. Aberrant splicing with a 2-bp insertion between exons 5 and 6 was identified in the patient samples and minigene assay results also identified exon 6 skipping in our case. The exon 6 skipping transcript was confirmed by further evaluation using quantitative RT-PCR. Additionally, minigene assay analysis of three reported deep intronic variants revealed that none of them showed aberrant splicing and that these variants were not considered to be pathogenic. In conclusion, the minigene assay is a useful method for functional splicing analysis of inherited disease.

この論文で使われている画像

参考文献

1.

Lipton JM, Ellis SR. Diamond-Blackfan anemia: diagnosis, treatment, and

molecular pathogenesis. Hematology/oncology clinics of North America. Apr

2009;23(2):261-82. doi:10.1016/j.hoc.2009.01.004

2.

Vlachos A, Ball S, Dahl N, et al. Diagnosing and treating Diamond Blackfan

anaemia: results of an international clinical consensus conference. British journal of

haematology. Sep 2008;142(6):859-76. doi:10.1111/j.1365-2141.2008.07269.x

3.

Ohene-Abuakwa Y, Orfali KA, Marius C, Ball SE. Two-phase culture in

Diamond Blackfan anemia: localization of erythroid defect. Blood. Jan 15

2005;105(2):838-46. doi:10.1182/blood-2004-03-1016

4.

Cmejla R, Cmejlova J, Handrkova H, Petrak J, Pospisilova D. Ribosomal protein

S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Human mutation. Dec

2007;28(12):1178-82. doi:10.1002/humu.20608

5.

Doherty L, Sheen MR, Vlachos A, et al. Ribosomal protein genes RPS10 and

RPS26 are commonly mutated in Diamond-Blackfan anemia. American journal of human

genetics. Feb 12 2010;86(2):222-8. doi:10.1016/j.ajhg.2009.12.015

6.

Draptchinskaia N, Gustavsson P, Andersson B, et al. The gene encoding

ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nature genetics. Feb

19

1999;21(2):169-75. doi:10.1038/5951

7.

Farrar JE, Nater M, Caywood E, et al. Abnormalities of the large ribosomal

subunit protein, Rpl35a, in Diamond-Blackfan anemia. Blood. Sep 1 2008;112(5):158292. doi:10.1182/blood-2008-02-140012

8.

Farrar JE, Quarello P, Fisher R, et al. Exploiting pre-rRNA processing in

Diamond Blackfan anemia gene discovery and diagnosis. American journal of

hematology. Oct 2014;89(10):985-91. doi:10.1002/ajh.23807

9.

Gazda HT, Grabowska A, Merida-Long LB, et al. Ribosomal protein S24 gene

is mutated in Diamond-Blackfan anemia. American journal of human genetics. Dec

2006;79(6):1110-8. doi:10.1086/510020

10.

Gazda HT, Preti M, Sheen MR, et al. Frameshift mutation in p53 regulator

RPL26 is associated with multiple physical abnormalities and a specific pre-ribosomal

RNA processing defect in diamond-blackfan anemia. Human mutation. Jul

2012;33(7):1037-44. doi:10.1002/humu.22081

11.

Gazda HT, Sheen MR, Vlachos A, et al. Ribosomal protein L5 and L11 mutations

are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia

patients.

American

journal

of

human

doi:10.1016/j.ajhg.2008.11.004

20

genetics.

Dec

2008;83(6):769-80.

12.

Gripp KW, Curry C, Olney AH, et al. Diamond-Blackfan anemia with

mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and

RPS28. American journal of medical genetics Part A. Sep 2014;164a(9):2240-9.

doi:10.1002/ajmg.a.36633

13.

Ikeda F, Yoshida K, Toki T, et al. Exome sequencing identified RPS15A as a

novel

causative

gene

for

Diamond-Blackfan

anemia.

Haematologica.

Mar

2017;102(3):e93-e96. doi:10.3324/haematol.2016.153932

14.

Landowski M, O'Donohue MF, Buros C, et al. Novel deletion of RPL15

identified by array-comparative genomic hybridization in Diamond-Blackfan anemia.

Human genetics. Nov 2013;132(11):1265-74. doi:10.1007/s00439-013-1326-z

15.

Mirabello L, Khincha PP, Ellis SR, et al. Novel and known ribosomal causes of

Diamond-Blackfan anaemia identified through comprehensive genomic characterisation.

Journal of medical genetics. Jun 2017;54(6):417-425. doi:10.1136/jmedgenet-2016104346

16.

Sankaran VG, Ghazvinian R, Do R, et al. Exome sequencing identifies GATA1

mutations resulting in Diamond-Blackfan anemia. The Journal of clinical investigation.

Jul 2012;122(7):2439-43. doi:10.1172/jci63597

17.

Wang R, Yoshida K, Toki T, et al. Loss of function mutations in RPL27 and

21

RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia. British

journal of haematology. Mar 2015;168(6):854-64. doi:10.1111/bjh.13229

18.

Lezzerini M, Penzo M, O'Donohue MF, et al. Ribosomal protein gene RPL9

variants can differentially impair ribosome function and cellular metabolism. Nucleic

acids research. Jan 24 2020;48(2):770-787. doi:10.1093/nar/gkz1042

19.

Parrella S, Aspesi A, Quarello P, et al. Loss of GATA-1 full length as a cause of

Diamond-Blackfan anemia phenotype. Pediatric blood & cancer. Jul 2014;61(7):131921. doi:10.1002/pbc.24944

20.

Dutt S, Narla A, Lin K, et al. Haploinsufficiency for ribosomal protein genes

causes selective activation of p53 in human erythroid progenitor cells. Blood. Mar 3

2011;117(9):2567-76. doi:10.1182/blood-2010-07-295238

21.

Jaako P, Flygare J, Olsson K, et al. Mice with ribosomal protein S19 deficiency

develop bone marrow failure and symptoms like patients with Diamond-Blackfan anemia.

Blood. Dec 1 2011;118(23):6087-96. doi:10.1182/blood-2011-08-371963

22.

Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database

(HGMD(®)): optimizing its use in a clinical diagnostic or research setting. Human

genetics. Jun 28 2020;doi:10.1007/s00439-020-02199-3

23.

Proust A, Da Costa L, Rince P, et al. Ten novel Diamond-Blackfan anemia

22

mutations and three polymorphisms within the rps19 gene. The hematology journal : the

official journal of the European Haematology Association. 2003;4(2):132-6.

doi:10.1038/sj.thj.6200230

24.

Willig TN, Draptchinskaia N, Dianzani I, et al. Mutations in ribosomal protein

S19 gene and diamond blackfan anemia: wide variations in phenotypic expression. Blood.

Dec 15 1999;94(12):4294-306.

25.

Horinouchi T, Nozu K, Yamamura T, et al. Determination of the pathogenicity

of known COL4A5 intronic variants by in vitro splicing assay. Scientific reports. Sep 3

2019;9(1):12696. doi:10.1038/s41598-019-48990-9

26.

Inoue T, Nagano C, Matsuo M, et al. Functional analysis of suspected splicing

variants in CLCN5 gene in Dent disease 1. Clinical and experimental nephrology. Jul

2020;24(7):606-612. doi:10.1007/s10157-020-01876-x

27.

Nakanishi K, Nozu K, Hiramoto R, et al. A comparison of splicing assays to

detect an intronic variant of the OCRL gene in Lowe syndrome. European journal of

medical genetics. Dec 2017;60(12):631-634. doi:10.1016/j.ejmg.2017.08.001

28.

Nozu K, Iijima K, Kawai K, et al. In vivo and in vitro splicing assay of SLC12A1

in an antenatal salt-losing tubulopathy patient with an intronic mutation. Human genetics.

Oct 2009;126(4):533-8. doi:10.1007/s00439-009-0697-7

23

29.

Tsuji Y, Nozu K, Sofue T, et al. Detection of a Splice Site Variant in a Patient

with Glomerulopathy and Fibronectin Deposits. Nephron. 2018;138(2):166-171.

doi:10.1159/000484209

30.

Yamamura T, Nozu K, Miyoshi Y, et al. An in vitro splicing assay reveals the

pathogenicity of a novel intronic variant in ATP6V0A4 for autosomal recessive distal

renal tubular acidosis. BMC nephrology. Dec 4 2017;18(1):353. doi:10.1186/s12882-0170774-4

31.

Yamamura T, Nozu K, Ueda H, et al. Functional splicing analysis in an infantile

case of atypical hemolytic uremic syndrome caused by digenic mutations in C3 and MCP

genes. Journal of human genetics. Jun 2018;63(6):755-759. doi:10.1038/s10038-0180436-9

32.

Ferraresi P, Balestra D, Guittard C, et al. Next-generation sequencing and

recombinant expression characterized aberrant splicing mechanisms and provided

correction strategies in factor VII deficiency. Haematologica. Mar 2020;105(3):829-837.

doi:10.3324/haematol.2019.217539

33.

Lee JD, Hsiao KM, Chang PJ, et al. A common polymorphism decreases LRP1

mRNA stability and is associated with increased plasma factor VIII levels. Biochimica et

biophysica

acta

Molecular

basis

of

24

disease.

Jun

2017;1863(6):1690-1698.

doi:10.1016/j.bbadis.2017.04.015

34.

Mattioli C, Pianigiani G, De Rocco D, et al. Unusual splice site mutations disrupt

FANCA exon 8 definition. Biochimica et biophysica acta. Jul 2014;1842(7):1052-8.

doi:10.1016/j.bbadis.2014.03.014

35.

Palagano E, Susani L, Menale C, et al. Synonymous Mutations Add a Layer of

Complexity in the Diagnosis of Human Osteopetrosis. Journal of bone and mineral

research : the official journal of the American Society for Bone and Mineral Research.

Jan 2017;32(1):99-105. doi:10.1002/jbmr.2929

36.

Pang Y, Gupta G, Yang C, et al. A novel splicing site IRP1 somatic mutation in

a patient with pheochromocytoma and JAK2(V617F) positive polycythemia vera: a case

report. BMC cancer. Mar 13 2018;18(1):286. doi:10.1186/s12885-018-4127-x

37.

Shimada T, Inokuchi K, Nienhuis AW. Site-specific demethylation and normal

chromatin structure of the human dihydrofolate reductase gene promoter after

transfection into CHO cells. Molecular and cellular biology. Aug 1987;7(8):2830-7.

doi:10.1128/mcb.7.8.2830

38.

Wang W, Golding B. The cytotoxic T lymphocyte response against a protein

antigen does not decrease the antibody response to that antigen although antigen-pulsed

B cells can be targets. Immunology letters. Sep 15 2005;100(2):195-201.

25

doi:10.1016/j.imlet.2005.04.003

39.

Xie X, Chen C, Liang Q, et al. Characterization of two large duplications of F9

associated with mild and severe haemophilia B, respectively. Haemophilia : the official

journal of the World Federation of Hemophilia. May 2019;25(3):475-483.

doi:10.1111/hae.13704

40.

Yu T, Wang X, Ding Q, et al. Using a minigene approach to characterize a novel

splice site mutation in human F7 gene causing inherited factor VII deficiency in a Chinese

pedigree. Haemophilia : the official journal of the World Federation of Hemophilia. Nov

2009;15(6):1262-6. doi:10.1111/j.1365-2516.2009.02064.x

41.

Zhou J, Ding Q, Wu W, et al. Dysfibrinogenemia-associated novel heterozygous

mutation, Shanghai (FGA c.169_180+2 del), leads to N-terminal truncation of fibrinogen

Aalpha chain and impairs fibrin polymerization. Journal of clinical pathology. Feb

2017;70(2):145-153. doi:10.1136/jclinpath-2016-203862

42.

Akram T, Fatima A, Klar J, et al. Aberrant splicing due to a novel RPS7

variant causes Diamond-Blackfan Anemia associated with spontaneous remission

and meningocele. International journal of hematology. Dec 2020;112(6):894-899.

doi:10.1007/s12185-020-02950-6

43.

Zhu B, Cai G, Hall EO, Freeman GJ. In-fusion assembly: seamless engineering

26

of multidomain fusion proteins, modular vectors, and mutations. BioTechniques. Sep

2007;43(3):354-9. doi:10.2144/000112536

44.

Ramenghi U, Campagnoli MF, Garelli E, et al. Diamond-Blackfan anemia:

report of seven further mutations in the RPS19 gene and evidence of mutation

heterogeneity in the Italian population. Blood cells, molecules & diseases. Oct

2000;26(5):417-22. doi:10.1006/bcmd.2000.0324

45.

Thi Tran HT, Takeshima Y, Surono A, Yagi M, Wada H, Matsuo M. A G-to-A

transition at the fifth position of intron-32 of the dystrophin gene inactivates a splicedonor site both in vivo and in vitro. Molecular genetics and metabolism. Jul

2005;85(3):213-9. doi:10.1016/j.ymgme.2005.03.006

46.

Tran VK, Takeshima Y, Zhang Z, et al. A nonsense mutation-created intraexonic

splice site is active in the lymphocytes, but not in the skeletal muscle of a DMD patient.

Human genetics. Jan 2007;120(5):737-42. doi:10.1007/s00439-006-0241-y

47.

Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C.

Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic

acids research. May 2009;37(9):e67. doi:10.1093/nar/gkp215

48.

Ottesen EW. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular

Atrophy. Translational neuroscience. Jan 2017;8:1-6. doi:10.1515/tnsci-2017-0001

27

49.

Traynor K. Eteplirsen approved for Duchenne muscular dystrophy. American

journal of health-system pharmacy : AJHP : official journal of the American Society of

Health-System Pharmacists. Nov 1 2016;73(21):1719. doi:10.2146/news160063

50.

Yamamura T, Horinouchi T, Adachi T, et al. Development of an exon skipping

therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nature

communications. Jun 2 2020;11(1):2777. doi:10.1038/s41467-020-16605-x

28

Table 1. List of genes analyzed by target sequencing in this study

No.

Gene

Location

10

11

12

13

14

15

16

RPL11

RPL5

RPS27

RPS7

RPL35A

RPS14

RPS10

RPS24

RPS26

RPS17

RPS17L

RPL26

RPL27

TP53

RPS19

GATA1

Chromosome 1

Chromosome 1

Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 5

Chromosome 6

Chromosome 10

Chromosome 12

Chromosome 15

Chromosome 15

Chromosome 17

Chromosome 17

Chromosome 17

Chromosome 19

Chromosome X

29

Table 2. List of variants cloned into the minigene construct

Variant

Location

mRNA

of

variant

In vitro (minigene assay)

In silico (MaxEnt score)

Genetic region

Original

Variant

Novel

Splice site

score

splice

Result

cloned

score

Reference

site

score

No.

c.72-92A>G

Intron 2

N/A

Introns 1–3

Normal transcript

10.14

10.14

[19]

No.

c.356+18G>

Intron 4

N/A

Intron 3–exon 6

Normal transcript

8.84

8.84

[20]

No.

c.411+1G>A

Intron 5

Exon 5 skipping

Intron 3–exon 6

Normal transcript

11.08

2.90

[40]

c.411+6G>C

Intron 5

N/A

Intron 3–exon 6

Normal transcript

11.08

9.88

[20]

c.412-3C>G

Intron 5

Normal transcript

Intron 3–exon 6

Exon 6 skipping or

13.52

1.50

No.

No.

and insertion of

insertion of AG

AG

between exons 5

between

exons 5 and 6

and 6

N/A: not available

30

8.93

Our case

Figure 1. Schema for the hybrid minigene

31

Figure 2. Transcript analysis in our patient and his family

32

Figure 3. In vitro splicing analysis for c.72-92A>G, c.356+18G>C, and c.411+6G>C

variants

33

Figure legends

Figure 1. Schema for the hybrid minigene

The H492 vector has two cassette exons, A and B, between which is a multicloning site.

The H492 vector also has cytomegalovirus (CMV) enhancer-promotor and bovine growth

hormone (BGH) gene polyadenylation site.

Figure 2. Transcript analysis in our patient and his family

(A) The RPS19 genomic DNA sequences of the patient and his parents. A heterozygous

single-base substitution of C to G was detected in the patient. (B) Electrophoretic gel of

the RT-PCR products obtained from the control and the patient. A single band was

observed for each PCR product. The products were almost identical sizes. (C) PCR

products were subcloned and sequenced. Wild-type and an otherwise wild-type RPS19

sequence with two bases inserted between exons 5 and 6 were identified. (D) RT-PCR

amplified products of minigene construct transcripts. As shown in the gel images, a 295bp smaller band and 2-bp larger band are produced by the minigene construct with the

c.412-3C>G variant in both in HEK 293T and Hela cells. Transcripts from the minigene

construct with the c.412-3C>G variant show skipping of exon 6 and that the larger

transcript has two bases inserted between exons 5 and 6. (E) Quantitative RT-PCR using

mRNA from the patient and a normal control was performed to compare RPS19 and

34

RPL5 expression. Relative quantification (RQ) of each gene was calculated, which is a

fold change compared with the calibrator, HPRT-1. RPS19 expression level in the patient,

(RQ = 0.581) was approximately half that measured in the control (RQ = 1.000). The

RPL5 (RQ = 0.961) expression levels in the patient were almost equal to those in the

control (RQ = 1.000).

Figure 3. In vitro splicing analysis for c.72-92A>G, c.356+18G>C, and c.411+6G>C

variants

RT-PCR amplified products of minigene construct transcripts. (a, b, and c) Gel images

and sequences of transcripts from the minigenes with c.72-92A>G (a), c.356+18G>C (b),

and c.411+6G>C (c). Electrophoresis results reveal a band the same size as that produced

by the wild-type construct. Transcript analysis shows that each transcript is the same as

that of the wild-type construct. (d) As shown in the gel images, the transcript from the

wild-type construct was larger than that from the minigene with the c.411+1G>A variant

in both HEK 293T and Hela cells. The transcripts from the c.411+1G>A variant skipped

exon 5.

35

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る