リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Branchpoints as potential targets of exon-skipping therapies for genetic disorders」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Branchpoints as potential targets of exon-skipping therapies for genetic disorders

Ohara, Hiroaki Hosokawa, Motoyasu Awaya, Tomonari Hagiwara, Atsuko Kurosawa, Ryo Sako, Yukiya Ogawa, Megumu Ogasawara, Masashi Noguchi, Satoru Goto, Yuichi Takahashi, Ryosuke Nishino, Ichizo Hagiwara, Masatoshi 京都大学 DOI:10.1016/j.omtn.2023.07.011

2023.09.12

概要

Fukutin (FKTN) c.647+2084G>T creates a pseudo-exon with a premature stop codon, which causes Fukuyama congenital muscular dystrophy (FCMD). We aimed to ameliorate aberrant splicing of FKTN caused by this variant. We screened compounds focusing on splicing regulation using the c.647+2084G>T splicing reporter and discovered that the branchpoint, which is essential for splicing reactions, could be a potential therapeutic target. To confirm the effectiveness of branchpoints as targets for exon skipping, we designed branchpoint-targeted antisense oligonucleotides (BP-AONs). This restored normal FKTN mRNA and protein production in FCMD patient myotubes. We identified a functional BP by detecting splicing intermediates and creating BP mutations in the FKTN reporter gene; this BP was non-redundant and sufficiently blocked by BP-AONs. Next, a BP-AON was designed for a different FCMD-causing variant, which induces pathogenic exon trapping by a common SINE-VNTR-Alu-type retrotransposon. Notably, this BP-AON also restored normal FKTN mRNA and protein production in FCMD patient myotubes. Our findings suggest that BPs could be potential targets in exon-skipping therapeutic strategies for genetic disorders.

この論文で使われている画像

参考文献

1. Vaz-Drago, R., Custódio, N., and Carmo-Fonseca, M. (2017). Deep intronic mutations and human disease. Hum. Genet. 136, 1093–1111.

2. Okubo, M., Noguchi, S., Awaya, T., Hosokawa, M., Tsukui, N., Ogawa, M., Hayashi,

S., Komaki, H., Mori-Yoshimura, M., Oya, Y., et al. (2023). RNA-seq analysis, targeted long-read sequencing and in silico prediction to unravel pathogenic intronic

events and complicated splicing abnormalities in dystrophinopathy. Hum. Genet.

142, 59–71.

3. Fukuyama, Y., Osawa, M., and Suzuki, H. (1981). Congenital progressive muscular

dystrophy of the Fukuyama type - clinical, genetic and pathological considerations.

Brain Dev. 3, 1–29.

4. Kanagawa, M., Kobayashi, K., Tajiri, M., Manya, H., Kuga, A., Yamaguchi, Y.,

Akasaka-Manya, K., Furukawa, J.I., Mizuno, M., Kawakami, H., et al. (2016).

Identification of a Post-translational Modification with Ribitol-Phosphate and Its

Defect in Muscular Dystrophy. Cell Rep. 14, 2209–2223.

5. Muntoni, F., Brockington, M., Blake, D.J., Torelli, S., and Brown, S.C. (2002).

Defective glycosylation in muscular dystrophy. Lancet 360, 1419–1421.

6. Lim, B.C., Ki, C.S., Kim, J.W., Cho, A., Kim, M.J., Hwang, H., Kim, K.J., Hwang, Y.S.,

Park, W.Y., Lim, Y.J., et al. (2010). Fukutin mutations in congenital muscular dystrophies with defective glycosylation of dystroglycan in Korea. Neuromuscul. Disord. 20,

524–530.

7. Kobayashi, K., Kato, R., Kondo-Iida, E., Taniguchi-Ikeda, M., Osawa, M., Saito, K.,

and Toda, T. (2017). Deep-intronic variant of fukutin is the most prevalent point mutation of Fukuyama congenital muscular dystrophy in Japan. J. Hum. Genet. 62,

945–948.

8. Mount, S.M., Pettersson, I., Hinterberger, M., Karmas, A., and Steitz, J.A. (1983). The

U1 small nuclear RNA-protein complex selectively binds a 5’ splice site in vitro. Cell

33, 509–518.

9. Zamore, P.D., and Green, M.R. (1989). Identification, purification, and biochemical

characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc. Natl.

Acad. Sci. USA 86, 9243–9247.

10. Ruskin, B., Zamore, P.D., and Green, M.R. (1988). A factor, U2AF, is required for U2

snRNP binding and splicing complex assembly. Cell 52, 207–219.

Molecular Therapy: Nucleic Acids Vol. 33 September 2023

411

Molecular Therapy: Nucleic Acids

11. Buratti, E., and Baralle, F.E. (2004). Influence of RNA secondary structure on the premRNA splicing process. Mol. Cell Biol. 24, 10505–10514.

12. Havens, M.A., and Hastings, M.L. (2016). Splice-switching antisense oligonucleotides

as therapeutic drugs. Nucleic Acids Res. 44, 6549–6563.

13. Shibata, S., Ajiro, M., and Hagiwara, M. (2020). Mechanism-Based Personalized

Medicine for Cystic Fibrosis by Suppressing Pseudo Exon Inclusion. Cell Chem.

Biol. 27, 1472–1482.e6.

25. Corvelo, A., Hallegger, M., Smith, C.W.J., and Eyras, E. (2010). Genome-wide association between branch point properties and alternative splicing. PLoS Comput. Biol.

6, e1001016.

26. Mercer, T.R., Clark, M.B., Andersen, S.B., Brunck, M.E., Haerty, W., Crawford, J.,

Taft, R.J., Nielsen, L.K., Dinger, M.E., and Mattick, J.S. (2015). Genome-wide discovery of human splicing branchpoints. Genome Res. 25, 290–303.

14. Nishida, A., Kataoka, N., Takeshima, Y., Yagi, M., Awano, H., Ota, M., Itoh, K.,

Hagiwara, M., and Matsuo, M. (2011). Chemical treatment enhances skipping of a

mutated exon in the dystrophin gene. Nat. Commun. 2, 308.

27. Taniguchi-Ikeda, M., Kobayashi, K., Kanagawa, M., Yu, C.C., Mori, K., Oda, T., Kuga,

A., Kurahashi, H., Akman, H.O., DiMauro, S., et al. (2011). Pathogenic exon-trapping

by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478,

127–131.

15. Sako, Y., Ninomiya, K., Okuno, Y., Toyomoto, M., Nishida, A., Koike, Y., Ohe, K., Kii,

I., Yoshida, S., Hashimoto, N., et al. (2017). Development of an orally available inhibitor of CLK1 for skipping a mutated dystrophin exon in Duchenne muscular dystrophy. Sci. Rep. 7, 46126.

28. Canson, D., Glubb, D., and Spurdle, A.B. (2020). Variant effect on splicing regulatory

elements, branchpoint usage, and pseudoexonization: Strategies to enhance bioinformatic prediction using hereditary cancer genes as exemplars. Hum. Mutat. 41,

1705–1721.

16. Boisson, B., Honda, Y., Ajiro, M., Bustamante, J., Bendavid, M., Gennery, A.R.,

Kawasaki, Y., Ichishima, J., Osawa, M., Nihira, H., et al. (2019). Rescue of recurrent

deep intronic mutation underlying cell type-dependent quantitative NEMO deficiency. J. Clin. Invest. 129, 583–597.

29. Nazari, I., Tayara, H., and Chong, K.T. (2019). Branch Point Selection in RNA

Splicing Using Deep Learning. IEEE Access 7, 1800–1807.

17. Wu, G., Fan, L., Edmonson, M.N., Shaw, T., Boggs, K., Easton, J., Rusch, M.C., Webb,

T.R., Zhang, J., and Potter, P.M. (2018). Inhibition of SF3B1 by molecules targeting

the spliceosome results in massive aberrant exon skipping. RNA 24, 1056–1066.

18. Muraki, M., Ohkawara, B., Hosoya, T., Onogi, H., Koizumi, J., Koizumi, T., Sumi, K.,

Yomoda, J.i., Murray, M.V., Kimura, H., et al. (2004). Manipulation of alternative

splicing by a newly developed inhibitor of Clks. J. Biol. Chem. 279, 24246–24254.

19. Yoshida, M., Kataoka, N., Miyauchi, K., Ohe, K., Iida, K., Yoshida, S., Nojima, T.,

Okuno, Y., Onogi, H., Usui, T., et al. (2015). Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc. Natl. Acad. Sci. USA 112,

2764–2769.

20. Kotake, Y., Sagane, K., Owa, T., Mimori-Kiyosue, Y., Shimizu, H., Uesugi, M.,

Ishihama, Y., Iwata, M., and Mizui, Y. (2007). Splicing factor SF3b as a target of

the antitumor natural product pladienolide. Nat. Chem. Biol. 3, 570–575.

21. Hasegawa, M., Miura, T., Kuzuya, K., Inoue, A., Won Ki, S., Horinouchi, S., Yoshida,

T., Kunoh, T., Koseki, K., Mino, K., et al. (2011). Identification of SAP155 as the target

of GEX1A (Herboxidiene), an antitumor natural product. ACS Chem. Biol. 6,

229–233.

22. Kaida, D., Motoyoshi, H., Tashiro, E., Nojima, T., Hagiwara, M., Ishigami, K.,

Watanabe, H., Kitahara, T., Yoshida, T., Nakajima, H., et al. (2007). Spliceostatin

A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat.

Chem. Biol. 3, 576–583.

23. Ling, Y., Alshareef, S., Butt, H., Lozano-Juste, J., Li, L., Galal, A.A., Moustafa, A.,

Momin, A.A., Tashkandi, M., Richardson, D.N., et al. (2017). Pre-mRNA splicing

repression triggers abiotic stress signaling in plants. Plant J. 89, 291–309.

24. Signal, B., Gloss, B.S., Dinger, M.E., and Mercer, T.R. (2018). Machine learning annotation of human branchpoints. Bioinformatics 34, 920–927.

412

Molecular Therapy: Nucleic Acids Vol. 33 September 2023

30. Mendell, J.R., Rodino-Klapac, L.R., Sahenk, Z., Roush, K., Bird, L., Lowes, L.P.,

Alfano, L., Gomez, A.M., Lewis, S., Kota, J., et al.; Eteplirsen Study Group (2013).

Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol. 74,

637–647.

31. Frank, D.E., Schnell, F.J., Akana, C., El-Husayni, S.H., Desjardins, C.A., Morgan, J.,

Charleston, J.S., Sardone, V., Domingos, J., Dickson, G., et al.; SKIP-NMD Study

Group (2020). Increased dystrophin production with golodirsen in patients with

Duchenne muscular dystrophy. Neurology 94, e2270–e2282.

32. Komaki, H., Nagata, T., Saito, T., Masuda, S., Takeshita, E., Sasaki, M., Tachimori, H.,

Nakamura, H., Aoki, Y., and Takeda, S. (2018). Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with

Duchenne muscular dystrophy. Sci. Transl. Med. 10, eaan0713.

33. Wagner, K.R., Kuntz, N.L., Koenig, E., East, L., Upadhyay, S., Han, B., and Shieh, P.B.

(2021). Safety, tolerability, and pharmacokinetics of casimersen in patients with

Duchenne muscular dystrophy amenable to exon 45 skipping: A randomized, double-blind, placebo-controlled, dose-titration trial. Muscle Nerve 64, 285–292.

34. Holgersen, E.M., Gandhi, S., Zhou, Y., Kim, J., Vaz, B., Bogojeski, J., Bugno, M.,

Shalev, Z., Cheung-Ong, K., Gonçalves, J., et al. (2021). Transcriptome-Wide OffTarget Effects of Steric-Blocking Oligonucleotides. Nucleic Acid Ther. 31, 392–403.

35. Watanabe, N., Nagata, T., Satou, Y., Masuda, S., Saito, T., Kitagawa, H., Komaki, H.,

Takagaki, K., and Takeda, S. (2018). NS-065/NCNP-01: An Antisense

Oligonucleotide for Potential Treatment of Exon 53 Skipping in Duchenne

Muscular Dystrophy. Mol. Ther. Nucleic Acids 13, 442–449.

36. Takeuchi, A., Takahashi, Y., Iida, K., Hosokawa, M., Irie, K., Ito, M., Brown, J.B.,

Ohno, K., Nakashima, K., and Hagiwara, M. (2020). Identification of Qk as a Glial

Precursor Cell Marker that Governs the Fate Specification of Neural Stem Cells to

a Glial Cell Lineage. Stem Cell Rep. 15, 883–897.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る