リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on organelle dynamics during spermiogenesis in Marchantia polymorpha」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on organelle dynamics during spermiogenesis in Marchantia polymorpha

法月, 拓也 東京大学 DOI:10.15083/0002006722

2023.03.24

概要

論文審査の結果の要旨
氏名

法月

拓也

本論文は 2 章からなる。ジェネラルイントロダクションの後、第 1 章ではゼニゴケ
(Marchantia polymorpha)の精子変態過程における膜系オルガネラの動態を解析し、
第 2 章ではゼニゴケの精子変態過程におけるオートファジーによるオルガネラ分解過程
を解析し、最後には総合的な議論が述べられている。
真核生物における有性生殖機構は、進化の過程で段階的に変遷し、多様なしくみを持つ
に至った。そして多くの多細胞生物では、大きさや形態に著しい差を持つ雄性配偶子(精
子)と雌性配偶子(卵)による卵生殖をおこなうが、運動能を持たない精細胞から、運動
能を持つ精子への発生過程を通じて行われる大規模な細胞内構造の再構成過程には不明
な点が多い。そこで本博士論文申請者は、ゼニゴケの精子変態過程に行われる大規模な細
胞内構造の変化を明らかにするため、第 1 章ではミトコンドリア、色素体、小胞体、ゴル
ジ体、ペルオキシソームといったオルガネラに局在する蛍光タンパク質レポーターを導
入したゼニゴケを用いて、精子変態の各過程における詳細なオルガネラ動態の観察を行
った。解析の結果、精子変態過程を通じて、ミトコンドリアは急激に数を減らし、最終的
には精子の頭部と尾部の領域に一つずつのミトコンドリアを持つようになることが分か
った。ミトコンドリア分裂遺伝子 DRP3 の活性が減弱した変異遺伝子を導入したドミナ
ントネガティブ体では、頭部に1つのミトコンドリアだけを保持し、尾部ミトコンドリア
は確認されなかったことから、成熟した精子が持つ頭部と尾部のミトコンドリアは、精子
変態過程で1つにまで減ったミトコンドリアが分裂することによって形成されるという
精子変態過程におけるミトコンドリア再構成のモデルを提示した。このほか色素体や小
胞体、ゴルジ体、ペルオキシソームといったオルガネラは、それぞれ精子変態過程の異な
ったタイミングで数を減少することを見出しており、精子変態におけるオルガネラ再構
成は、オルガネラ毎に漸進的に進行する未知の分子機構によって実現されることが示唆
された。
第 2 章では、精子変態過程における大規模なオルガネラ構成の変化がどのように制御
されているのかを明らかにするため、オートファジーに着目して解析を行っている。オー
トファジー関連遺伝子欠損株を用いた一連の分子細胞生物学的解析によって、精子変態
過程の前半時期に個数を減らすミトコンドリアや、精子変態後半時期に個数を減らす他
の膜系オルガネラは、どちらもオートファジーによって分解されていることが分かった。
このことから、選択的に特定のオルガネラを順を追って分解する機構が存在することが
示唆された。
以上のように本博士論文申請者は、これまで電子顕微鏡による微細構造解析が主体で
あった同分野において、新たに1つの雄性配偶子内における精子変態過程を通じたオル
ガネラ再構成の実態を明らかにすることに成功した。
なお、本論文の第 1 章および第 2 章の一部は、金澤建彦、南野尚紀、塚谷裕一、上田

貴志との共同研究であるが、論文提出者が主体となって観察及び解析を行ったもので、論
文提出者の寄与が十分であると判断する。
したがって、博士(理学)の学位を授与できると認める。

この論文で使われている画像

参考文献

Arimura, S.I. (2018) Fission and fusion of plant mitochondria, and genome maintenance.

Plant Physiol. 176: 152-161.

Arimura, S.I. and Tsutsumi, N. (2002) A dynamin-like protein (ADL2b), rather than FtsZ,

is involved in Arabidopsis mitochondrial division. Proc. Natl. Acad. Sci. USA 99:

5727-5731.

Baba, M., Takeshige, K., Baba, N. and Ohsumi, Y. (1994) Ultrastructural analysis of the

autophagic process in yeast: detection of autophagosomes and their characterization.

J. Cell Biol. 124: 903-913.

Bowman, J.L., Araki, T., Arteaga-Vazquez, M.A., Berger, F., Dolan, L., Haseloff, J., et al.

(2016) The naming of names: guidelines for gene nomenclature in Marchantia. Plant

Cell Physiol. 57: 257-261.

Brauns, A.K., Heine, M., Tödter, K., Baumgart-Vogt, E., Lüers, G.H. and Schumacher, U.

(2019) A defect in the peroxisomal biogenesis in germ cells induces a spermatogenic

arrest at the round spermatid stage in mice. Sci. Rep. 9: 9553.

Brownfield, L., Yi, J., Jiang, H., Minina, E.A., Twell, D. and Köhler, C. (2015) Organelles

maintain spindle position in plant meiosis. Nat. Commun. 6: 6492.

Chapman, J., Ng, Y.S. and Nicholls, T.J. (2020) The maintenance of mitochondrial DNA

integrity and dynamics by mitochondrial membranes. Life 10: 164.

Caspar, T., Huber, S.C. and Somerville, C. (1985) Alterations in growth, photosynthesis,

and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in

chloroplast phosphoglucomutase activity. Plant Physiol. 79: 11-17.

Chung, T., Phillips, A.R. and Vierstra, R.D. (2010) ATG8 lipidation and ATG8-mediated

autophagy in Arabidopsis require ATG12 expressed from the differentially controlled

135

ATG12A AND ATG12B loci. Plant J. 62: 483-493.

D’Ippolito, R.A., Minamino, N., Rivera-Casas, C., Cheema, M.S., Bai, D.L., Kasinsky,

H.E., et al. (2019) Protamines from liverwort are produced by post-translational

cleavage and C-terminal di-aminopropanelation of several male germ-specific H1

histones. J. Biol. Chem. 294: 16364-16373.

Dacks, J.B. and Field, M.C. (2007) Evolution of the eukaryotic membrane-trafficking

system: origin, tempo and mode. J. Cell Sci. 120: 2977-2985.

Dickman, M., Williams, B., Li, Y., de Figueiredo, P. and Wolpert, T. (2017) Reassessing

apoptosis in plants. Nat. Plants 3: 773-779.

Dietert, S.E. (1966) Fine structure of the formation and fate of the residual bodies of

mouse spermatozoa with evidence for the participation of lysosomes. J. Morphol.

120: 317-346.

Dobzinski, N., Chuartzman, S.G., Kama, R., Schuldiner, M. and Gerst, J.E. (2015)

Starvation-dependent regulation of Golgi quality control links the TOR signaling and

vacuolar protein sorting pathways. Cell Rep. 12: 1876-1886.

Doelling, J.H., Walker, J.M., Friedman, E.M., Thompson, A.R. and Vierstra, R.D. (2002)

The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and

senescence in Arabidopsis thaliana. J. Biol. Chem. 277: 33105-33114.

Duncan, T.M., Renzaglia, K.S. and Garbary, D.J. (1997) Ultrastrueture and phylogeny of

the spermatozoid of Chara vulgaris (Charophyceae). Pl. Syst. Evol. 204: 125-140.

Fabian, L. and Brill, J.A. (2012) Drosophila spermiogenesis: Big things come from little

packages. Spermatogenesis 2: 197-212.

Figueroa, C., Kawada, M.E., Véliz, L.P., Hidalgo, U., Barros, C., González, S., et al.

(2000) Peroxisomal proteins in rat gametes. Cell Biochem. Biophys. 32: 259-268.

136

Fujimoto, M., Arimura, S.I., Mano, S., Kondo, M., Saito, C., Ueda, T., et al. (2009)

Arabidopsis dynamin-related proteins DRP3A and DRP3B are functionally redundant

in mitochondrial fission, but have distinct roles in peroxisomal fission. Plant J. 58:

388-400.

Gatica, D., Lahiri, V. and Klionsky, D.J. (2018) Cargo recognition and degradation by

selective autophagy. Nat. Cell Biol. 20: 233-242.

Giacomello, M., Pyakurel, A., Glytsou, C. and Scorrano, L. (2020) The cell biology of

mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21: 204-224.

Gomez, E., Buckingham, D.W., Lanzafame, F., Irvine, D.S. and Aitken, R.J. (1996)

Development of an image analysis system to monitor the retention of residual

cytoplasm by human spermatozoa: correlation with biochemical markers of the

cytoplasmic space, oxidative stress, and sperm function. J. Androl. 17: 276-287.

Goswami, R., Asnacios, A., Hamant, O. and Chabouté, M.E. (2020) Is the plant nucleus

a mechanical rheostat? Curr. Opin. Plant Biol. 57: 155-163.

Hanada, T., Noda, N.N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., et al. (2007) The

Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy.

J. Biol. Chem. 282: 37298-37302.

Hanaoka, H., Noda, T., Sirano, Y., Kato, T., Hayashi, H., Shibata, D., et al. (2002) Leaf

senescence and starvation-induced chlorosis are accelerated by the disruption of an

Arabidopsis autophagy gene. Plant Physiol. 129: 1181-1193.

Hara-Nishimura, I. and Hatsugai, N. (2011) The role of vacuole in plant cell death. Cell

Death Differ. 18: 1298-1304.

Higo, A., Kawashima, T., Borg, M., Zhao, M., Lopez-Vidriero, I., Sakayama, H., et al.

(2018) Transcription factor DUO1 generated by neo-functionalization is associated

137

with evolution of sperm differentiation in plants. Nat. Commun. 9: 5283.

Higo, A., Niwa, M., Yamato, K.T., Yamada, L., Sawada, H., Sakamoto, T., et al. (2016)

Transcriptional framework of male gametogenesis in the liverwort Marchantia

polymorpha L. Plant Cell Physiol. 57: 325-338.

Hisanaga, T., Okahashi, K., Yamaoka, S., Kajiwara, T., Nishihama, R., Shimamura, M.,

et al. (2019a) A cis-acting bidirectional transcription switch controls sexual

dimorphism in the liverwort. EMBO J. 38: e100240.

Hisanaga, T., Yamaoka, S., Kawashima, T., Higo, A., Nakajima, K., Araki, T., et al.

(2019b) Building new insights in plant gametogenesis from an evolutionary

perspective. Nat. Plants 5: 663-669.

Ho, H.C. and Wey, S. (2007) Three dimensional rendering of the mitochondrial sheath

morphogenesis during mouse spermiogenesis. Microsc. Res. Tech. 70: 719-723.

Hosokawa, N., Sasaki, T., Iemura, S.I., Natsume, T., Hara, T. and Mizushima, N. (2009)

Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:

973-979.

Huang, Q., Liu, Y., Zhang, S., Yap, Y.T., Li, W., Zhang, D., et al. (2020) Autophagy core

protein ATG5 is required for elongating spermatid development, sperm

individualization and normal fertility in male mice. Autophagy 1-15.

Huang, J., Wang, H., Chen, Y., Wang, X. and Zhang, H. (2012) Residual body removal

during spermatogenesis in C. elegans requires genes that mediate cell corpse

clearance. Development 139: 4613-4622.

Huang, R., Xu, Y., Wan, W., Shou, X., Qian, J., You, Z., et al. (2015) Deacetylation of

nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57: 456-466.

Huang, X., Zheng, C., Liu, F., Yang, C., Zheng, P., Lu, X., et al. (2019) Genetic analyses

138

of the Arabidopsis ATG1 kinase complex reveal both kinase-dependent and

independent autophagic routes during fixed-carbon starvation. Plant Cell 31: 29732995.

Ingerman, E., Perkins, E.M., Marino, M., Mears, J.A., McCaffery, J.M., Hinshaw, J.E., et

al. (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell

Biol. 170: 1021-1027.

Inoue, Y., Suzuki, T., Hattori, M., Yoshimoto, K., Ohsumi, Y. and Moriyasu, Y. (2006)

AtATG genes, homologs of yeast autophagy genes, are involved in constitutive

autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 47:1641-1652.

Inouye, I. and Hori, T. (1991) High-speed video analysis of the flagellar beat and

swimming patterns of algae: possible evolutionary trends in green algae. Protoplasma

164: 54-69.

Ishizaki, K., Chiyoda, S., Yamato, K.T. and Kohchi, T. (2008) Agrobacterium-mediated

transformation of the haploid liverwort Marchantia polymorpha L., an emerging

model for plant biology. Plant Cell Physiol. 49: 1084-1091.

Ishizaki, K. Nishihama, R., Ueda, M., Inoue, K., Ishida, S., Nishimura, Y., et al. (2015)

Development of gateway binary vector series with four different selection markers

for the liverwort Marchantia polymorpha. PLoS One 10: e0138876.

Ishizaki, K., Nishihama, R., Yamato, K.T. and Kohchi, T. (2016) Molecular genetic tools

and techniques for Marchantia polymorpha research. Plant Cell Physiol. 57: 262-270.

Izumi, M., Hidema, J., Wada, S., Kondo, E., Kurusu, T., Kuchitsu, K., et al. (2015)

Establishment of monitoring methods for autophagy in rice reveals autophagic

recycling of chloroplasts and root plastids during energy limitation. Plant Physiol.

167: 1307-1320.

139

Izumi, M., Nakamura, S. and Li, N. (2019) Autophagic turnover of chloroplasts: its roles

and regulatory mechanisms in response to sugar starvation. Front. Plant Sci. 10: 280.

Izumi, Y. and Ono, K. (1999) Changes in plastid DNA content during the life cycle of the

hornwort Anthoceros punctatus L. Cytologia 64: 37-44.

Johansen, T. and Lamark, T. (2020) Selective autophagy: ATG8 family proteins, LIR

motifs and cargo receptors. J. Mol. Biol. 432: 80-103.

Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., et al. (2000)

LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome

membranes after processing. EMBO J. 19: 5720-5728.

Kanazawa, T., Era, A., Minamino, N., Shikano, Y., Fujimoto, M., Uemura, T., et al. (2016)

SNARE molecules in Marchantia polymorpha: unique and conserved features of the

membrane fusion machinery. Plant Cell Physiol. 57: 307-324.

Kanazawa, T., Morinaka, H., Ebine, K., Shimada, T.L., Ishida, S., Minamino, N., et al.

(2020) The liverwort oil body is formed by redirection of the secretory pathway. Nat.

Commun. 11: 6152.

Kang, S., Shin, K.D., Kim, J.H. and Chung, T. (2018) Autophagy-related (ATG) 11, ATG9

and the phosphatidylinositol 3-kinase control ATG2-mediated formation of

autophagosomes in Arabidopsis. Plant Cell Rep. 37: 653-664.

Kanki, T., Wang, K., Cao, Y., Baba, M. and Klionsky, D.J. (2009) Atg32 is a mitochondrial

protein that confers selectivity during mitophagy. Dev. Cell 17: 98-109.

Keating, J., Grundy, C.E., Elliott, M. and Robinson, J. (1997) Investigation of the

association between the presence of cytoplasmic residues on the human sperm

midpiece and defective sperm function. J. Reprod. Fertil. 110: 71-77.

Kim, J., Kamada, Y., Stromhaug, P.E., Guan, J., Hefner-Gravink, A., Baba, M., et al.

140

(2001) Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the

vacuole. J. Cell Biol. 153: 381-396.

Kimata, Y., Higaki, T., Kurihara, D., Ando, N., Matsumoto, H., Higashiyama, T., et al.

(2020) Mitochondrial dynamics and segregation during the asymmetric division of

Arabidopsis zygotes. Quant. Plant Biol. 1: e3.

Kimata, Y., Kato, T., Higaki, T., Kurihara, D., Yamada, T., Segami, S., et al. (2019) Polar

vacuolar distribution is essential for accurate asymmetric division of Arabidopsis

zygotes. Proc. Natl. Acad. Sci. USA 116: 2338-2343.

Kirisako, T., Baba, M., Ishihara, N., Miyazawa, K., Ohsumi, M., Yoshimori, T., et al.

(1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J.

Cell Biol. 147: 435-446.

Klionsky, D.J., Cregg, J.M., Dunn, W.A., Jr., Emr, S.D., Sakai, Y., Sandoval, I.V., et al.

(2003) A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5: 539545.

Koi, S., Hisanaga, T., Sato, K., Shimamura, M., Yamato, K.T., Ishizaki, K., et al. (2016)

An evolutionarily conserved plant RKD factor controls germ cell differentiation. Curr.

Biol. 26: 1775-1781.

Kreitner, G.L. (1977a) Influence of the multilayered structure on the morphogenesis of

Marchantia spermatids. Amer. J. Bot. 64: 57-64.

Kreitner, G.L. (1977b) Transformation of the nucelus in Marchantia spermatids:

morphogenesis. Amer. J. Bot. 64: 464-475.

Kubota, A., Ishizaki, K., Hosaka, M. and Kohchi, T. (2013) Efficient Agrobacteriummediated transformation of the liverwort Marchantia polymorpha using regenerating

thalli. Biosci. Biotechnol. Biochem. 77: 167-172.

141

Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., et al.

(2004) The role of autophagy during the early neonatal starvation period. Nature 432:

1032-1036.

L’Hernault, S.W. (2006) Spermatogenesis. WormBook 1-14.

Letunic, I., Doerks, T. and Bork, P. (2015) SMART: recent updates, new developments

and status in 2015. Nucelic Acids Res. 43: 257-260.

Letunic, I. and Bork, P. (2018) 20 years of the SMART protein domain annotation

resource. Nucelic Acids Res. 46: 493-496.

Li, F., Chung, T. and Vierstra, R.D. (2014) AUTOPHAGY-RELATED11 plays a critical

role in general autophagy- and senescence-induced mitophagy in Arabidopsis. Plant

Cell 26: 788-807.

Liu, Y., Cui, H., Zhang, Q. and Sodmergen (2004) Divergent potentials for cytoplasmic

inheritance within the genus Syringa. A new trait associated with speciogenesis. Plant

Physiol. 136: 2762-2770.

Liu, F., Hu, W., Li, F., Marshall, R.S., Zarza, X., Munnik, T., et al. (2020) AUTOPHAGYRELATED14 and Its Associated Phosphatidylinositol 3-Kinase Complex Promote

Autophagy in Arabidopsis. Plant Cell 32: 3939-3960.

Liu, F., Hu, W. and Vierstra, R.D. (2018) The vacuolar protein sorting-38 subunit of the

Arabidopsis phosphatidylinositol-3-kinase complex plays critical roles in autophagy,

endosome sorting, and gravitropism. Front. Plant Sci. 9: 781.

Mano, S., Hayashi, M. and Nishimura, M. (1999) Light regulates alternative splicing of

hydroxypyruvate reductase in pumpkin. Plant J. 17: 309-320.

Mano, S., Nishihama, R., Ishida, S., Hikino, K., Kondo, M., Nishimura, M., et al. (2018)

Novel gateway binary vectors for rapid tripartite DNA assembly and promoter

142

analysis with various reporters and tags in the liverwort Marchantia polymorpha.

PLoS One 13: e0204964.

Mao, K., Wang, K., Liu, X. and Klionsky, D.J. (2013) The scaffold protein Atg11 recruits

fission machinery to drive selective mitochondria degradation by autophagy. Dev.

Cell 26: 9-18.

Marshall, R.S. and Vierstra, R.D. (2018) Autophagy: the master of bulk and selective

recycling. Annu. Rev. Plant Biol. 69: 173-208.

Masclaux-Daubresse, C., Chen,Q. and Havé, M. (2017) Regulation of nutrient recycling

via autophagy. Curr. Opin. Plant Biol. 39: 8-17.

Matsushima, R., Tang, L.Y., Zhang, L., Yamada, H., Twell, D. Sakamoto, W. (2011) A

conserved,

Mg²+-dependent

exonuclease

degrades

organelle

DNA during

Arabidopsis pollen development. Plant Cell 23: 1608-1624.

Meier, I., Griffis, A.H., Groves, N.R. and Wagner, A. (2016) Regulation of nuclear shape

and size in plants. Curr. Opin. Cell Biol. 40: 114-123.

Minamino, N., Kanazawa, T., Nishihama, R, Yamato, K.T., Ishizaki, K., Kohchi, T., et al.

(2017) Dynamic reorganization of the endomembrane system during spermatogenesis

in Marchantia polymorpha. J. Plant Res. 130: 433-441.

Miyamura, S., Matsunaga, S. and Hori, T. (2002) High-speed video microscopical

analysis of the flagellar movement of Marchantia polymorpha sperm. Bryol. Res. 8:

79-83. (in Japanese)

Mizushima, N. and Komatsu, M. (2011) Autophagy: renovation of cells and tissues. Cell

147: 728-741.

Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki, K., et al.

(2001) Dissection of autophagosome formation using Apg5-deficient mouse

143

embryonic stem cells. J. Cell Biol. 152: 657-668.

Mizushima, N., Yoshimori, T. and Ohsumi, Y. (2011) The role of Atg proteins in

autophagosome formation. Annu. Rev. Cell Dev. Biol. 27: 107-132.

Mochida, K., Oikawa, Y., Kimura, Y., Kirisako, H., Hirano, H., Ohsumi, Y., et al. (2015)

Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the

nucleus. Nature 522: 359-362.

Montgomery, S.A., Tanizawa, Y., Galik, B., Wang, N., Ito, T., Mochizuki, T., et al. (2020)

Chromatin organization in early land plants reveals an ancestral association between

H3K27me3, transposons, and constitutive heterochromatin. Curr. Biol. 30: 573-588.

Mori, T., Kawai-Toyooka, H., Igawa, T. and Nozaki, H. (2015) Gamete dialogs in green

lineages. Mol. Plant 8: 1442-1454.

Myles, D.G. and Bell, P.R. (1975) An ultrastructural study of the spermatozoid of the fern,

Marsilea vestita. J. Cell Sci. 17: 633-645.

Myles, D.G. and Hepler, P.K. (1977) Spermiogenesisin the fern Marsilea: microtubules,

nuclear shaping, and cytomorphogenesis. J. Cell Sci. 23: 57-83.

Nagaoka, N., Yamashita, A., Kurisu, R., Watari, Y., Ishizuna, F., Tsutsumi, N., et al. (2017)

DRP3 and ELM1 are required for mitochondrial fission in the liverwort Marchantia

polymorpha. Sci. Rep. 7: 4600.

Nakatogawa, H. (2020) Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol.

Cell Biol. 21: 439-458.

Naylor, K., Ingerman, E., Okreglak, V., Marino, M., Hinshaw, J.E. and Nunnari, J. (2006)

Mdv1 interacts with assembled dnm1 to promote mitochondrial division. J. Biol.

Chem. 281: 2177-2183.

Nishida, Y., Arakawa, S., Fujitani, K., Yamaguchi, H., Mizuta, T., Kanaseki, T., et al.

144

(2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature

461: 654-658.

Nishimura, Y., Misumi, O., Matsunaga, S., Higashiyama, T., Yokota, A. and Kuroiwa, T.

(1999) The active digestion of uniparental chloroplast DNA in a single zygote of

Chlamydomonas reinhardtii is revealed by using the optical tweezer. Proc. Natl. Acad.

Sci. USA 96: 12577-12582.

Noguchi, T., Koizumi, M. and Hayashi, S. (2011) Sustained elongation of sperm tail

promoted by local remodeling of giant mitochondria in Drosophila. Curr. Biol. 21:

805-814.

Norizuki, T., Minamino, N. and Ueda, T. (2020) Role of autophagy in male reproductive

processes in land plants. Front. Plant Sci. 11: 756.

O’Donnell, L., Nicholls, P.K., O’Bryan, M.K., McLachlan, R.I. and Stanton, P.G. (2011)

Spermiation: The process of sperm release. Spermatogenesis 1: 14-35.

Otsuga, D., Keegan, B.R., Brisch, E., Thatcher, J.W., Hermann, G.J., Bleazard, W., et al.

(1998) The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in

yeast. J. Cell Biol. 143: 333-349.

Paez Valencia, J., Goodman, K. and Otegui, M.S. (2016) Endocytosis and Endosomal

Trafficking in Plants. Annu. Rev. Plant Biol. 67: 309-335.

Papandreou, M.E. and Tavernarakis, N. (2019) Nucleophagy: from homeostasis to disease.

Cell Death Differ. 26: 630-639.

Periappuram, C., Steinhauer, L., Barton, D.L., Taylor, D.C., Chatson, B. and Zou, J.

(2000) The plastidic phosphoglucomutase from Arabidopsis. A reversible enzyme

reaction with an important role in metabolic control. Plant Physiol. 122: 1193-1199.

Pitnick, S., Hosken, D.J. and Birkhead, T.R. (2009) Sperm morphological diversity. In

145

Sperm Biology: An Evolutionary Perspective. Edited by Birkhead, T.R., Hosken, D.J.

and Pitnick, S. pp. 69–149. Academic Press, USA.

Porra, R.J., Thompson, W.A. and Kriedemann, P.E. (1989) Determination of accurate

extinction coefficients and simultaneous equations for assaying chlorophylls a and b

extracted with four different solvents: verification of the concentration of chlorophyll

standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975: 384–394.

Rambold, A.S., Kostelecky, B., Elia, N. and Lippincott-Schwartz, J. (2011) Tubular

network formation protects mitochondria from autophagosomal degradation during

nutrient starvation. Proc. Natl. Acad. Sci. USA 108: 10190-10195.

Rengan, A.K., Agarwal, A., van der Linde, M. and du Plessis, S.S. (2012) An investigation

of excess residual cytoplasm in human spermatozoa and its distinction from the

cytoplasmic droplet. Reprod. Biol. Endocrinol. 10: 92.

Renzaglia, K.S. and Duckett, J.G. (1987) Spermatogenesis in Blasia pusilla: from young

antheridium through mature spermatozoid. Bryologist 90: 419-449.

Renzagila, K.S. and Garbary, D.J. (2001) Motile gametes of land plants: diversity,

development, and evolution. Crit. Rev. Plant Sci. 20: 107-213.

Sanchez-Vera, V., Kenchappa, C.S., Landberg, K., Bressendorff, S., Schwarzbach, S.,

Martin, T., et al. (2017) Autophagy is required for gamete differentiation in the moss

Physcomitrella patens. Autophagy 13: 1939-1951.

Sasaki, T., Sato, Y., Higashiyama, T. and Sasaki, N. (2017) Live imaging reveals the

dynamics and regulation of mitochondrial nucleoids during the cell cycle in Fucci2HeLa cells. Sci. Rep. 7: 11257.

Sengupta, D. and Linstedt, A.D. (2011) Control of organelle size: the Golgi complex.

Annu. Rev. Cell Dev. Biol. 27: 57-77.

146

Shang, Y., Wang, H., Jia, P., Zhao, H., Liu, C., Liu, W., et al. (2016) Autophagy regulates

spermatid differentiation via degradation of PDLIM1. Autophagy 12: 1575-1592.

Shemi, A., Ben-Dor, S. and Vardi, A. (2015) Elucidating the composition and

conservation of the autophagy pathway in photosynthetic eukaryotes. Autophagy 11:

701-715.

Shimamura, M. (2015) Whole-mount immunofluorescence staining of plant cells and

tissues. In Plant Microtechniques and Protocols Edited by Yeung, E. pp. 181–196

Springer, Switzerland.

Shimamura, M. (2016) Marchantia polymorpha: taxonomy, phylogeny and morphology

of a model system. Plant Cell Physiol. 57: 230-256.

Shimamura, M., Fukushima, H., Yamaguchi, T. and Deguchi, H. (1999) Behavior of

plastid and plastid DNA during spermiogenesis in Dumortiera hirsute. Bryol. Res. 7:

201-204.

Shintani, T. and Klionsky, D.J. (2004) Cargo proteins facilitate the formation of transport

vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem. 279: 2988929894.

Smith, B.V. and Lacy, D. (1959) Residual bodies of seminiferous tubules of the rat. Nature

184: 249-251.

Stephani, M. and Dagdas, Y. (2020) Plant selective autophagy-still an uncharted territory

with a lot of hidden gems. J. Mol. Biol. 432: 63-79.

Sugano, S.S., Nishihama, R., Shirakawa, M., Takagi, J., Matsuda, Y., Ishida, S., et al.

(2018) Efficient CRISPR/Cas9-based genome editing and its application to

conditional genetic analysis in Marchantia polymorpha. PLoS One 13: e0205117.

Sugano, S.S., Shirakawa, M., Takagi, J., Matsuda, Y., Shimada, T., Hara-Nishimura, I., et

147

al. (2014) CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia

polymorpha L. Plant Cell Physiol. 55: 475-481.

Suttangkakul, A., Li, F., Chung, T. and Vierstra, R.D. (2011) The ATG1/ATG13 protein

kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis.

Plant Cell 23: 3761-3779.

Takeshige, K., Baba, M., Tsuboi, S., Noda, T. and Ohsumi, Y. (1992) Autophagy in yeast

demonstrated with proteinase-deficient mutants and conditions for its induction. J.

Cell Biol. 119: 301-311.

Thompson, A. R., Doelling, J.H., Suttangkakul, A. and Vierstra, R.D. (2005) Autophagic

nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation

pathways. Plant Physiol. 138: 2097-2110.

Thumm, M., Egner, R., Koch, B., Schlumpberger, M., Straub, M., Veenhuis, M., et al.

(1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS

Lett. 349: 275-280.

Tokuyasu, K.T., Peacock, W.J. and Hardy, R.W. (1972) Dynamics of spermiogenesis in

Drosophila melanogaster. I. Individualization process. Z. Zellforsch. Mikrosk. Anat.

124: 479-506.

Tsukada, M. and Ohsumi, Y. (1993) Isolation and characterization of autophagy-defective

mutants of Saccharomyces cerevisiae. FEBS Lett. 333: 169-174.

Turner, F.R. (1968) An ultrastructural study of plant spermiogenesis. Spermatogenesis in

Nitella. J. Cell Biol. 37: 370-393.

Twig, G, Elorza, A, Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., et al. (2008)

Fission and selective fusion govern mitochondrial segregation and elimination by

autophagy. EMBO J. 27: 433-446.

148

van Doorn, W.G., Beers, E.P., Dangl, J.L., Franklin-Tong, V.E., Gallois, P., HaraNishimura, I., et al. (2011) Morphological classification of plant cell deaths. Cell

Death Differ. 18: 1241-1246.

Wang, F., Liu, P., Zhang, Q., Zhu, J., Chen, T., Arimura, S.I., et al. (2012) Phosphorylation

and ubiquitination of dynamin-related proteins (AtDRP3A/3B) synergically regulate

mitochondrial proliferation during mitosis. Plant J. 72: 43-56.

Wang, H., Wan, H., Li, X., Liu, W., Chen, Q., Wang, Y., et al. (2014) Atg7 is required for

acrosome biogenesis during spermatogenesis in mice. Cell Res. 24: 852-869.

Yamaguchi, H., Arakawa, S., Kanaseki, T., Miyatsuka, T., Fujitani, Y., Watada, H., et al.

(2016) Golgi membrane-associated degradation pathway in yeast and mammals.

EMBO J. 35: 1991-2007.

Yamashita, S.I., Jin, X., Furukawa, K., Hamasaki, M., Nezu, A., Otera, H., et al. (2016)

Mitochondrial division occurs concurrently with autophagosome formation but

independently of Drp1 during mitophagy. J. Cell Biol. 215: 649-665.

Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., et al. (2004)

Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are

essential for plant autophagy. Plant Cell 16: 2967-2983.

Zhao, Y.G. and Zhang, H. (2019) Autophagosome maturation: An epic journey from the

ER to lysosomes. J. Cell Biol. 218: 757-770.

149

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る