リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on shoot regeneration from the epidermis of cultured stem segments of Torenia fournieri」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on shoot regeneration from the epidermis of cultured stem segments of Torenia fournieri

森中, 初音 東京大学 DOI:10.15083/0002006726

2023.03.24

概要

論文審査の結果の要旨
氏名 森中 初音

本論文は 5 章からなる。第 1 章は序論、第 2 章は結果、第 3 章は考察、第 4 章は材
料と方法、第 5 章は文献である。
第 1 章では、研究の背景と目的が述べられている。冒頭で植物の発生の高い柔軟性
について論じた上、それを端的に示す現象として、細胞リプログラミングとシュート
頂分裂組織(SAM)の新生によるシュート再生を取り上げ、関係する研究を概観して
いる。とくにモデル植物のシロイヌナズナのシュート再生については、高濃度のオー
キシンを含む培地でカルスを誘導し、高濃度のサイトカイニンを含む培地に移植して
不定芽を誘導する、2 段階培養系を用いて、分子生物学的な解析が進められ、オーキ
シン誘導カルスの細胞リプログラミングにおける根の発生経路の関与など、多くの知
見が得られていることが解説されている。また、この場合、カルスが分裂組織の性質
を部分的に残しているとされる内鞘(ないし内鞘様組織)に由来することから、完全
に分化した状態からのリプログラミングではないことが指摘されている。次に、他の
植物で報告されている、これとは異なるタイプのシュート再生が紹介されている。そ
れらの中で、1970 年代に開発され、一時生理学的研究に用いられた、トレニアの茎断
片培養系は、カルス誘導段階を必要としない、完全に分化した表皮細胞が不定芽の起
源となる、SAM 構築の初発段階が表皮という 2 次元の場で起きる、といった特徴を有
することが説明されている。これらを踏まえ、トレニア茎断片培養系を用いたシュー
ト再生の解析により、細胞リプログラミングと SAM 新生の分子ネットワークの新た
な側面を明らかにするとともに、培養系によらず重要な役割を果たす共通因子を捉え
るという、本研究の目的が述べられている。
第 2 章では、トレニア茎断片培養系におけるシュート再生について、細胞学的解析
とトランスクリプトーム解析を行った結果が述べられている。
まず培養系を再検討し、
サイトカイニンとしてベンジルアデニン(BA)を添加した培地での明培養を、旺盛な
不定芽形成が起きる標準不定芽誘導条件、BA 無添加・明培養と BA 添加・暗培養を、
不定芽がまったく、あるいは限定的にしか形成されない対照条件として設定している。
そして詳細な観察により、標準条件で培養した外植片の表皮では、脱分化を反映する
と思われる核小体の発達と核の肥大が培養初期に起き、その後に細胞分裂が活性化す
ること、これらはサイトカイニンに大きく依存すること、細胞分裂によって生じた密

1

な細胞集団から SAM が構築されることなどを示している。次にトランスクリプトー
ム解析により、核小体の発達、細胞分裂の活性化、SAM の構築のそれぞれについて、
関連遺伝子のサイトカイニンに依存した発現増大を明らかにしている。また、培養開
始直後に、サイトカイニンの有無によらず、茎に特徴的な発現プロフィールから植物
体の様々な部位の特徴が混在する発現プロフィールへの転換が起きることを見出して
いる。さらにシロイヌナズナの各種培養系のトランスクリプトームデータとの比較に
より、すべての培養系で共通して発現が増大する遺伝子群を、細胞リプログラミング
の普遍的因子の候補として同定している。
第 3 章では、考察と今後の展望が述べられている。各結果に関する考察の後、全て
の結果を考え合わせ、トレニアの直接シュート再生の全体的枠組みについて、培養開
始時の刺激に応じた大規模な遺伝子発現の再編により、表皮細胞の劇的なリプログラ
ミングが起きて複数の細胞の属性を併せもつ多能性状態に移行、これにサイトカイニ
ンが作用して核小体の発達や細胞分裂の活性化を引き起こし、SAM 制御因子による
SAM 構築に至る、という仮説を提唱している。そして、今回得られた知見が、このユ
ニークな培養系を用いたさらなるシュート再生研究の基盤となるとの展望が示されて
いる。
第 4 章には研究に用いた植物材料と各種解析の方法が詳述されており、第 5 章では
引用した文献の情報が示されている。
研究全体を通して得られた成果は多大であり、植物細胞のリプログラミングと SAM
新生の分子ネットワーク解明に貢献する、重要な新情報を提供している。本論文は、
これらの成果を正確な図表と明快な英文で記述している。結果の考察では、丁寧な論
考により合理的な推論が導かれている。また、当該分野の文献は、不足なく適切に引
用されている。

なお、本論文に記載された研究は、間宮章仁、玉置裕章、岩元明敏、鈴木孝征、河
村彩子、池内桃子、岩瀬哲、東山哲也、杉本慶子、杉山宗隆の各氏との共同研究であ
るが、論文提出者が主体となって実験・解析および論証を行ったもので、論文提出者
の寄与が十分であると判断する。
したがって、博士(理学)の学位を授与できると認める。

2

参考文献

Akama, K., Shiraishi, H., Ohta, S., Nakamura, K., Okada, K., and Shimura, Y. (1992). Efficient

transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs,

plant ecotypes and Agrobacterium strains. Plant Cell Rep. 12: 7–11.

Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot,

V., Rech, P., and Chriqui, D. (2009). Pluripotency of Arabidopsis xylem pericycle underlies

shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 57: 626–644.

Banno, H., Ikeda, Y., Niu, Q.W., and Chua, N.H. (2001). Overexpression of Arabidopsis ESR1

induces initiation of Shoot Regeneration. Plant Cell 13: 2609–2618.

Birnbaum, K.D. and Alvarado, A.S. (2008). Slicing across kingdoms: Regeneration in plants and

animals. Cell 132: 697–710.

Brenner, W.G., Romanov, G.A., Köllmer, I., Bürkle, L., and Schmülling, T. (2005). Immediateearly and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide

expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action

through transcriptional cascades. Plant J. 44: 314–333.

Buganim, Y., Faddah, D.A., Cheng, A.W., Itskovich, E., Markoulaki, S., Ganz, K., Klemm,

S.L., Van Oudenaarden, A., and Jaenisch, R. (2012). Single-cell expression analyses during

cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150: 1209–

1222.

Del Carratore, F., Jankevics, A., Eisinga, R., Heskes, T., Hong, F., and Breitling, R. (2017).

RankProd 2.0: a refactored bioconductor package for detecting differentially expressed features

in molecular profiling datasets. Bioinformatics 33: 2774–2775.

Che, P., Gingerich, D.J., Lall, S., and Howell, S.H. (2002). Global and hormone-induced gene

expression changes during shoot development in Arabidopsis. Plant Cell 14: 2771–2785.

Che, P., Lall, S., and Howell, S.H. (2007). Developmental steps in acquiring competence for shoot

33

development in Arabidopsis tissue culture. Planta 226: 1183–1194.

Che, P., Lall, S., Nettleton, D., and Howell, S.H. (2006). Gene expression programs during shoot,

root, and callus development in Arabidopsis tissue culture. Plant Physiol. 141: 620–637.

Cheng, Z.J., Wang, L., Sun, W., Zhang, Y., Zhou, C., Su, Y.H., Li, W., Sun, T.T., Zhao, X.Y.,

Li, X.G., Cheng, Y., Zhao, Y., Xie, Q., and Zhang, X.S. (2013). Pattern of auxin and

cytokinin responses for shoot meristem induction results from the regulation of cytokinin

biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol. 161: 240–251.

Chlyah, A. and Van, M.T.T. (1975). Differential reactivity in epidermal cells of Begonia rex

excised and grown in vitro. Physiol. Plant. 35: 16–20.

Chlyah, H. (1973). Directed neoformation of organ fragments of Torenia fournieri (Lind.) cultivated

in vitro. Biol. Plant. 15: 80–87.

Chlyah, H. (1974a). Etude histologique de la néoformation de méristèmes caulinaires et radiculaires

à partir de segments d’entre-noeuds de Torenia fournieri cultivés in vitro. Can. J. Bot. 52: 473–

476.

Chlyah, H. (1974b). Formation and propagation of cell division-centers in the epidermal layer of

internodal segments of Torenia fournieri grown in vitro. Simultaneous surface observations of

all the epidermal cells. Can. J. Bot. 52: 867–872.

Chlyah, H. (1974c). Inter-tissue correlations in organ fragments. Plant Physiol. 54: 341–348.

Chlyah, H., Van, M.T.T., and Demarly, Y. (1975). Distribution pattern of cell division centers on

the epidermis of stem segments of Torenia fournieri during de novo bud formation. Plant

Physiol. 56: 28–33.

Christianson, M.L. and Warnick, D.A. (1983). Competence and determination in the process of in

vitro shoot organogenesis. Dev. Biol. 95: 288–293.

Chupeau, M.C., Granier, F., Pichon, O., Renou, J.P., Gaudin, V., and Chupeaua, Y. (2013).

Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid

culture by temporal transcript profiling. Plant Cell 25: 2444–2463.

34

Coleman, G.D. and Ernst, S.G. (1990). Shoot induction competence and callus determination in

Populus deltoides. Plant Sci. 71: 83–92.

Conesa, A. and Götz, S. (2008). Blast2GO: A comprehensive suite for functional analysis in plant

genomics. Int. J. Plant Genomics 2008: 619832.

Creemers-Molenaar, J., Hakkert, J.C., Van Staveren, M.J., and Gilissen, L.J.W. (1994).

Histology of the morphogenic response in thin cell layer explants from vegetative tobacco

plants. Ann. Bot. 73: 547–555.

Daimon, Y., Takabe, K., and Tasaka, M. (2003). The CUP-SHAPED COTYLEDON genes

promote adventitious shoot formation on calli. Plant Cell Physiol. 44: 113–121.

Efroni, I. (2018). A conceptual framework for cell identity transitions in plants. Plant Cell Physiol.

59: 691–701.

Efroni, I., Mello, A., Nawy, T., Ip, P.L., Rahni, R., Delrose, N., Powers, A., Satija, R., and

Birnbaum, K.D. (2016). Root regeneration triggers an embryo-like sequence guided by

hormonal interactions. Cell 165: 1721–1733.

Emms, D.M. and Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative

genomics. Genome Biol. 20: 238.

Emms, D.M. and Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome

comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16: 157.

Fan, M., Xu, C., Xu, K., and Hu, Y. (2012). LATERAL ORGAN BOUNDARIES DOMAIN

transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 22: 1169–

1180.

Feldman, L.J. and Torrey, J.G. (1977). Nuclear changes associated with cellular dedifferentiation

in pea root cortical cells cultured in vitro. J. Cell Sci. 28: 87–105.

Gibson, S.W. and Todd, C.D. (2015). Arabidopsis AIR12 influences root development. Physiol.

Mol. Biol. Plants 21: 479–489.

Gordon, S.P., Heisler, M.G., Reddy, G.V., Ohno, C., Das, P., and Meyerowitz, E.M. (2007).

35

Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development

134: 3539–3548.

Haga, N., Kobayashi, K., Suzuki, T., Maeo, K., Kubo, M., Ohtani, M., Mitsuda, N., Demura, T.,

Nakamura, K., Jurgens, G., and Ito, M. (2011). Mutations in MYB3R1 and MYB3R4 cause

pleiotropic developmental defects and preferential down-regulation of multiple G2/M-specific

genes in Arabidopsis. Plant Physiol. 157: 706–717.

He, C., Chen, X., Huang, H., and Xu, L. (2012). Reprogramming of H3K27me3 Is Critical for

Acquisition of Pluripotency from Cultured Arabidopsis Tissues. PLoS Genet. 8: e1002911.

Hicks, G.S. (1980). Patterns of organ development in plant tissue culture and the problem of organ

determination. Bot. Rev. 46: 1–23.

Hu, M., Krause, D., Greaves, M., Sharkis, S., Dexter, M., Heyworth, C., and Enver, T. (1997).

Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 11:

774–785.

Ikeuchi, M., Iwase, A., Rymen, B., Lambolez, A., Kojima, M., Takebayashi, Y., Heyman, J.,

Watanabe, S., Seo, M., De Veylder, L., Sakakibara, H., and Sugimoto, K. (2017).

Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant

Physiol. 175: 1158–1174.

Ikeuchi, M., Ogawa, Y., Iwase, A., and Sugimoto, K. (2016). Plant regeneration: Cellular origins

and molecular mechanisms. Development 143: 1442–1451.

Ikeuchi, M., Sugimoto, K., and Iwase, A. (2013). Plant callus: Mechanisms of induction and

repression. Plant Cell 25: 3159–3173.

Ishihara, H., Sugimoto, K., Tarr, P.T., Temman, H., Kadokura, S., Inui, Y., Sakamoto, T.,

Sasaki, T., Aida, M., Suzuki, T., Inagaki, S., Morohashi, K., Seki, M., Kakutani, T.,

Meyerowitz, E.M., and Matsunaga, S. (2019). Primed histone demethylation regulates shoot

regenerative competency. Nat. Commun. 10: 1–15.

Iwase, A., Harashima, H., Ikeuchi, M., Rymen, B., Ohnuma, M., Komaki, S., Morohashi, K.,

36

Kurata, T., Nakata, M., Ohme-Takagi, M., Grotewold, E., and Sugimoto, K. (2017).

WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF

SHOOT REGENERATION1 in Arabidopsis. Plant Cell 29: 54–69.

Iwase, A., Mita, K., Nonaka, S., Ikeuchi, M., Koizuka, C., Ohnuma, M., Ezura, H., Imamura,

J., and Sugimoto, K. (2015). WIND1-based acquisition of regeneration competency in

Arabidopsis and rapeseed. J. Plant Res. 128: 389–397.

Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Inoue, Y., Seki, M.,

Sakakibara, H., Sugimoto, K., and Ohme-Takagi, M. (2011). The AP2/ERF transcription

factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr. Biol. 21: 508–514.

Kamada, H. and Harada, H. (1979). Influence of several growth regulators and amino acids on in

vitro organogenesis of Torenia fournieri Lind. J. Exp. Bot. 30: 27–36.

Kareem, A., Durgaprasad, K., Sugimoto, K., Du, Y., Pulianmackal, A.J., Trivedi, Z.B.,

Abhayadev, P. V, Pinon, V., Meyerowitz, E.M., Scheres, B., and Prasad, K. (2015).

PLETHORA genes control regeneration by a two- step mechanism. Curr. Biol. 25: 1–14.

Kiba, T., Naitou, T., Koizumi, N., Yamashino, T., Sakakibara, H., and Mizuno, T. (2005).

Combinatorial microarray analysis revealing Arabidopsis genes implicated in cytokinin

responses through the His→Asp phosphorelay circuitry. Plant Cell Physiol. 46: 339–355.

Kim, J., Yang, W., Forner, J., Lohmann, J.U., Noh, B., and Noh, Y. (2018). Epigenetic

reprogramming by histone acetyltransferase HAG1/AtGCN5 is required for pluripotency

acquisition in Arabidopsis. EMBO J. 37: e98726.

Klepek, Y.S., Volke, M., Konrad, K.R., Wippel, K., Hoth, S., Hedrich, R., and Sauer, N. (2010).

Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTERS 1 and 2: Fructose

and xylitol/H+ symporters in pollen and young xylem cells. J. Exp. Bot. 61: 537–550.

Kohl, M. and Deigner, H.P. (2010). Preprocessing of gene expression data by optimally robust

estimators. BMC Bioinformatics 11: 583.

Koornneef, M., Hanhart, C.J., and Martinelli, L. (1987). A genetic analysis of cell culture traits in

37

tomato. Theor. Appl. Genet. 74: 633–641.

Langmead, B. and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods

9: 357–359.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome Biol. 10: R25.

Lardon, R., Wijnker, E., Keurentjes, J., and Geelen, D. (2020). The genetic framework of shoot

regeneration in Arabidopsis comprises master regulators and conditional fine-tuning factors.

Commun. Biol. 3: 549.

Lee, K., Park, O.S., Jung, S.J., and Seo, P.J. (2016). Histone deacetylation-mediated cellular

dedifferentiation in Arabidopsis. J. Plant Physiol. 191: 95–100.

Lee, K. and Seo, P.J. (2018). Dynamic epigenetic changes during plant regeneration. Trends Plant

Sci. 23: 235–247.

Liu, H.L., Wang, G.C., Feng, Z., and Zhu, J. (2010). Screening of genes associated with

dedifferentiation and effect of LBD29 on pericycle cells in Arabidopsis thaliana. Plant Growth

Regul. 62: 127–136.

Liu, J., Hu, X., Qin, P., Prasad, K., Hu, Y., and Xu, L. (2018). The WOX11 - LBD16 pathway

promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue

culture. Plant Cell Physiol. 59: 734–743.

Long, J.A., Moan, E.I., Medford, J.I., and Barton, M.K. (1996). A member of the KNOTTED

class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66–69.

McCarthy, D.J., Chen, Y., and Smyth, G.K. (2012). Differential expression analysis of multifactor

RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40: 4288–4297.

Meng, W.J., Cheng, Z.J., Sang, Y.L., Zhang, M.M., Rong, X.F., Wang, Z.W., Tang, Y.Y., and

Zhang, X.S. (2017). Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot

stem cell niche by dual regulation of WUSCHEL. Plant Cell 29: 1357–1372.

Moris, N., Pina, C., and Arias, A.M. (2016). Transition states and cell fate decisions in epigenetic

38

landscapes. Nat. Rev. Genet. 17: 693–703.

Mozgová, I., Muñoz-Viana, R., and Hennig, L. (2017). PRC2 represses hormone-induced somatic

embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet. 13: e1006562.

Neuteboom, L.W., Ng, J.M.Y., Kuyper, M., Clijdesdale, O.R., Hooykaas, P.J.J., and Van Der

Zaal, B.J. (1999). Isolation and characterization of cDNA clones corresponding with mRNAs

that accumulate during auxin-induced lateral root formation. Plant Mol. Biol. 39: 273–287.

Nishi, T., Yamada, Y., and Takahashi, E. (1968). Organ redifferentiation and plant restoration in

rice callus. Nature 219: 508–509.

Omary, M., Gil-Yarom, N., Yahav, C., Steiner, E., and Efroni, I. (2020). A conserved superlocus

regulates above- and belowground root initiation. bioRxiv: 2020.11.11.377937.

Orchard, C.B., Siciliano, I., Sorrell, D.A., Marchbank, A., Rogers, H.J., Francis, D., Herbert,

R.J., Suchomelova, P., Lipavska, H., Azmi, A., and Onckelen, H. Van (2005). Tobacco BY2 cells expressing fission yeast cdc25 bypass a G2/M block on the cell cycle. Plant J. 44: 290–

299.

Ozawa, S., Yasutani, I., Fukuda, H., Komamine, A., and Sugiyama, M. (1998). Organogenic

responses in tissue culture of srd mutants of Arabidopsis thaliana. Development 125: 135–142.

Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon provides fast

and bias-aware quantification of transcript expression. Nat. Methods 14: 417–419.

Paul, E., Harikrishna, K., Fioroni, O., and Draper, J. (1989). Dedifferentiation of Asparagus

officinalis L. mesophyll cells during initiation of cell cultures. Plant Sci. 65: 111–117.

Pitorre, D., Llauro, C., Jobet, E., Guilleminot, J., Brizard, J.P., Delseny, M., and Lasserre, E.

(2010). RLK7, a leucine-rich repeat receptor-like kinase, is required for proper germination

speed and tolerance to oxidative stress in arabidopsis thaliana. Planta 232: 1339–1353.

Riou-Khamlichi, C., Huntley, R., Jacqmard, A., and Murray, J.A.H. (1999). Cytokinin

activation of Arabidopsis cell division through a D-type cyclin. Science. 283: 1541–1544.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma

39

powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic

Acids Res. 43: e47.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2009). edgeR: A Bioconductor package for

differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.

Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M.,

Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Ryltsov, A.,

Kostukovich, E., Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V., and Quackenbush, J.

(2003). TM4: A free, open-source system for microarray data management and analysis.

Biotechniques 34: 374–378.

Schenk, S. and Schikora, A. (2015). Staining of callose depositions in root and leaf tissues. BioProtocol 5: e1429.

Schneider, M., Knuesting, J., Birkholz, O., Heinisch, J.J., and Scheibe, R. (2018). Cytosolic

GAPDH as a redox-dependent regulator of energy metabolism. BMC Plant Biol. 18: 184.

Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jürgens, G., and Laux, T. (2000). The

stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between

the CLAVATA and WUSCHEL genes. Cell 100: 635–644.

Shang, B., Xu, C., Zhang, X., Cao, H., Xin, W., and Hu, Y. (2016). Very-long-chain fatty acids

restrict regeneration capacity by confining pericycle competence for callus formation in

Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 113: 5101–5106.

Shigeyama, T., Watanabe, A., Tokuchi, K., Toh, S., Sakurai, N., Shibuya, N., and Kawakami,

N. (2016). α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell

wall integrity, and seed germination in Arabidopsis thaliana. J. Exp. Bot. 67: 5615–5629.

Skoog, F. and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant

tissues cultured in vitro. Symp. Soc. Exp. Biol. 11: 118–130.

De Smet, I., Vanneste, S., Inzé, D., and Beeckman, T. (2006). Lateral root initiation or the birth of

a new meristem. Plant Mol. Biol. 60: 871–887.

40

Sugimoto, K., Jiao, Y., and Meyerowitz, E.M. (2010). Arabidopsis regeneration from multiple

tissues occurs via a root development pathway. Dev. Cell 18: 463–471.

Takeuchi, N., Tanimoto, S., and Harada, H. (1985). Effects of wounding on adventitious bud

formation in Torenia stem segments cultured in vitro. J. Exp. Bot. 36: 841–847.

Tamaki, H., Konishi, M., Daimon, Y., Aida, M., Tasaka, M., and Sugiyama, M. (2009).

Identification of novel meristem factors involved in shoot regeneration through the analysis of

temperature-sensitive mutants of Arabidopsis. Plant J. 57: 1027–1039.

Tanimoto, S. and Harada, H. (1982). Effects of cytokinin and anticytokinin on the initial stage of

adventitious bud differentiation in the epidermis of Torenia stem segments. Plant Cell Physiol.

23: 1371–1376.

Tanimoto, S. and Harada, H. (1984). Roles of auxin and cytokinin in organogenesis in Torenia

stem segments cultured in vitro. J. Plant Physiol. 115: 11–18.

Toyokura, K., Goh, T., Shinohara, H., Shinoda, A., Kondo, Y., Okamoto, Y., Uehara, T.,

Fujimoto, K., Okushima, Y., Ikeyama, Y., Nakajima, K., Mimura, T., Tasaka, M.,

Matsubayashi, Y., and Fukaki, H. (2019). Lateral inhibition by a peptide hormone-receptor

cascade during Arabidopsis lateral root founder cell formation. Dev. Cell 48: 64–75.

Valvekens, D., Van Montagu, M., and Van Lijsebettens, M. (1988). Agrobacterium tumefaciensmediated transformation of Arabidopsis thaliana root explants by using kanamycin selection.

Proc. Natl. Acad. Sci. U. S. A. 85: 5536–5540.

Van, M.T.T. (1973). In vitro control of de novo flower, bud, root, and callus differentiation from

excised epidermal tissues. Nature 246: 44–45.

Vandepoele, K., Vlieghe, K., Florquin, K., Hennig, L., Beemster, G.T.S., Gruissem, W., Van De

Peer, Y., Inzé, D., and De Veylder, L. (2005). Genome-wide identification of potential plant

E2F target genes. Plant Physiol. 139: 316–328.

Williams, L., Zhao, J., Morozova, N., Li, Y., Avivi, Y., and Grafi, G. (2003). Chromatin

reorganization accompanying cellular dedifferentiation is associated with modifications of

41

histone H3, redistribution of HP1, and activation of E2F-target genes. Dev. Dyn. 228: 113–120.

Williams, L.M. and Jordan, E.G. (1980). Nuclear and nucleolar size changes and nuclear pore

frequency in cultured explants of jerusalem artichoke tubers (Helianthus tuberosus L.). J. Exp.

Bot. 31: 1613–1619.

Xu, K., Liu, J., Fan, M., Xin, W., Hu, Y., and Xu, C. (2012). A genome-wide transcriptome

profiling reveals the early molecular events during callus initiation in Arabidopsis multiple

organs. Genomics 100: 116–124.

Yasutani, I., Ozawa, S., Nishida, T., Sugiyama, M., and Komamine, A. (1994). Isolation of

temperature-sensitive mutants of Arabidopsis thaliana that are defective in the redifferentiation

of shoots. Plant Physiol. 105: 815–822.

Zelcer, A. and Galun, E. (1976). Culture of newly isolated tobacco protoplasts: Precursor

incorporation into protein, RNA and DNA. Plant Sci. Lett. 7: 331–336.

Zhang, K., Letham, D.S., and John, P.C.L. (1996). Cytokinin controls the cell cycle at mitosis by

stimulating the tyrosine dephosphorylation and activation of p34cdc2-like H1 histone kinase.

Planta 200: 2–12.

Zhang, T.Q., Lian, H., Zhou, C.M., Xu, L., Jiao, Y., and Wang, J.W. (2017). A two-step model

for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29: 1073–1087.

Zhang, Z., Liu, X., Li, R., Yuan, L., Dai, Y., and Wang, X. (2018). Identification and functional

analysis of a protein disulfide isomerase (AtPDI1) in Arabidopsis thaliana. Front. Plant Sci. 9:

913.

42

Figures and tables

This chapter is not open to public because it contains contents that will be published in a journal.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る