リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Energy resolution of CANDLES detector for studying neutrino-less double beta decay of 48Ca」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Energy resolution of CANDLES detector for studying neutrino-less double beta decay of 48Ca

Bui, Tuan Khai 大阪大学 DOI:10.18910/77473

2020.09.25

概要

Neutrino-less double beta decay (0νββ) is a useful tool to determine the mass of neutrino. The CANDLES experiment is searching for the 0νββ of 48Ca using CaF2(pure) scintillator crystals as the detector and the source. Searching for 0νββ, the two-neutrino double beta decay (2νββ) is unavoidable background around Q-value of 48Ca. The difference of the energy spectrum is the only way to discriminate the 0νββ events from 2νββ events. Therefore, energy resolution must be improved. Scintillation photons are collected by the Photomultiplier Tubes (PMTs) surrounding the crystals. Ideally, the energy resolution should be equal to the statistical fluctuation of number of photoelectrons. The current energy resolution (2.6% r.m.s.) is bigger than the statistical fluctuation of number of photoelectrons (1.6% r.m.s.). The difference is studied in this thesis.

Due to a long decay constant of CaF2 (τ=1μsec), we make a signal integration of 4μsec to calculate the energy. A Flash Analog-to-Digital Converter records the waveform in each PMT. The baseline fluctuation is accumulated in the signal integration, and they make the energy resolution worse. In this thesis, a study of the baseline fluctuation in CANDLES III detector is reported. The baseline fluctuation can cause a severe effect (about 1% r.m.s.) at Q-value of 48Ca.

In order to reduce the baseline fluctuation, photon counting method is useful. However, because of the signal overlap, photoelectrons can be missed in counting, and the energy resolution becomes worse. To reduce the baseline fluctuation and avoid count loss of the photoelectrons, an alternative method named “partial photon counting” is introduced. Using this method, we obtain the improved energy resolutions 4.5-4.0% (r.m.s.) at 1460 keV (γ-ray of 40K), and 3.3-2.9% (r.m.s.) at 2614 keV (γ-ray of 208Tl). The energy resolution at Q-value is estimated to be improved to 2.2% by using “partial photon counting”. With the improved energy resolution, the sensitivity of CANDLES detector for the half-life of 0νββ of 48Ca can be improved by 1.09 times. Additionally, a chance to improve detector resolution by using CaF2(pure) at low temperature and photon counting is discussed. It is estimated to achieve the new world-best limit of effective neutrino mass of 27-118 meV.

この論文で使われている画像

参考文献

[1] S. Mukhi and P. Roy, “Developments in high energy theory”, Pramana- J Phys, vol. 73, pp. 3–60 (2009). DOI: 10.1007/s12043-009-0093-9

[2] J. Chadwick, “Comparison of the intensity of the different types of beta rays from radium B and radium C,” Verh. d. deutschen Phys. Ges., vol. 16, pp. 383 (1914).

[3] C. L. Cowan, Jr. F. Reines, et al., “Detection of the Free Neutrino: a Confirmation,” Science, vol. 20, no. 3212, pp. 103-104 (1956). DOI: 10.1126/science.124.3212.103

[4] G. Danby, et al., “Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos,” Phys. Rev. Lett., vol. 9, pp. 36 (1962). DOI: 10.1103/PhysRevLett.9.36

[5] DONUT Collaboration, “Observation of tau neutrino interactions,” Phys. Rev. Lett., vol. 504, no. 3, pp. 218-224 (2001). DOI: 10.1016/S0370-2693(01)00307-0

[6] The ALEPH Collaboration, The DELPHI Collaboration, The L3 Col- laboration, The OPAL Collaboration, The SLD Collaboration, The LEP Electroweak Working Group and The SLD Electroweak and Heavy Flavour Groups, “Precision electroweak measurements on the Z reso- nance,” Physics Reports 427 (2006). DOI: 10.1016/j.physrep.2005.12.006

[7] John N. Bahcall, Raymond Davis Jr., “Solar Neutrinos: A Scientific Puzzle,” Science, vol. 191, no. 4224, pp. 264-267 (1976). DOI: 10.1126/science.191.4224.264

[8] K. S. Hirata et al., “Experimental study of the atmospheric neutrino flux,” Phys. Lett. B, vol. 205, no. 2-3, pp. 416-420 (1988). DOI: 10.1016/0370-2693(88)91690-5

[9] V.Gribov and B.Pontecorvo, “Neutrino astronomy and lepton charge,” Physics Letter B, vol. 28, no. 7, pp. 493-496 (1969). DOI: 10.1016/0370-2693(69)90525-5

[10] S. Fukuda et al. (Super-Kamiokande Collaboration), “Solar and hep neu- trino measurements from 1258 days of super-kamiokande data,” Phys. Rev. Lett., vol. 86, p. 5651 (2001). DOI: 10.1103/PhysRevLett.86.5651

[11] Q. R. Ahmad et al. (SNO Collaboration), “Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory,” Phys. Rev. Lett., vol. 89, p. 011301 (2002). DOI: 10.1103/PhysRevLett.89.011301

[12] P. Hern´andez, “Neutrino Physics,” Proceedings of the 2015 CERN–Latin-American School of High-Energy Physics, CERN-2016-005 (2016). DOI: 10.5170/CERN-2016-005.85

[13] I. Esteban et al., “Global analysis of three- avour neutrino oscillations: synergies and tensions in the determination of θ23, δCP , and the mass ordering,” Journal of High Energy Physics, vol. 2019, pp. 106, DOI: 10.1007/JHEP01(2019)106

[14] G. Yang (JUNO Collaboration), “Neutrino mass hierarchy determina- tion at reactor antineutrino experiments,” arXiv:1509.08747v3 [physics.ins-det] 30 Apr 2016.

[15] PLANCK Collaboration, “Planck 2018 results. VI. Cosmological param- eters,” 1807.06209v2 [astro-ph.CO] 20 Sep 2019.

[16] Craig Aalseth et al., “Neutrinoless double beta decay and direct searches for neutrino mass,” arXiv:hep-ph/0412300v1 21 Dec 2004.

[17] M. Aker (KATRIN Collaboration), “An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN,” Phys. Rev. Lett, vol. 123, pp. 221802 (2019), DOI: 10.1103/PhysRevLett.123.221802

[18] C. Patrignani et al., “The Review of Particle Physics (2017)“, (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017, DOI: 10.1088/1674-1137/40/10/100001

[19] S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, “Neutrinoless Double Beta Decay: 2015 Review,” Adv. High Energy Phys. 2162659 (2016). DOI: 10.1155/2016/2162659

[20] M. Goeppert-Mayer, “Double Beta-Disintegration,” Phys. Rev., vol. 48, no. 512 (1935). DOI: 10.1103/PhysRev.48.512

[21] Andrea Giuliani and Alfredo Poves, “Neutrinoless Double-Beta Decay,” Adv. High Energy Phys. 2012, pp. 1-38 (2012). DOI: 10.1155/2012/857016

[22] A. Balysh et al., “Double Beta Decay of 48Ca,” Phys. Rev., Lett., vol. 77, pp. 5186 (1996). DOI: 10.1103/PhysRevLett.77.5186

[23] The GERDA Collaboration, “Measurement of the half-life of the two- neutrino double beta decay of 76Ge with the GERDA experiment,” J. Phys. G: Nucl. Part. Phys., vol. 40, no. 3, pp. 035110 (2013). DOI: 10.1088/0954-3899/40/3/035110

[24] NEMO3 Collaboration, “Measurement of the two neutrino double beta decay half-life of 96Zr with the NEMO-3 detector,” Nucl. Phys. A, vol. 847, no 3-4, pp. 168-179 (2010). DOI: 10.1016/j.nuclphysa.2010.07.009

[25] R. Arnold et al. (NEMO-3 Collaborator), “First results of the search of neutrinoless double beta decay with the NEMO-3 detector”, Phys. Rev. Lett., vol. 95, pp. 182302 (2005). DOI: 10.1103/PhysRevLett.95.182302

[26] L. Simard et al. (NEMO-3 Collaborator), “The NEMO-3 results after completion of data taking,” Journal of Physics: Conference Series, vol. 375, no. 4, pp. 042011 (2012), DOI: 10.1088/1742-6596/375/1/042011

[27] R. Arnold et al. (NEMO-3 Collaborator), “Measurement of the Double Beta Decay Half-life of 130Te with the NEMO-3 Detector,” Phys. Rev. Lett., vol. 107, pp. 062504 (2011). DOI: 10.1103/PhysRevLett.107.062504

[28] J. B. Albert et al. (EXO Collaboration), “Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector”, Phys. Rev. C, vol. 89, pp. 015502 (2014). DOI: 10.1103/PhysRevC.89.015502

[29] J. Argyriades et al. (NEMO Collaboration), “Measurement of the double-β decay half-life of 150Nd and search for neutrinoless decay modes with the NEMO-3 detector,” Phys. Rev. C, vol. 80, pp. 032501 (2009). DOI: 10.1103/PhysRevC.80.032501

[30] Frank T. Avignone III, “Double beta decay, Majorana neutrinos, and neutrino mass,” Rev. Mod. Phys., vol. 80, pp. 481-516 (2008). DOI: 10.1103/RevModPhys.80.481

[31] Oliviero Cremonesi, “Neutrinoless double beta decay: Present and fu- ture,” Nucl. Phys. B (Proc. Suppl.), vol. 118, pp. 287-296 (2003). DOI: 10.1016/S0920-5632(03)01331-8

[32] J. Kotila and F. Iachello, “Phase space factors for double-β decay,” Phys. Rev. C, vol. 85, pp. 034316 (2012). DOI: 10.1103/PhysRevC.85.034316

[33] A. Faessler, V. Rodin and F. Simkovic, “Nuclear matrix elements for neutrinoless double beta decay and double-electron capture,” J, Phys. G: Nucl. Part. Phys., vol. 39, pp. 124006 (2012). DOI: 10.1088/0954-3899/39/12/124006/meta

[34] Y. Iwata et al., “Large-Scale Shell-Model Analysis of the Neutorinoless ββ Decay of 48Ca,” Phys. Rev. Lett., vol. 116, pp. 112502 (2016). DOI: 10.1103/PhysRevLett.116.112502

[35] T. R. Rodriguez and G. M. Pinedo, “Energy Density Functional Study of Nuclear Matrix Elements for Neutrinoless ββ Decay,” Phys. Rev. Lett., vol. 105, pp. 252503 (2010). DOI: 10.1103/PhysRevLett.105.252503

[36] J. Barea, J. Kotila and F. Iachello, “0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration,” Phys. Rev. C 91 034304 (2015). DOI: 10.1103/PhysRevC.91.034304

[37] F. Simkovic et al., “0νββ and 2νββ nuclear matrix elements, quasipar- ticle random-phase approximation, and isospin symmetry restoration,” Phys. Rev. C 87 045501 (2013). DOI: 10.1103/PhysRevC.87.045501

[38] S. R. Elliot and P. Vogel, “DOUBLE BETA DECAY,“ Ann. Rev. Nucl. Part. Sci. 52 115 (2002). DOI: 10.1146/annurev.nucl.52.050102.090641

[39] S. Umehara et al., “Neutrino-less double-β decay of 48Ca studied by CaF2(Eu) scintillators,” Phys. Rev. C 78, 058501 (2008). DOI: 10.1103/PhysRevC.78.058501

[40] T. Iida et al., “First result of the CANDLES III experiment searching for double beta decay of 48Ca,” Poster the Neutrino Conference (2018). DOI: 10.5281/zenodo.1300736

[41] M. Agostini et al., “Probing Majorana neutrinos with double-β decay,” Science, vol. 365, no. 6460, pp. 1445-1448 (2019). DOI: 10.1126/science.aav8613

[42] M. Agostini et al., “Supplementary Materials - Probing Majorana neu- trinos with double-β decay,” (2019). DOI: 10.1126/science.aav8613

[43] O. Azzolini et al., “Final Result of CUPID-0 Phase-I in the Search for the 82Se Neutrinoless Double-β Decay,” Phys. Rev. Lett., vol. 123, pp. 032501 (2019). DOI: 10.1103/PhysRevLett.123.032501

[44] NEMO Collaboration, “Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector,” Nuclear Physics A, vol. 847, pp. 168-179 (2010). DOI: 10.1016/j.nuclphysa.2010.07.009

[45] NEMO Collaboration, “Results of the search for neutrinoless double-β decay in 100Mo with the NEMO-3 experiment,” Phys. Rev. D, vol. 92, pp. 072011 (2015). DOI: 10.1103/PhysRevD.92.072011

[46] A. S. Barabash et al., “Final results of the Aurora experiment to study 2β decay of 116Cd with enriched 116CdWO4 crystal scintillators,” Phys. Rev. D, vol. 98, pp. 092007 (2018). DOI: 10.1103/PhysRevD.98.092007

[47] C. Alduino et al. (CUORE Collaboration), “First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of 130Te,” Phys. Rev. Lett., vol. 120, pp. 132501 (2018). DOI: 10.1103/PhysRevLett.120.132501

[48] KamLAND-Zen Collaboration, “Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen,” PRL 117 082503 (2016). DOI: 10.1103/PhysRevLett.117.082503

[49] NEMO Collaboration, “Measurement of the 2νββ decay half-life of 150Nd and a search for 0νββ decay processes with the full exposure from the NEMO-3 detector,” Phys. Rev. D 94 072003 (2016). DOI: 10.1103/PhysRevD.94.072003

[50] A. Bakalyarov et al.,”Search for β− and β−β− decays of 48Ca,” Nucl. Phys. A, vol. 700, pp. 12-24, (2002). DOI: 10.1016/S0375-9474(01)01306-9

[51] Y. Suzuki and K. Inoue, “Kamioka underground observatories,” The Eur. Phys. J. Plus, vol. 127, p. 111 (2012). DOI: 10.1140/epjp/i2012-12111-2

[52] Chan W.M., “Study of 180mTa Decay and Development of Ultra-low Background Gamma-ray Spectrometry,” Ph.D. Thesis, Osaka University (2017) DOI: 10.18910/61506.

[53] J. M. Carmona et al., “Neutron background at the Canfranc under- ground laboratory and its contribution to the IGEX-DM dark matter experiment,” Astropart. Phys., vol. 21, pp. 523-533 (2004). DOI: 10.1016/j.astropartphys.2004.04.002

[54] S. Yoshida, “CANDLES project for double beta decay of 48Ca”, Nuclear Physics B (Proc. Suppl.) vol. 138, pp. 214-216 (2005). DOI: 10.1016/j.nuclphysbps.2004.11.051

[55] Hamamatsu Photonics K. K., “Photomultiplier tubes and assemblies for scintillation counting & high energy physics,” Web (accessed date September 14 2020): R7081-100 Datasheet

[56] Hamamatsu Photonics K. K., “Photomultiplier tubes and assemblies for scintillation counting & high energy physics,” Web (accessed date September 14 2020): R8055 R7250 Datasheet

[57] S. Umehara et al., “Search for Neutrino-less Double Beta Decay with CANDLES,” Physics Procedia, vol. 61, pp. 283 – 288 (2015). DOI: 10.1016/j.phpro.2014.12.046

[58] K. Nakajima et al., “Performance of updated shielding system in CAN- DLES,” AIP Conference Proceedings 1921, 060003 (2018). DOI: 10.1063/1.5018999

[59] T. Iida et al., “Status and future prospect of 48Ca double beta decay search in CANDLES,” J. of Phys.: Conf. Series, vol. 718, no. 6, p. 062026 (2016). DOI: 10.1088/1742-6596/718/6/062026

[60] Y. Hirano, “CANDLES Detector for the study of Double Beta Decay of 48Ca,” Ph.D. Thesis Osaka University (2008). Thesis link - Local access in CANDLES

[61] S. Yoshida et al., “Ultra-violet wavelength shift for undoped CaF2 scin- tillation detector by two phase of liquid scintillator system in CAN- DLES,” Nucl. Ins. Meth. A, vol. 601, pp. 282-293 (2009). DOI: 10.1016/j.nima.2008.12.190

[62] H. Kakubata, “Study of Backgrounds in CANDLES to search for Double Beta Decays of 48Ca,” Ph.D. Thesis, Osaka University (2015). DOI: 10.18910/54022

[63] T. Maeda et al., “The CANDLES Trigger System for the Study of Dou- ble Beta Decay of 48Ca,” IEEE Trans. Nucl. Sci., vol. 62, pp. 1128–1134 (2015). DOI: 10.1109/TNS.2015.2423275

[64] K. Suzuki et al., “New DAQ System for the CANDLES Experiment,” IEEE Trans. Nucl. Sci., vol. 62, no. 3, pp. 1122–1127 (2015). DOI: 10.1109/TNS.2015.2423673

[65] B. T. Khai et al., “µTCA DAQ System and Parallel Reading in CANDLES Experiment,” IEEE Trans. Nucl. Sci., vol. 66, no. 7, pp. 1174–1181 (2019). DOI: 10.1109/TNS.2019.2900984

[66] Texas Instruments, “Low Power, 8-Bit, Dual 500 MSPS A/D Con- verter,” March 2013, Web (accessed date September 14 2020): ADC08DL502 Data Sheet.

[67] M. Nomachi and S. Ajimara, “Serial Data Link on Advanced TCA Back Plane,” IEEE Trans. Nucl. Sci., vol. 53, no. 5, pp. 2849-2852 (2006). DOI: 10.1109/TNS.2006.882776

[68] S. Umehara et al., “Search for Neutrino-less Double Beta Decay with CANDLES,” Phys. Procedia, vol. 61, pp. 283 – 288 (2015). DOI: 10.1016/j.phpro.2014.12.046

[69] S.R.Hashemi-Nezhad and L.S.Peak, “Background neutron flux determi- nation at a depth of 3200 mwe underground,” Nucl. Inst. Meth. A, vol. 357, no. 2-3, pp. 524-534 (2015). DOI: 10.1016/0168-9002(94)01527-9

[70] A. Minamino, “XMASSS実験、100kg検出器の性能評価と中性子バックグラウンドの研究,” Master Thesis, University of Tokyo (2004). Thesis link

[71] D.-M. Mei and A. Hime, “Muon-induced background study for under- ground laboratories,” Phys. Rev. D, vol. 73, pp. 053004 (2006). DOI: 10.1103/PhysRevD.73.053004

[72] T. Maeda, “Study of Ca-49 Background in Neutrinoless Double Beta Decay of Ca-48,” Ph.D. Thesis, Osaka University (2018). Thesis link

[73] T. Ohata, “Search for Neutrinoless Double Beta Decay in 48Ca with the CANDLES III experiment,” Ph.D. Thesis, Osaka University (2018). Thesis link

[74] K. Mizukoshi, “Energy response of CANDLES detector and background of ambient neutron in underground,” Master Thesis, Osaka University (2019). Thesis link

[75] M. Moser, “Analysis of neutron induced background in CANDLES,” Master Thesis, Osaka University (2017). Thesis link

[76] S. Okumura et al., “Recent Studies on Ca Isotope Separation by Crown- Ether Resin Chromatography,” J. Nucl. Radiochem. Sci, 16 (2015). DOI: 10.14494/jnrs.16.11

[77] S. Umehara et al., “A basic study on the production of enriched isotope 48Ca by using crown-ether resin,” Prog. Theor. Exp. Phys., vol. 2015, pp. 053C03 (2015). DOI: 10.1093/ptep/ptv063

[78] B. E. Jepson and R. Dewitt, “SEPARATION OF CALCIUM ISO- TOPES WITH MACROCYCLIC POLYETHER CALCIUM COM- PLEXES,” J. Inorg, Nucl. Chem. 38 (1976). DOI: 10.1016/0022-1902(76)80244-8

[79] T. Kishimoto, K. Matsuoka, T. Fukumoto, and S. Umehara, “Cal- cium isotope enrichment by means of multi-channel counter-current elec- trophoresis for the study of particle and nuclear physics,” Prog. Theor. Exp. Phys. 033D03 (2015). DOI: 10.1093/ptep/ptv020

[80] C.J. Kim et. al., “Proliferation-resistant stable isotope separation based on optical pumping,” Proceeding of the 10. International workshop on SPLG2008 (2008)

[81] A. P. Babichev et. al., “Development of the laser isotope separation method (AVLIS) for obtaining weight amounts of highly enriched 150Nd isotope,” Quantum Electron. 35 879 (2005). DOI: 10.1070/QE2005v035n10ABEH006601

[82] S. Umehara, “Neutrino-less double beta decay of 48Ca studied by CaF2(pure) scintillators,” Oral Presentation in International Conference on Topics in Astroparticle and Underground Physics, 24-28 July (2017).

[83] K. Tetsuno, “Status of 48Ca double beta decay search and its future prospect in CANDLES,” Oral Presentation in International Conference on Topics in Astroparticle and Underground Physics, 9-13 September (2019).

[84] X. Li, “Study of a Large CaF2(Eu) Scintillating Bolometer for Neutrino- less Double Beta Decay,” Poster Presentation in International Confer- ence on Topics in Astroparticle and Underground Physics, 9-13 Septem- ber (2019).

[85] K. K. Lee, “ Bolometer Development using Neutron Transmutation Doped Ge in CANDLES for the study of Neutrinoless Double Beta de- cay,” Oral Presentation in Japan Physics Society Autumn Meeting 2019, 10-13 September (2019).

[86] V. B. Brudanin et al., “Search for double beta decay of 48Ca in the TGV experiment,” Physics Letters B, vol. 495, no 1-2, pp. 63-68 (2000). DOI: 10.1016/S0370-2693(00)01244-2

[87] A. S. Barabash, “Average (recommended) half-life values for two- neutrino double-beta decay,” Czechoslovak Journal of Physics, vol. 52, no. 4 (2002). DOI: 10.1023/A:1015369612904

[88] M. Moszyn´ski et al., “Intrinsic energy resolution of NaI(Tl),” Nucl. Inst. Meth. A, vol. 484, no. 1-3, pp. 259-269 (2002). DOI: 10.1016/S0168-9002(01)01964-7

[89] M. Moszyn´ski, “Energy resolution and non-proportionality of scintilla- tion detectors – new observations,” Nucl. Inst. Meth. A, vol. 45, no. 3-6, pp. 372-376 (2010). DOI: 10.1016/j.radmeas.2009.10.012

[90] M. Moszyn´ski et al., “Energy resolution of scintillation detectors,” Nucl. Inst. Meth. A, vol. 805, pp. 25-35 (2016). DOI: 10.1016/j.radmeas.2009.10.012

[91] IEEE Instrumentation Society, “IEEE Standard for Digitizing Waveform Recorders”, IEEE Std 1057T M -2017 (2018). DOI: 10.1109/IEEESTD.2018.8291741

[92] K. Kanagawa, “µTCA規格による読み出しシステムを用いた“ CaF2(Eu) 結晶のエネルギー分解能の測定,” Master Thesis, Osaka University (2017). Thesis link - Local access in CANDLES

[93] H. Kino, “CANDLESS実験のためのLED光源を用いた1光電子測定,” Master Thesis, Osaka University (2018). Thesis link - Local access in CANDLES

[94] E. Kinoshita, “1p.e. analysis”, Non-Accelerator Meeting (NAP) report in CANDLES, Mar. 13th (2017).

[95] B. T. Khai, “PMT Noise”, Non-Accelerator Meeting (NAP) report in CANDLES, Apr. 17th (2017).

[96] M. Tsuzuki, “CANDLESS実験のための時間較正,” Master Thesis, Os- aka University (2017). Thesis link - Local access in CANDLES

[97] S. Derenzo, M. Boswell, M. Weber and K. Brennan (Lawrence Berkeley National Laboratory), Scintillation Properties Website (accessed date February 24 2020).

[98] Laboratoire National Henri Becquerel, Nucl´eide - Lara, Library for gamma and alpha emissions (accessed date February 24 2020).

[99] V.B. Mikhailik et al., “Scintillation properties of pure CaF2”, Nucl. Inst. and Meth. in Phys. Res. A, vol. 566, pp. 522–525 (2006), DOI: 10.1016/j.nima.2006.06.063

[100] Cryomech Co., “Pulse Tube Cryocoolers (online resource)” (accessed date February 24 2020).

[101] U. Wagner, “REFRIGERATION”, CAS - CERN Accelerator School on Superconductivity and Cryogenics for Accelerators and Detectors, Erice, Italy, 8 - 17 May 2002, pp.295-345, DOI: 10.5170/CERN-2004-008.295

[102] M. Doi, T. Kotani et al., “Neutrino Mass, the Right-Handed Interaction and the Double Beta Decay, I”, Prog. Theo. Phys., vol. 66, no. 5 (1981). DOI: 10.1143/PTP.66.1739

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る