リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study of Radiative Muon Capture for COMET Phase-I Experiment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study of Radiative Muon Capture for COMET Phase-I Experiment

Pieters, Dorian 大阪大学 DOI:10.18910/92888

2023.06.13

概要

Title

Study of Radiative Muon Capture for COMET PhaseI Experiment

Author(s)

Pieters, Dorian

Citation

大阪大学, 2023, 博士論文

Version Type VoR
URL

https://doi.org/10.18910/92888

rights
Note

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/
Osaka University

Form 3

Abstract of Thesis
Name

Title



PIETERS Dorian



Study of Radiative Muon Capture for COMET Phase-I Exper
iment
(COMET Phase-I実 験 に お け る 輻 射 ミ ュ ー 粒 子 捕 獲 反 応 の 研 究 )

Abstract of Thesis

The COMET Phase-I experiment will search for the coherent decay of a muonic atom into an electron. While in
the Standard Model, extended with neutrino oscillations, this process is strictly suppressed (O(10-54)), many
models beyond the Standard Model predict its possibility at an observable rate. This makes it a perfect probe
for the search for physics beyond the standard model. The experiment aims at a single-event sensitivity of
3.0 × 10−15 in a running time of 150 days, which is an improvement of a factor of 100 from the current limit
measured by the SINDRUM-II experiment. The experiment has been designed in such a way that other processes
not predicted by the standard model of physics, such as the transition of a negative muonic atom into a positron,
can also be studied. However, this decay can be shadowed by radiative muon capture-induced positrons. To
account for this, analysis procedure has been developed to be able to measure the endpoint of the radiative muon
capture photons by COMET Phase-I. The analysis is composed of four distinct steps: a hit filtering and track
finding algorithm based on the combination of a gradient-boosted decision tree and a circular Hough transform
algorithm; a track fitting algorithm based on Kalman filter technique; and a likelihood analysis to fit the
reconstructed photon spectrum. In parallel, the online trigger scheme for the COMET Phase-I main physics
measurement has been adapted for the measurement of radiative muon capture photons. A simulation of 1011
photons was performed to test the performance of the analysis procedure and the online trigger, as well as to gain
a better understanding of the different acceptance of the COMET Phase-I experiment to the radiative muon
capture process.
The online trigger specifically adjusted to the radiative muon capture process has shown that it can keep 90% of
the radiative muon capture events while rejecting 96% of the background-only events, which reduces the trigger
rate down to 4 kHz, a factor of 6 below the critical level for the DAQ of the COMET Phase-I experiment. This
analysis procedure has been tested on simulation data. As a result, over the course of 100 days of measurement,
the COMET Phase-I experiment will be able to reconstruct approximately 16k radiative muon capture events.
The study has shown that the endpoint spectrum of the radiative muon capture photon for an aluminum target
could be estimated with the precision of ±0.82 MeV which is an improvement of a factor of 2 over the previous
measurement performed in TRIUMF. Assuming that the endpoint of the radiative muon capture photon in
aluminum is 90.1 MeV as measured by the TRIUMF experiment, the improvement in the measurement of the
endpoint spectrum reduces the background contribution of radiative muon capture to μ− + N → e + + N’ ground
state transition by a factor of 10.

様式 7

論文審査の結果の要旨及び担当者






PIETERS Dorian Gerard Daniel Olivier
(職)

論文審査担当者







主 査

教授

青木正治

副 査

教授

民井淳

副 査

教授

阪口篤志

副 査

准教授

上野一樹

副 査

助教

佐藤朗

論文審査の結果の要旨
本論文「Study of Radiative Muon Capture for COMET Phase-I Experiment」は、COMET Phase-I 実
験における多様な物理研究テーマの一つであるミュー粒子・陽電子転換過程探索測定において問題
となると予想されている背景事象の輻射ミュー粒子捕獲反応(RMC)に関して、当該プロセスからの光
子 の エ ネ ル ギ ー ス ペ ク ト ル な ら び に 、 エ ネ ル ギ ー ス ペ ク ト ル を Hwang-Primakoff Closure
Approximation Model にあてはめたときの特徴量となる光子エネルギー( k max )を精密に測定する手法
の開発ならびにその性能評価に関して報告したものである。
COMET Phase-I 実験は、荷電レプトンフレーバを破る反応の一つであるミュー粒子・電子転換過程を探索す
る実験である。COMET Phase-I 実験では、J-PARC ハドロンホールに建設中の革新的な大強度負電荷ミュー粒子
ビームラインを活用し、ビームライン出口に設置するミュー粒子静止標的(アルミ製)中で発生するかもしれ
ないミュー粒子・電子転換反応によって放出される 105 MeV/ c の電子の運動量を、ミュー粒子静止標的を取り
囲むように設置する円筒型ドリフトチェンバー(CDC)とトリガーカウンター(CTH)で測定する。
CDC はミュー粒子標的を円筒に取り囲んでいるため、陽電子の測定も可能である。すなわち、ミュー粒子・
陽電子転換過程の測定を実施することができる。ミュー粒子・陽電子転換過程の測定では、RMC で放出される
ガンマ線がミュー粒子標的や CDC 内壁などの物質中で電子・陽電子対生成反応で生起する陽電子が深刻な背景
事象源となることがわかっている。この背景陽電子のエネルギーは、RMC で放出されるガンマ線のエネルギー

を超えることはないと考えられている。しかしながら、これまで実験的に測定されているエネルギ
ースペクトルや k max の不定性が大きすぎるため、COMET Phase-I におけるミュー粒子・陽電子転換過
程の探索感度に制限がかかっていた。
本論文では、RMC で発生するガンマ線のうち CDC 内壁で電子・陽電子のペアを生成するイベントに着目し、
これを積極的に活用してガンマ線のエネルギースペクトルや k max を測定する手法を開発した。高いノイズ環境
下で運転される CDC のヒットパターンから、ひとつのガンマ線を起源として同時に発生する電子信号と陽電子
信号の特徴を高い効率で抜き出し、電子と陽電子の運動量を個別に測定してガンマ線のエネルギーを再構成す
る手順を開発した。再構成されたガンマ線エネルギースペクトルに対して、測定器や解析手法に起因する系統
的な影響を加味した理論スペクトルを当てはめることにより、従来の k max 測定精度を 2 倍以上改善できること
を示した。またこれにより、ミュー粒子・陽電子転換過程を測定する際に問題となる RMC 起源の予想背景事象
を 10 分の 1 に抑制できる可能性を見出した。
本論文は、COMET Phase-I の実験装置を再現した計算機シミュレーションを活用して実施された。実際の実
験データが入手可能となり次第、本論文で提案された手法を適応することにより、多様な物理成果を創出でき
ることを示してみせたのである。
よって、本論文は博士(理学)の学位論文として十分価値あるものと認める。

この論文で使われている画像

参考文献

[1] T. Aaltonen et al. “High-precision measurement of the W boson mass with

the CDF II detector”. In: Science 376.6589 (2022), pp. 170–176.

[2] H.Yukawa. “On the interaction of Elementary Particles”. In: Proceedings of

the Physico-Mathematical Society of Japan (1935).

[3] G. P. S. Occhialini and C. F. Powell. “Nuclear Disintegrations produced by

slow charged particles of small mass”. In: Nature (1947). doi: 10 . 1038 /

159186a0. url: https://doi.org/10.1038/159186a0.

[4] R.H. Bernstein and Peter S. Cooper. “Charged lepton flavor violation: An

experimenter’s guide”. In: Physics Reports 532.2 (2013). Charged Lepton Flavor Violation: An Experimenter’s Guide, pp. 27–64. issn: 0370-1573. doi:

https : / / doi . org / 10 . 1016 / j . physrep . 2013 . 07 . 002. url: https :

//www.sciencedirect.com/science/article/pii/S0370157313002688.

[5] Y. Fukuda et al. “Evidence for Oscillation of Atmospheric Neutrinos”. In:

Phys. Rev. Lett. 81 (8 1998), pp. 1562–1567. doi: 10.1103/PhysRevLett.81.

1562. url: https://link.aps.org/doi/10.1103/PhysRevLett.81.1562.

[6] Q. R. Ahmad et al. “Direct Evidence for Neutrino Flavor Transformation from

Neutral-Current Interactions in the Sudbury Neutrino Observatory”. In: Phys.

Rev. Lett. 89 (1 2002), p. 011301. doi: 10.1103/PhysRevLett.89.011301.

url: https://link.aps.org/doi/10.1103/PhysRevLett.89.011301.

[7] Q. R. Ahmad et al. “Measurement of the Rate of νe + d → p + p + e − Interactions Produced by 8 B Solar Neutrinos at the Sudbury Neutrino Observatory”.

In: Phys. Rev. Lett. 87 (7 2001), p. 071301. doi: 10.1103/PhysRevLett.87.

071301.

[8] Sergio Palomares-Ruiz and S.T. Petcov. “Three-neutrino oscillations of atmospheric neutrinos,θ13 , neutrino mass hierarchy and iron magnetized detectors”. In: Nuclear Physics B 712.1-2 (2005), pp. 392–410. doi: 10 . 1016 /

j . nuclphysb . 2005 . 01 . 045. url: https : / / doi . org / 10 . 1016 % 2Fj .

nuclphysb.2005.01.045.

[9] S. M. Bilenky and S. T. Petcov. “Massive neutrinos and neutrino oscillations”.

In: Rev. Mod. Phys. 59 (3 1987), pp. 671–754. doi: 10.1103/RevModPhys.59.

671. url: https://link.aps.org/doi/10.1103/RevModPhys.59.671.

[10] W. J. Marciano and A. I. Sanda. “Reaction µ− + Nucleus → e− + Nucleus

in Gauge Theories”. In: Phys. Rev. Lett. 38 (26 1977), pp. 1512–1515. doi:

10.1103/PhysRevLett.38.1512. url: https://link.aps.org/doi/10.

1103/PhysRevLett.38.1512.

ii

[11] B. W. Lee et al. “Muon and Electron Number Nonconservation in a V −

A Gauge Model”. In: Phys. Rev. Lett. 38 (17 1977), pp. 937–939. doi: 10.

1103/PhysRevLett.38.937. url: https://link.aps.org/doi/10.1103/

PhysRevLett.38.937.

[12] Wolfgang Altmannshofer et al. “Anatomy and phenomenology of FCNC and

CPV effects in SUSY theories”. In: Nuclear Physics B 830.1-2 (2010), pp. 17–

94. doi: 10.1016/j.nuclphysb.2009.12.019. url: https://doi.org/10.

1016%2Fj.nuclphysb.2009.12.019.

[13] Kaustubh Agashe and Christopher D. Carone. “Supersymmetric flavor models

~ φK anomaly”. In: Physical Review D 68.3 (2003). doi: 10.1103/

and the B

physrevd.68.035017. url: https://doi.org/10.1103%2Fphysrevd.68.

035017.

[14] Graham G. Ross, Liliana Velasco-Sevilla, and Oscar Vives. “Spontaneous CP

violation and non-Abelian family symmetry in SUSY”. In: Nuclear Physics B

692.1-2 (2004), pp. 50–82. doi: 10.1016/j.nuclphysb.2004.05.020. url:

https://doi.org/10.1016%2Fj.nuclphysb.2004.05.020.

[15] Stefan Antusch, Stephen F King, and Michal Malinsk´

y. “Solving the SUSY

flavour and CP problems with SU(3) family symmetry”. In: Journal of High

Energy Physics 2008.06 (2008), pp. 068–068. doi: 10 . 1088 / 1126 - 6708 /

2008/ 06/ 068. url: https: // doi. org/ 10. 1088% 2F1126- 6708 %2F2008 %

2F06%2F068.

[16] Monika Blanke et al. “Particle-antiparticle mixing, K , ∆Γq , AqSL in the Littlest Higgs model with T-parity”. In: Journal of High Energy Physics 2006.12

(2006), pp. 003–003. doi: 10.1088/1126-6708/2006/12/003. url: https:

//doi.org/10.1088%2F1126-6708%2F2006%2F12%2F003.

[17] Monika Blanke et al. “Rare K and B Decays in a warped extra dimension

with custodial protection”. In: Journal of High Energy Physics 2009.03 (2009),

pp. 108–108. doi: 10.1088/1126-6708/2009/03/108. url: https://doi.

org/10.1088%2F1126-6708%2F2009%2F03%2F108.

[18] The COMET Collaboration. “COMET Phase-I Technical Design Report”. In:

Progress of Theoretical and Experimental Physics (2020). doi: 10.1093/ptep/

ptz125.

[19] L. Bartoszek et al. Mu2e Technical Design Report. 2015. doi: 10 . 48550 /

ARXIV.1501.05241. url: https://arxiv.org/abs/1501.05241.

[20] H.V.Klapdor et al. Lepton and Baryon Number Violation in Particle Physics,

Astrophysics and Cosmology. 1999. doi: 10.1201/9781482268638.

[21] Wilhelm H. Bertl et al. “A search for µ− -e conversion in muonic gold”. In:

The European Physical Journal C - Particles and Fields (2006). doi: 10 .

1140/epjc/s2006-02582-x. url: https://doi.org/10.1140/epjc/s200602582-x.

[22] Stefano Dell’Oro et al. “Neutrinoless Double Beta Decay: 2015 Review”. In:

Advances in High Energy Physics 2016 (2016), pp. 1–37. doi: 10.1155/2016/

2162659. url: https://doi.org/10.1155%2F2016%2F2162659.

iii

[23] Anupama Atre, Vernon Barger, and Tao Han. “Upper bounds on leptonnumber violating processes”. In: Physical Review D 71.11 (2005). doi: 10.

1103/physrevd.71.113014. url: https://doi.org/10.1103%2Fphysrevd.

71.113014.

[24] Jeffrey M. Berryman et al. “Lepton-number-violating searches for muon to

positron conversion”. In: Phys. Rev. D 95 (11 2017), p. 115010. doi: 10 .

1103/PhysRevD.95.115010. url: https://link.aps.org/doi/10.1103/

PhysRevD.95.115010.

[25] Chian-Shu Chen, C. Q. Geng, and J. N. Ng. “Unconventional neutrino mass

generation, neutrinoless double beta decays, and collider phenomenology”. In:

Physical Review D 75.5 (2007). doi: 10.1103/physrevd.75.053004. url:

https://doi.org/10.1103%2Fphysrevd.75.053004.

[26] V. Cirigliano et al. “Neutrinoless Double Beta Decay and Lepton Flavor Violation”. In: Physical Review Letters 93.23 (2004). doi: 10.1103/physrevlett.

93.231802. url: https://doi.org/10.1103%2Fphysrevlett.93.231802.

[27] Stephen F. King, Alexander Merle, and Luca Panizzi. “Effective theory of a

doubly charged singlet scalar: complementarity of neutrino physics and the

LHC”. In: Journal of High Energy Physics 2014.11 (2014). doi: 10 . 1007 /

jhep11(2014)124. url: https://doi.org/10.1007%2Fjhep11%282014%

29124.

[28] P.C. Divari et al. “The exotic double-charge exchange µ− → e+ conversion in

nuclei”. In: Nuclear Physics A 703.1-2 (2002), pp. 409–431. doi: 10.1016/

s0375 - 9474(01 ) 01533 - 0. url: https : / / doi . org / 10 . 1016 % 2Fs0375 9474%2801%2901533-0.

[29] Leslie L. Foldy and John Dirk Walecka. “Muon capture in nuclei”. In: Il Nuovo

Cimento (1955-1965) 34 (1964), pp. 1026–1061.

[30] K A Snover. “Giant Resonances in Excited Nuclei”. In: Annual Review of Nuclear and Particle Science 36.1 (1986), pp. 545–603. doi: 10.1146/annurev.

ns.36.120186.002553. eprint: https://doi.org/10.1146/annurev.ns.36.

120186.002553. url: https://doi.org/10.1146/annurev.ns.36.120186.

002553.

[31] J. Kaulard et al. “Improved limit on the branching ratio of µ− e+ conversion

on titanium”. In: Physics Letters B 422.1 (1998), pp. 334–338. issn: 0370-2693.

doi: https://doi.org/10.1016/S0370- 2693(97)01423- 8. url: https:

//www.sciencedirect.com/science/article/pii/S0370269397014238.

[32] Jeremy Bernstein. “Radiative Muon Capture”. In: Phys. Rev. 115 (3 1959),

pp. 694–705. doi: 10.1103/PhysRev.115.694. url: https://link.aps.

org/doi/10.1103/PhysRev.115.694.

[33] H.P.C. Rood and H.A. Tolhoek. “Radiative muon-capture in complex nuclei”.

In: Physics Letters 6.1 (1963), pp. 121–122. issn: 0031-9163. doi: https :

/ / doi . org / 10 . 1016 / 0031 - 9163(63 ) 90246 - 4. url: https : / / www .

sciencedirect.com/science/article/pii/0031916363902464.

[34] Harold W. Fearing. “Relativistic calculation of radiative muon capture in hydrogen and 3He”. In: Phys. Rev. C (1980).

iv

[35] F E Low. “Bremsstrahlung of very low-energy Quante I Elementary Particle

Collisions”. In: Physical Review (U.S.) Superseded in part by Phys. Rev. A,

Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D (). doi: 10.1103/

PhysRev.110.974. url: https://www.osti.gov/biblio/4302068.

[36] S. L. Adler and Y. Dothan. “Low-Energy Theorem for the Weak Axial-Vector

Vertex”. In: Phys. Rev. 151 (4 1966), pp. 1267–1277. doi: 10.1103/PhysRev.

151.1267. url: https://link.aps.org/doi/10.1103/PhysRev.151.1267.

[37] P. Christillin and S. Servadio. “About low-energy expansion of two-current

amplitudes”. In: Il Nuovo Cimento A (1965-1970) (1977). url: https : / /

doi.org/10.1007/BF02724581.

[38] P. Christillin, M. Rosa-Clot, and S. Servadio. “Radiative muon capture in

medium-heavy nuclei”. In: Nuclear Physics A 345.2 (1980), pp. 331–366. issn:

0375-9474. doi: https://doi.org/10.1016/0375-9474(80)90344-9. url:

https://www.sciencedirect.com/science/article/pii/0375947480903449.

[39] W Y. P. Hwang. “Radiative muon capture”. In: Phys. Rev. C 22 (1 1980),

pp. 233–246. doi: 10.1103/PhysRevC.22.233. url: https://link.aps.

org/doi/10.1103/PhysRevC.22.233.

[40] M. Gmitro and A. A. Ovchinnikova. “Continuity-equation constraint for electron scattering and radiative muon capture”. In: Czechoslovak Journal of

Physics B (1986). url: https://doi.org/10.1007/BF01597844.

[41] D. S. Armstrong et al. “Radiative muon capture on Al, Si, Ca, Mo, Sn, and

Pb”. In: Phys. Rev. C 46 (3 1992), pp. 1094–1107. doi: 10.1103/PhysRevC.

46.1094. url: https://link.aps.org/doi/10.1103/PhysRevC.46.1094.

[42] T. P. Gorringe et al. “Isotope dependence of radiative muon capture on the

58,60,62

Ni isotopes”. In: Phys. Rev. C 58 (3 1998), pp. 1767–1776. doi: 10.

1103 / PhysRevC . 58 . 1767. url: https : / / link . aps . org / doi / 10 . 1103 /

PhysRevC.58.1767.

[43] P.C.Bergbusch et al. “Radiative muon capture on O, Al, Si, Ti, Zr and Ag”.

In: (1999).

[44] D.H. Wright et al. “The TRIUMF radiative muon capture facility”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment 320.1 (1992), pp. 249–

262. issn: 0168-9002. doi: https : / / doi . org / 10 . 1016 / 0168 - 9002(92 )

90783-Z. url: https://www.sciencedirect.com/science/article/pii/

016890029290783Z.

[45] L. L. Foldy and J. D. Walecka. “Coupling Constants in Muon Capture”. In:

Phys. Rev. 147 (3 1966), pp. 886–886. doi: 10.1103/PhysRev.147.886. url:

https://link.aps.org/doi/10.1103/PhysRev.147.886.

[46] R. Parthasarathy and V.N. Sridhar. “Effect of meson exchange corrections on

allowed muon capture”. In: Physics Letters B 106.5 (1981), pp. 363–366. issn:

0370-2693. doi: https://doi.org/10.1016/0370-2693(81)90642-0. url:

https://www.sciencedirect.com/science/article/pii/0370269381906420.

[47] M. Kobayashi et al. “Average polarization of 12B in polarized muon capture”. In: Nuclear Physics A 312.3 (1978), pp. 377–393. issn: 0375-9474. doi:

https://doi.org/10.1016/0375-9474(78)90598-5. url: https://www.

sciencedirect.com/science/article/pii/0375947478905985.

[48] M. MacKenzie and P. Murat. Search for µ− → e+ conversion: what can be

learned from the SINDRUM-II positron data on a gold target. 2020. doi: 10.

48550/ARXIV.2009.00214. url: https://arxiv.org/abs/2009.00214.

[49] Andrzej Czarnecki and Xavier Gartcia i Tormo. “Muon decay in orbit: Spectrum of high-energy electrons”. In: (2011).

[50] Evgeny Karpechev et al. “Study of energy dependence of pion production by

proton on copper target near 350 MeV”. In: Physics of Atomic Nuclei 71 (Jan.

2008), pp. 1–8. doi: 10.1134/S1063778808010018.

[51] D M¨ohl. “Production of low-energy antiprotons”. In: Hyperfine Interactions

(1997). url: https://doi.org/10.1023/A:1012680728257.

[52] C.Wu and Y.Fuji. “Personnal communications”. In: (2022).

[53] E.R. Davies. “A modified Hough scheme for general circle location”. In: (1988).

[54] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In: Journal of Basic Engineering 82.1 (Mar. 1960), pp. 35–45. issn:

0021-9223. doi: 10.1115/1.3662552. eprint: https://asmedigitalcollection.

asme.org/fluidsengineering/article- pdf/82/1/35/5518977/35\_1.

pdf. url: https://doi.org/10.1115/1.3662552.

[55] Lidner. “Evolution of the T2K-ND280 Computing Model”. In: (2015).

[56] S. Agostinelli et al. “Geant4—a simulation toolkit”. In: Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506.3 (2003), pp. 250–303. issn: 0168-9002.

doi: https://doi.org/10.1016/S0168- 9002(03)01368- 8. url: https:

//www.sciencedirect.com/science/article/pii/S0168900203013688.

[57] Francesc Salvat et al. “PENELOPE-2008: A Code System for Monte Carlo

Simulation of Electron and Photon Transport”. In: (2008).

[58] Baro et al. “Analytical cross sections for Monte Carlo simulation of photon

transport”. In: (1994).

[59] Yu Nakazawa. “A Trigger System with Online Track Recognition for the µ− –e

Conversion Search in the COMET Phase-I Experiment”. In: (2020).

[60] Andreas Hoecker et al. “TMVA: Toolkit for Multivariate Data Analysis”. In:

PoS ACAT (2007), p. 040. arXiv: physics/0703039.

[61] Y.Kuno C.Wu T.Wong. “Track Fitting of COMET CDC”. In: (2018).

[62] T.Suzuki and D.F. Measday. “Total nuclear capture rates for negative muons”.

In: (1987).

[63] S. S. Wilks. “The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses”. In: The Annals of Mathematical Statistics 9.1

(1938), pp. 60 –62. doi: 10.1214/aoms/1177732360. url: https://doi.

org/10.1214/aoms/1177732360.

vi

[64] J.E. Amaro et al. “Radiative pion capture in nuclei: a continuum shell–model

approach”. In: (1997).

[65] T.Xing. “Personnal communications”. In: (2022).

[66] John R. de Laeter et al. “Atomic weights of the elements. Review 2000 (IUPAC

Technical Report)”. In: Pure and Applied Chemistry 75.6 (2003), pp. 683–800.

doi: doi:10.1351/pac200375060683. url: https://doi.org/10.1351/

pac200375060683.

[67] P.C.Bergbusch et al. “Radiative Muon Capture On Oxygen, Aluminum, Silicon, Titanium, Zirconium, and Silver”. In: (1993).

[68] John Quirk. “Preliminary results from the AlCap Experiment”. In: (2019).

[69] C. Wu et al. “Test of a small prototype of the COMET cylindrical drift chamber”. In: Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 1015 (2021),

p. 165756. doi: 10.1016/j.nima.2021.165756. url: https://doi.org/10.

1016%2Fj.nima.2021.165756.

[70] Ting Sam Wong. “Study of Negative Muon to Positron Conversion in the

COMET Phase-I experiment”. In: (2020).

[71] N. P. Samios. “Dynamics of Internally Converted Electron-Positron Pairs”.

In: Phys. Rev. 121 (1 1961), pp. 275–281. doi: 10.1103/PhysRev.121.275.

url: https://link.aps.org/doi/10.1103/PhysRev.121.275.

[72] Tanja Geib, Alexander Merle, and Kai Zuber. “µ− –e+ conversion in upcoming LFV experiments”. In: Physics Letters B 764 (2017), pp. 157–162. issn:

0370-2693. doi: https : / / doi . org / 10 . 1016 / j . physletb . 2016 . 11 .

029. url: https : / / www . sciencedirect . com / science / article / pii /

S037026931630692X.

[73] J.P. Perroud et al. “Isovector transitions in 1p-shell nuclei induced by radiative

pion capture”. In: Nuclear Physics A 453.4 (1986), pp. 542–590. issn: 03759474. doi: https://doi.org/10.1016/0375-9474(86)90252-6. url: https:

//www.sciencedirect.com/science/article/pii/0375947486902526.

[74] C.Wu. “Personnal communications”. In: (2023).

[75] A. Edmonds et al. “Using machine learning to select high-quality measurements”. In: (2019).

vii

Acronyms

0νββ neutrinoless double beta decay. 4, 5

µ− → e+ conversion muon to positron conversion. 5, 6, 9, 10, 89, 108–111, 116,

118, 122

µ− → e− conversion muon to electron conversion. 4, 5, 11–13, 18, 21, 33, 36, 39,

41, 43, 69, 83, 104, 113, 117, 118, 122

BSM Beyond the SM. 1

CDC Cylindrical Drift Chamber. 18

CHT Circular Hough Transform. 49, 57, 60, 62, 75, 78

cLFV charged Lepton Flavor Violation. 3

COMET COherent Muon to Electron Transition. 3, 26

COMET Phase-I COMET Phase-I. 122

CTH CyDet Trigger Hodoscope. 18, 20, 76

CyDet Cylindrical Detector System. 15

DAQ Data Acquisition. 39, 47

DIO Decay In Orbit. 12, 98, 101, 104, 122

GBDT Gradient Boosted Decision Tree. 43, 44, 57, 102, 118, 119, 121, 122, 126

GDR Giant Dipole Resonance. 6

GEANT4 GEometry And Tracking. 26, 27

GENFIT GENeric Track-Fitting Toolkit. 73, 76, 123

GS Ground state. 4–6

ICEDUST Integrated COMET Experiment Data User Software Toolkit. 26

J-PARC Japan Proton Accelerator Research Complex. 11, 13

MR Main Ring. 13

viii

NDF Number of Degrees of Freedom. 81, 83, 84

POT proton-on-target. 33

RCS Rapid Cycling Synchroton. 13

RMC Radiative Muon Capture. 6, 7, 9, 10, 26–28, 41, 84, 89, 90, 95, 98, 102, 118

ROC Receiver Operator Characteristics. 45, 47, 56

RPC Radiative Pion Capture. 12, 13, 16, 96, 97

SES Single Event Sensitivity. 11, 104

SM Standard Model. 1

ix

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る