リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Multiple Virtual Screening Strategies for the Discovery of Novel Compounds Active Against Dengue Virus: A Hit Identification Study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Multiple Virtual Screening Strategies for the Discovery of Novel Compounds Active Against Dengue Virus: A Hit Identification Study

重田, 育照 Hengphasatporn, Kowit Garon, Arthur Wolschann, Peter Langer, Thierry Huynh, Thao N.T. Chavasiri, Warinthorn Saelee, Thanaphon Boonyasuppayakorn, Siwaporn Rungrotmongkol, Thanyada 筑波大学 DOI:10.3390/scipharm88010002

2020.09.03

概要

Dengue infection is caused by a mosquito-borne virus, particularly in children, which may even cause death. No effective prevention or therapeutic agents to cure this disease are available up to now. The dengue viral envelope (E) protein was discovered to be a promising target for inhibition in several steps of viral infection. Structure-based virtual screening has become an important technique to identify first hits in a drug screening process, as it is possible to reduce the number of compounds to be assayed, allowing to save resources. In the present study, pharmacophore models were generated using the common hits approach (CHA), starting from trajectories obtained from molecular dynamics (MD) simulations of the E protein complexed with the active inhibitor, flavanone (FN5Y). Subsequently, compounds presented in various drug databases were screened using the LigandScout 4.2 program. The obtained hits were analyzed in more detail by molecular docking, followed by extensive MD simulations of the complexes. The highest-ranked compound from this procedure was then synthesized and tested on its inhibitory efficiency by experimental assays.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem. 2016, 12,

2694–2718. [CrossRef] [PubMed]

Hayes, J.M. Chapter 2—Computer-aided discovery of glycogen phosphorylase inhibitors exploiting natural

products a2 —brahmachari, goutam. In Discovery and Development of Antidiabetic Agents from Natural Products;

Elsevier: Amsterdam, The Netherlands, 2017; pp. 29–62.

Langer, T. Pharmacophores in drug research. Mol. Inform. 2010, 29, 470–475. [CrossRef] [PubMed]

Voet, A.; Callewaert, L.; Ulens, T.; Vanderkelen, L.; Vanherreweghe, J.M.; Michiels, C.W.; De Maeyer, M.

Structure based discovery of small molecule suppressors targeting bacterial lysozyme inhibitors. Biochem.

Biophys. Res. Commun. 2011, 405, 527–532. [CrossRef] [PubMed]

Osman, G.; Omoshile, C.; Yasuhisa, K. Pharmacophore modeling and three dimensional database searching

for drug design using catalyst: Recent advances. Curr. Med. Chem. 2004, 11, 2991–3005.

Wolber, G.; Langer, T. Ligandscout: 3-d pharmacophores derived from protein-bound ligands and their use

as virtual screening filters. J. Chem. Inf. Modeling 2005, 45, 160–169. [CrossRef]

Yang, S.-Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances.

Drug Discov. Today 2010, 15, 444–450. [CrossRef]

Rodolpho, C.B.; Carolina, H.A. Assessing the performance of 3d pharmacophore models in virtual screening:

How good are they? Curr. Top. Med. Chem. 2013, 13, 1127–1138.

Shin, W.-J.; Seong, B.L. Recent advances in pharmacophore modeling and its application to anti-influenza

drug discovery. Expert Opin. Drug Discov. 2013, 8, 411–426. [CrossRef]

Sanders, M.P.A.; McGuire, R.; Roumen, L.; de Esch, I.J.P.; de Vlieg, J.; Klomp, J.P.G.; de Graaf, C. From the

protein’s perspective: The benefits and challenges of protein structure-based pharmacophore modeling.

MedChemComm 2012, 3, 28–38. [CrossRef]

Langer, T.; Wolber, G. Pharmacophore definition and 3d searches. Drug Discov. Today Technol. 2004, 1,

203–207. [CrossRef]

Sci. Pharm. 2020, 88, 2

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

16 of 19

Horvath, D. Pharmacophore-based virtual screening. In Chemoinformatics and Computational Chemical Biology;

Bajorath, J., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 261–298.

Lee, M.; Kim, D. Large-scale reverse docking profiles and their applications. BMC Bioinform. 2012, 13, S6.

[CrossRef] [PubMed]

Kumar, A.; Zhang, K.Y.J. Hierarchical virtual screening approaches in small molecule drug discovery. Methods

2015, 71, 26–37. [CrossRef] [PubMed]

Rognan, D. Docking methods for virtual screening: Principles and recent advances. In Virtual Screening;

Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp. 153–176.

Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 2002, 1, 882.

[CrossRef] [PubMed]

Taft, C.A.; da Silva, V.B.; da Silva, C.H.T.d.P. Current topics in computer-aided drug design. J. Pharm. Sci.

2008, 97, 1089–1098. [CrossRef]

Song, C.M.; Lim, S.J.; Tong, J.C. Recent advances in computer-aided drug design. Brief. Bioinform. 2009, 10,

579–591. [CrossRef]

Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011,

162, 1239–1249. [CrossRef]

Settivari, R.S.; Ball, N.; Murphy, L.; Rasoulpour, R.; Boverhof, D.R.; Carney, E.W. Predicting the future:

Opportunities and challenges for the chemical industry to apply 21st-century toxicity testing. J. Am. Assoc.

Lab. Anim. Sci. 2015, 54, 214–223.

Daniela, S.; Christian, L.; Theodora, M.S.; Thierry, L. Development and validation of an in silico p450 profiler

based on pharmacophore models. Curr. Drug Discov. Technol. 2006, 3, 1–48.

Rakers, C.; Schumacher, F.; Meinl, W.; Glatt, H.; Kleuser, B.; Wolber, G. In silico prediction of human

sulfotransferase 1e1 activity guided by pharmacophores from molecular dynamics simulations. J. Biol. Chem.

2016, 291, 58–71. [CrossRef]

Murgueitio, M.S.; Bermudez, M.; Mortier, J.; Wolber, G. In silico virtual screening approaches for anti-viral

drug discovery. Drug Discov. Today Technol. 2012, 9, e219–e225. [CrossRef]

Sakkiah, S.; Thangapandian, S.; John, S.; Lee, K.W. Pharmacophore based virtual screening, molecular

docking studies to design potent heat shock protein 90 inhibitors. Eur. J. Med. Chem. 2011, 46, 2937–2947.

[CrossRef] [PubMed]

Sanders, M.P.A.; Barbosa, A.J.M.; Zarzycka, B.; Nicolaes, G.A.F.; Klomp, J.P.G.; de Vlieg, J.; Del Rio, A.

Comparative analysis of pharmacophore screening tools. J. Chem. Inf. Modeling 2012, 52, 1607–1620.

[CrossRef] [PubMed]

Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery:

Methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935. [CrossRef] [PubMed]

Ferreira, G.L.; dos Santos, N.R.; Oliva, G.; Andricopulo, D.A. Molecular docking and structure-based drug

design strategies. Molecules 2015, 20, 13384–13421. [CrossRef]

Naïm, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.;

Jakalian, A.; et al. Solvated interaction energy (sie) for scoring protein−ligand binding affinities. 1. Exploring

the parameter space. J. Chem. Inf. Modeling 2007, 47, 122–133.

Sulea, T.; Purisima, E.O. The solvated interaction energy method for scoring binding affinities. In Computational

Drug Discovery and Design; Baron, R., Ed.; Springer New York: New York, NY, USA, 2012; pp. 295–303.

Ota, S.; Tomioka, S.; Sogawa, H.; Satou, R.; Fujimori, M.; Karpov, P.; Shulga, S.; Blume, Y.; Kurita, N. Binding

properties between curcumin and malarial tubulin: Molecular-docking and ab initio fragment molecular

orbital calculations. Chem-Bio Inform. J. 2018, 18, 44–57. [CrossRef]

Kurauchi, R.; Watanabe, C.; Fukuzawa, K.; Tanaka, S. Novel type of virtual ligand screening on the basis of

quantum-chemical calculations for protein–ligand complexes and extended clustering techniques. Comput.

Theor. Chem. 2015, 1061, 12–22. [CrossRef]

Kitaura, K.; Sugiki, S.-I.; Nakano, T.; Komeiji, Y.; Uebayasi, M. Fragment molecular orbital method: Analytical

energy gradients. Chem. Phys. Lett. 2001, 336, 163–170. [CrossRef]

Sumanasinghe, N.; Mikler, A.R.; Muthukudage, J.; Tiwari, C.; Quiroz, R. Data driven prediction of dengue

incidence in thailand. In Recent Advances in Information and Communication Technology 2017: Proceedings of the

13th International Conference on Computing and Information Technology (ic2it); Meesad, P., Sodsee, S., Unger, H.,

Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 95–107.

Sci. Pharm. 2020, 88, 2

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

17 of 19

Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.;

Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507.

[CrossRef]

Flipse, J.; Diosa-Toro, M.A.; Hoornweg, T.E.; van de Pol, D.P.I.; Urcuqui-Inchima, S.; Smit, J.M.

Antibody-dependent enhancement of dengue virus infection in primary human macrophages; balancing

higher fusion against antiviral responses. Sci. Rep. 2016, 6, 29201. [CrossRef]

Guzman, M.G.; Alvarez, M.; Halstead, S.B. Secondary infection as a risk factor for dengue hemorrhagic

fever/dengue shock syndrome: An historical perspective and role of antibody-dependent enhancement of

infection. Arch. Virol. 2013, 158, 1445–1459. [CrossRef] [PubMed]

Halstead, S.B.; O’Rourke, E.J. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by

non-neutralizing antibody. J. Exp. Med. 1977, 146, 201–217. [CrossRef] [PubMed]

The Lancet Infectious Diseases. The dengue vaccine dilemma. Lancet Infect. Dis. 2018, 18, 123. [CrossRef]

Aguirre, S.; Luthra, P.; Sanchez-Aparicio, M.T.; Maestre, A.M.; Patel, J.; Lamothe, F.; Fredericks, A.C.;

Tripathi, S.; Zhu, T.; Pintado-Silva, J.; et al. Dengue virus ns2b protein targets cgas for degradation and

prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2017, 2, 17037. [CrossRef] [PubMed]

Lim, S.P.; Noble, C.G.; Seh, C.C.; Soh, T.S.; El Sahili, A.; Chan, G.K.Y.; Lescar, J.; Arora, R.; Benson, T.; Nilar, S.;

et al. Potent allosteric dengue virus ns5 polymerase inhibitors: Mechanism of action and resistance profiling.

PLoS Pathog. 2016, 12, e1005737. [CrossRef] [PubMed]

Lindenbach, B.D.; Rice, C.M. Molecular biology of flaviviruses. In Advances in Virus Research; Academic

Press: Cambridge, MA, USA, 2003; Volume 59, pp. 23–61.

Ismail, N.A.; Jusoh, S.A. Molecular docking and molecular dynamics simulation studies to predict flavonoid

binding on the surface of denv2 e protein. Interdiscip. Sci. Comput. Life Sci. 2017, 9, 499–511. [CrossRef]

[PubMed]

Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.;

Chipman, P.R.; Strauss, E.G.; et al. Structure of dengue virus: Implications for flavivirus organization,

maturation, and fusion. Cell 2002, 108, 717–725. [CrossRef]

Cruz-Oliveira, C.; Freire, J.M.; Conceição, T.M.; Higa, L.M.; Castanho, M.A.R.B.; Da Poian, A.T. Receptors

and routes of dengue virus entry into the host cells. Fems Microbiol. Rev. 2015, 39, 155–170. [CrossRef]

Fuzo, C.A.; Degrève, L. The ph dependence of flavivirus envelope protein structure: Insights from molecular

dynamics simulations. J. Biomol. Struct. Dyn. 2014, 32, 1563–1574. [CrossRef]

Heinz, F.X.; Allison, S.L. Structures and mechanisms in flavivirus fusion. Adv. Virus Res. 2000, 55, 231–269.

Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. A ligand-binding pocket in the dengue virus envelope

glycoprotein. Proc. Natl. Acad. Sci. USA 2003, 100, 6986–6991. [CrossRef] [PubMed]

Zhou, Z.; Khaliq, M.; Suk, J.-E.; Patkar, C.; Li, L.; Kuhn, R.J.; Post, C.B. Antiviral compounds discovered by

virtual screening of small–molecule libraries against dengue virus e protein. Acs Chem. Biol. 2008, 3, 765–775.

[CrossRef] [PubMed]

Wang, Q.-Y.; Patel, S.J.; Vangrevelinghe, E.; Xu, H.Y.; Rao, R.; Jaber, D.; Schul, W.; Gu, F.; Heudi, O.; Ma, N.L.;

et al. A small-molecule dengue virus entry inhibitor. Antimicrob. Agents Chemother. 2009, 53, 1823–1831.

[CrossRef] [PubMed]

Yennamalli, R.; Subbarao, N.; Kampmann, T.; McGeary, R.P.; Young, P.R.; Kobe, B. Identification of novel

target sites and an inhibitor of the dengue virus e protein. J. Comput. -Aided Mol. Des. 2009, 23, 333.

[CrossRef] [PubMed]

Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of dengue-virus entry target a late-stage fusion

intermediate. PLoS Pathog. 2010, 6, e1000851. [CrossRef] [PubMed]

Jadav, S.S.; Kaptein, S.; Timiri, A.; De Burghgraeve, T.; Badavath, V.N.; Ganesan, R.; Sinha, B.N.; Neyts, J.;

Leyssen, P.; Jayaprakash, V. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue

virus e protein inhibitors. Bioorganic Med. Chem. Lett. 2015, 25, 1747–1752. [CrossRef]

Tambunan, U.S.F.; Zahroh, H.; Parikesit, A.A.; Idrus, S.; Kerami, D. Screening analogs of β-og pocket binder

as fusion inhibitor of dengue virus 2. Drug Target Insights 2015, 9, 33–49. [CrossRef]

Srivarangkul, P.; Yuttithamnon, W.; Suroengrit, A.; Pankaew, S.; Hengphasatporn, K.; Rungrotmongkol, T.;

Phuwapriasirisan, P.; Ruxrungtham, K.; Boonyasuppayakorn, S. A novel flavanone derivative inhibits

dengue virus fusion and infectivity. Antivir. Res. 2018, 151, 27–38. [CrossRef]

Sci. Pharm. 2020, 88, 2

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

18 of 19

De Wispelaere, M.; Lian, W.; Potisopon, S.; Li, P.-C.; Jang, J.; Ficarro, S.B.; Clark, M.J.; Zhu, X.; Kaplan, J.B.;

Pitts, J.D.; et al. Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell

Chem. Biol. 2018, 25, 1006–1016. [CrossRef]

Kanyaboon, P.; Saelee, T.; Suroengrit, A.; Hengphasatporn, K.; Rungrotmongkol, T.; Chavasiri, W.;

Boonyasuppayakorn, S. Cardol triene inhibits dengue infectivity by targeting kl loops and preventing

envelope fusion. Sci. Rep. 2018, 8, 16643. [CrossRef]

Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Nogueira, M.L.; Rahal, P. The green tea molecule egcg inhibits

zika virus entry. Virology 2016, 496, 215–218. [CrossRef]

Hengphasatporn, K.; Kungwan, N.; Rungrotmongkol, T. Binding pattern and susceptibility of epigallocatechin

gallate against envelope protein homodimer of zika virus: A molecular dynamics study. J. Mol. Liq. 2019,

274, 140–147. [CrossRef]

Barba-Spaeth, G.; Dejnirattisai, W.; Rouvinski, A.; Vaney, M.-C.; Medits, I.; Sharma, A.; Simon-Lorière, E.;

Sakuntabhai, A.; Cao-Lormeau, V.-M.; Haouz, A.; et al. Structural basis of potent zika–dengue virus antibody

cross-neutralization. Nature 2016, 536, 48–53. [CrossRef]

Slon Campos, J.L.; Marchese, S.; Rana, J.; Mossenta, M.; Poggianella, M.; Bestagno, M.; Burrone, O.R.

Temperature-dependent folding allows stable dimerization of secretory and virus-associated e proteins of

dengue and zika viruses in mammalian cells. Sci. Rep. 2017, 7, 966. [CrossRef]

Seyedi, S.S.; Shukri, M.; Hassandarvish, P.; Oo, A.; Shankar, E.M.; Abubakar, S.; Zandi, K. Computational

approach towards exploring potential anti-chikungunya activity of selected flavonoids. Sci. Rep. 2016, 6,

24027. [CrossRef]

Akimoto, N.; Ara, T.; Nakajima, D.; Suda, K.; Ikeda, C.; Takahashi, S.; Muneto, R.; Yamada, M.; Suzuki, H.;

Shibata, D.; et al. Flavonoidsearch: A system for comprehensive flavonoid annotation by mass spectrometry.

Sci. Rep. 2017, 7, 1243. [CrossRef]

Wieder, M.; Garon, A.; Perricone, U.; Boresch, S.; Seidel, T.; Almerico, A.M.; Langer, T. Common hits approach:

Combining pharmacophore modeling and molecular dynamics simulations. J. Chem. Inf. Modeling 2017, 57,

365–385. [CrossRef]

Chen, X.; Reynolds, C.H. Performance of similarity measures in 2d fragment-based similarity searching:

Comparison of structural descriptors and similarity coefficients. J. Chem. Inf. Comput. Sci. 2002, 42,

1407–1414. [CrossRef]

Irwin, J.J.; Shoichet, B.K. Zinc—A free database of commercially available compounds for virtual screening.

J. Chem. Inf. Modeling 2005, 45, 177–182. [CrossRef]

Manner, S.; Skogman, M.; Goeres, D.; Vuorela, P.; Fallarero, A. Systematic exploration of natural and synthetic

flavonoids for the inhibition of staphylococcus aureus biofilms. Int. J. Mol. Sci. 2013, 14, 19434–19451.

[CrossRef]

Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Wiswedel, B. Knime: The Konstanz

Information Miner. In Data Analysis, Machine Learning and Applications; Preisach, C., Burkhardt, H.,

Schmidt-Thieme, L., Decker, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 319–326.

Fawcett, T. An introduction to roc analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]

Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (dud-e): Better

ligands and decoys for better benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [CrossRef]

Wu, G.; Robertson, D.H.; Brooks, C.L.; Vieth, M. Detailed analysis of grid-based molecular docking: A case

study of cdocker—A charmm-based md docking algorithm. J. Comput. Chem. 2003, 24, 1549–1562. [CrossRef]

Hsu, K.-C.; Chen, Y.-F.; Lin, S.-R.; Yang, J.-M. Igemdock: A graphical environment of enhancing gemdock

using pharmacological interactions and post-screening analysis. BMC Bioinform. 2011, 12, S33. [CrossRef]

Csizmadia, F.; Tsantili-Kakoulidou, A.; Panderi, I.; Darvas, F. Prediction of distribution coefficient from

structure. 1. Estimation method. J. Pharm. Sci. 1997, 86, 865–871. [CrossRef]

Dixon, S.L.; Jurs, P.C. Estimation of pka for organic oxyacids using calculated atomic charges. J. Comput.

Chem. 1993, 14, 1460–1467. [CrossRef]

Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber

force field. J. Comput. Chem. 2004, 25, 1157–1174. [CrossRef]

Sangpheak, W.; Kicuntod, J.; Schuster, R.; Rungrotmongkol, T.; Wolschann, P.; Kungwan, N.; Viernstein, H.;

Mueller, M.; Pongsawasdi, P. Physical properties and biological activities of hesperetin and naringenin in

complex with methylated β-cyclodextrin. Beilstein J. Org. Chem. 2015, 11, 2763–2773. [CrossRef]

Sci. Pharm. 2020, 88, 2

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

19 of 19

Nutho, B.; Khuntawee, W.; Rungnim, C.; Pongsawasdi, P.; Wolschann, P.; Karpfen, A.; Kungwan, N.;

Rungrotmongkol, T. Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes.

Beilstein J. Org. Chem. 2014, 10, 2789–2799. [CrossRef]

Kicuntod, J.; Khuntawee, W.; Wolschann, P.; Pongsawasdi, P.; Chavasiri, W.; Kungwan, N.; Rungrotmongkol, T.

Inclusion complexation of pinostrobin with various cyclodextrin derivatives. J. Mol. Graph. Model. 2016, 63,

91–98. [CrossRef]

Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.;

et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase

quantum mechanical calculations. J. Comput. Chem. 2003, 24, 1999–2012. [CrossRef]

Virtanen, S.I.; Niinivehmas, S.P.; Pentikäinen, O.T. Case-specific performance of mm-pbsa, mm-gbsa, and sie

in virtual screening. J. Mol. Graph. Model. 2015, 62, 303–318. [CrossRef]

Feyereisen, M.; Fitzgerald, G.; Komornicki, A. Use of approximate integrals in ab initio theory. An application

in mp2 energy calculations. Chem. Phys. Lett. 1993, 208, 359–363. [CrossRef]

Gordon, M.S.; Schmidt, M.W. Chapter 41—Advances in electronic structure theory: Gamess a decade later.

In Theory and Applications of Computational Chemistry; Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E.,

Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1167–1189.

Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.;

Nguyen, K.A.; Su, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993,

14, 1347–1363. [CrossRef]

Nakano, T.; Kaminuma, T.; Sato, T.; Akiyama, Y.; Uebayasi, M.; Kitaura, K. Fragment molecular orbital

method: Application to polypeptides. Chem. Phys. Lett. 2000, 318, 614–618. [CrossRef]

Ishimoto, T.; Tokiwa, H.; Teramae, H.; Nagashima, U. Theoretical study of intramolecular interaction energies

during dynamics simulations of oligopeptides by the fragment molecular orbital-hamiltonian algorithm

method. J. Chem. Phys. 2005, 122, 094905. [CrossRef]

Suroengrit, A.; Yuttithamnon, W.; Srivarangkul, P.; Pankaew, S.; Kingkaew, K.; Chavasiri, W.;

Boonyasuppayakorn, S. Halogenated chrysins inhibit dengue and zika virus infectivity. Sci. Rep. 2017, 7,

13696. [CrossRef]

Boonyasuppayakorn, S.; Suroengrit, A.; Srivarangkul, P.; Yuttithamnon, W.; Pankaew, S.; Saelee, T.;

Prompetchara, E.; Salakij, S.; Bhattarakosol, P. Simplified dengue virus microwell plaque assay using

an automated quantification program. J. Virol. Methods 2016, 237, 25–31. [CrossRef]

Flint, J.; Racaniello, V.R.; Rall, G.F.; Skalka, A.M.; Enquist, L.W. Principles of Virology, 4th ed.; ASM Press:

Washington, DC, USA, 2015; Volume I.

Brammer, L. Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: Origins, current

status and discussion. Faraday Discuss. 2017, 203, 485–507. [CrossRef]

Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond.

Chem. Rev. 2016, 116, 2478–2601. [CrossRef]

Lisac, K.; Topi´c, F.; Arhangelskis, M.; Cepi´c, S.; Julien, P.A.; Nickels, C.W.; Morris, A.J.; Frišˇci´c, T.; Cinˇci´c, D.

Halogen-bonded cocrystallization with phosphorus, arsenic and antimony acceptors. Nat. Commun. 2019,

10, 61. [CrossRef]

Mendez, L.; Henriquez, G.; Sirimulla, S.; Narayan, M. Looking back, looking forward at halogen bonding in

drug discovery. Molecules 2017, 22, 1397. [CrossRef]

Maruyama, K.; Sheng, Y.; Watanabe, H.; Fukuzawa, K.; Tanaka, S. Application of singular value decomposition

to the inter-fragment interaction energy analysis for ligand screening. Comput. Theor. Chem. 2018, 1132,

23–34. [CrossRef]

Lu, Y.-X.; Zou, J.-W.; Wang, Y.-H.; Yu, Q.-S. Substituent effects on noncovalent halogen/π interactions:

Theoretical study. Int. J. Quantum Chem. 2007, 107, 1479–1486. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

...

参考文献をもっと見る