リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「In vitro selection of anti-gliadin single-domain antibodies from a naïve library and its application for cDNA-display mediated immuno-PCR」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

In vitro selection of anti-gliadin single-domain antibodies from a naïve library and its application for cDNA-display mediated immuno-PCR

RANWADANA MUDIYANSELA GEDARA CHATHUNI SAMANTHIKA KUMARI JAYATHILAKE 埼玉大学 DOI:info:doi/10.24561/00019152

2020

概要

Gluten intolerance, or adverse intestinal reactions to gluten, is a fairly common problem among certain groups of people. Celiac disease is the most severe form of gluten intolerance, which can lead to permanent damage in the digestive system. Since lifelong avoidance of gluten is the only available treatment, development of reliable techniques to identify gluten contamination in food is important. Gliadin, a component of gluten, is known to play a major role in gluten toxicity. The cDNA display method is used in this study which is a promising in vitro display technique, which uniquely converts an unstable mRNA-protein fusion molecule to a stable mRNA/cDNA-protein fusion molecule using a well-designed puromycin linker. This study was aimed to select specific single-domain antibodies against toxic gliadin from an alpaca-derived naïve VHH library using cDNA display method and to apply newly developed cDNA display mediated immuno-PCR (cD-iPCR) method in determining the affinity of selected VHHs against gliadin and finally to compare the results of cD-iPCR with other affinity assays (Pull-down assay and ELISA). Three candidate VHHs were successfully selected and the affinities of the VHHs were observed by pulldown assay and indirect ELISA method. Those affinity results were in line with the novel cD-iPCR assay results indicating the accurate applicability of the method. In addition, cD-iPCR method was successfully applied to detect gliadin in actual food samples. VHH1 and VHH2 were the best binders toward gliadin compared with VHH3 in all assays performed, including the cD-iPCR assay. We believe this work demonstrates the potential application of the cDNA display method in selecting binders against toxic and heterogeneous targets such as gliadin with an immunization-free preparation manner.

この論文で使われている画像

参考文献

Altenbach SB, Chang HC, Yu XB, Seabourn BW, Green PH, Alaedini A (2019) Elimination of

Omega-1,2 Gliadins from Bread Wheat (Triticum aestivum) Flour: Effects on Immunogenic

Potential and End-Use Quality, Frontiers in Plant Science. 10(580).

Al-Toma A, Volta U, Auricchio R, Castillejo G, Sanders D, Cellier C, Mulder CJ, Lundin KAE.

(2019) European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease

and other gluten-related disorders. United European Gastroenterol J. 7(5):583-613.

Anania C, Olivero F, Spagnolo A, Chiesa C, Pacifico L. (2017) Immune response to vaccines in

children with celiac disease. World J Gastroenterology. 23(18):3205–3213.

Anzai H, Terai T, Jayathilake C, Suzuki T, Nemoto N. (2019) A novel immuno-PCR method using

cDNA display. Analytical Biochemistry. 1(578):1–6.

Arnold FH, Volkov AA. (1999) Directed evolution of biocatalysts, Current opinion in chemical

biology. 3(1):54–9.

Balakireva, AV, Zamyatnin, AA. (2016) Properties of Gluten Intolerance: Gluten Structure,

Evolution, Pathogenicity and Detoxification Capabilities. Nutrients. 8(10):e644.

Barendt PA, Ng DT, McQuade CN, Sarkar CA. (2013) Streamlined protocol for mRNA display.

ACS Combinatorial Science. 15(2):77–81.

Barton SH, Murray JA. (2008) Celiac disease and autoimmunity in the gut and elsewhere.

Gastroenterology Clinics of North America. 37(2):411–vii.

69

Biesiekierski JR., Peters SL, Newnham ED, Rosella O, Muir JG, Gibson PR. (2013) No effects of

gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of

fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology. 145(2):320–328.

Biyani M, Biyani M, Nemoto N, Ichiki T, Nishigaki K, Husimi Y. (2011) Gel shift selection of

translation enhancer sequences using messenger RNA display. Analytical Biochemistry.

409(1):105–111.

Boder, ET, Midelfort, KS, Wittrup, KD. (2000) Directed evolution of antibody fragments with

monovalent femtomolar antigen-binding affinity. Proceedings of the National Academy of

Sciences of the United States of America. National Academy of Sciences, 97(20):10701–10705.

Carroccio A, Mansueto P, Iacono G, Soresi M, D’Alcamo A, Cavataio F, Brusca I, Florena AM,

Ambrosiano G, Seidita A, Pirrone G, Rini GB. (2012) Non-celiac wheat sensitivity diagnosed by

double-blind placebo-controlled challenge: exploring a new clinical entity. American J of

Gastroenterology 107(12):1898–1906.

Casella G, Villanacci V, Di Bella C, Bassotti G, Bold J, Rostami K. (2018) Non celiac gluten

sensitivity and diagnostic challenges. Gastroenterol Hepatol Bed Bench. 11(3):197–202.

Catassi C, Elli L, Bonaz B, Bouma G, Carroccio A, Castillejo G., … Fasano A. (2015). Diagnosis

of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts' Criteria. Nutrients, 7(6):4966–

4977.

Chu PT, Wen HW. (2013) Sensitive detection and quantification of gliadin contamination in

gluten-free food with immunomagnetic beads based liposomal fluorescence immunoassay.

Analytica Chimica Acta. 17(787):246–253.

70

Cucu T, Devreese B, Trashin S, Kerkaert B, Rogge M, De Meulenaer B. (2012) Detection of

hazelnut in foods using ELISA: challenges related to the detectability in processed foodstuffs. J of

AOAC International, 95(1):149–56.

Czaja-Bulsa G, Bulsa M. (2017) What Do We Know Now about IgE-Mediated Wheat Allergy in

Children? Nutrients. 9(1):35.

De Vlieger D, Ballegeer M, Rossey, Schepens B, Saelens X. (2018) Single-Domain Antibodies

and Their Formatting to Combat Viral Infections. Antibodies. 8(1):E1.

Desmyter A, Transue TR, Ghahroudi MA, Thi MH, Poortmans F, Hamers R, Muyldermans S,

Wyns L. (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with

lysozyme. Nature Structural Biology. 3:803–811.

Dewar D, Pereira SP, Ciclitira PJ. (2004) The pathogenesis of coeliac disease. The International J

of Biochemistry & Cell Biology. 36(1):17–24.

Doña V, Urrutia M, Bayardo M, Alzogaray V, Goldbaum FA, Chirdo FG. (2010) Single domain

antibodies are specially suited for quantitative determination of gliadins under denaturing

conditions. Journal of Agriculture and Food Chemistry. 58(2):918-26.

Eden T, Menzel S, Wesolowski J, Bergmann P, Nissen M, Dubberke G, Seyfried F, Albrecht B,

Haag F, Koch-Nolte F. (2017) A cDNA Immunization Strategy to Generate Nanobodies against

Membrane Proteins in Native Conformation. Frontiers in immunology. 8:1989.

Fasano A, Catassi C. (2012) Clinical practice. Celiac disease. The New England J of Medicine.

367(25):2419–2426.

71

Fasano, A. Catassi, C. (2001) Current approaches to diagnosis and treatment of celiac disease: An

evolving spectrum. Gastroenterology. 120(3):636–651.

Fields S, Song OK. (1989) A novel genetic system to detect protein-protein interactions. Nature,

340(6230):245–246.

Gai SA, Wittrup KD. (2007) Yeast surface display for protein engineering and characterization.

Current Opinion in Structural Biology. 17(4):467–473.

Geisslitz S, Wieser H, Scherf KA, Koehler P. (2018) Gluten protein composition and aggregation

properties as predictors for bread volume of common wheat, spelt, durum wheat, emmer and

einkorn. J of Cereal Science. 83:204–212.

Gold L., Allen,P., Binkley,J., Brown,D., Schneider,D., Eddy,S.R., Tuerk,C., Green,L.,

MacDougal,S. and Tasset,D. (1993) In Gesteland,R.R. and Atkins,J.F. (eds), The RNA world.

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 497–509.

Gonzalez-Sapienza G, Rossotti MA, Tabares-da Rosa S. (2017) Single-Domain Antibodies as

Versatile Affinity Reagents for Analytical and Diagnostic Applications. Frontiers in Immunology.

8:977.

Green PH, Cellier C. (2007) Celiac disease. The New England J of Medicine. 357(17):1731-43.

Guo YC, Zhou YF, Zhang XE, Zhang ZP, Qiao YM, Bi LJ, Wen JK, Liang MF, Zhang JB. (2006)

Phage display mediated immuno-PCR. Nucleic Acids Research. 34(8):e62.

Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB,

Bendahman N & Hamers R. (1993) Naturally occurring antibodies devoid of light chains. Nature.

363(6428): 446-448.

72

Hanes J, Pluckthun A. (1997) In vitro selection and evolution of functional proteins by using

ribosome display. Proceedings of the National Academy of Sciences, 94(10):4937–4942.

Hendrickson, E. R., Truby, T. M., Joerger, R. D., Majarian, W. R. and Ebersole, R. C. (1995).

High sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and

polymerase chain reaction. Nucleic Acids Res 23(3): 522-529.

Holliger P, Hudson PJ. (2005) Engineered antibody fragments and the rise of single domains.

Nature Biotechnology. 23(9):1126–1136.

Husby S, Koletzko S, Korponay-Szabo IR, Mearin ML, Phillips A, Shamir R, Troncone R,

Giersiepen K, Branski D, Catassi C et al. (2012) European Society for Pediatric Gastroenterology,

Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. of Pediatric

Gastroenterology and Nutrition. 54(1):136–160.

Husby S, Murray JA, Katzka DA. (2019) AGA Clinical Practice Update on Diagnosis and

Monitoring of Celiac Disease—Changing Utility of Serology and Histologic Measures: Expert

Review. Gastroenterology. 156(4):885–889.

Inna Spector Cohen M.D, Andrew S. Day M.D, Ron Shaoul MD. (2019) Gluten in Celiac DiseaseMore or Less? Rambam Maimonides Medical J, 10(1):e0007.

Jiang X, Cheng S, Chen W, Wang L, Shi F, Zhu C. (2012) Comparison of oligonucleotide-labeled

antibody probe assays for prostate-specific antigen detection. Analytical Biochemistry. 424(1):17.

Kanerva P, Sontag-Strohm T, Brinck O. (2011) Improved extraction of prolamins for gluten

detection in processed foods. Agricultural and Food Science. 20(3):206-216.

73

Koch-Nolte F, Reyelt J, Schössow B, Schwarz N, Scheuplein F, Rothenburg S, Haag F, Alzogaray

V, Cauerhff A, Goldbaum FA (2007) Single domain antibodies from llama effectively and

specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J. 21(13):3490–

3498.

Koppelman SJ, Söylemez G, Niemann L, Gaskin FE, Baumert JL, Taylor SL. (2015) Sandwich

Enzyme-Linked Immunosorbent Assay for Detecting Sesame Seed in Foods. BioMed research

international. 2015:853836-16.

Leffler DA, Green PH, Fasano A. (2015) Extraintestinal manifestations of coeliac disease. Nature

Reviews Gastroenterology & Hepatology. 12(10):561–571.

Lim SD, Min H, Youn E, Kawasaki I, Shim Y. (2018). Gliadin intake induces oxidative-stress

responses in Caenorhabditis elegans. Biochemical and biophysical research communications.

503(3):2139-2145.

Lionetti, E. Castellaneta S, Francavilla R, Pulvirenti A, Catassi GN, Catassi C. (2019) Long-Term

Outcome of Potential Celiac Disease in Genetically At-Risk Children: The Prospective

CELIPREV Cohort Study. Journal of Clinical Medicine. 8(2):186.

Lipovsek D, Plückthun A. (2004) In-vitro protein evolution by ribosome display and mRNA

display. J. Immunology. Met. 290(1-2)51-67.

Longo G, Berti I, Burks AW, Krauss B, Brabie E. (2013) IgE-mediated food allergy in children.

The Lancet. 382(9905):1656–1664.

74

Luo XM, McKeague M, Pitre S, Dumontier M, Green J, Golshani A, Derosa MC, Dehne F (2010)

Computational approaches toward the design of pools for the in vitro selection of complex

aptamers. Rna-a Publication of the Rna Society. 16(11): 2252-2262.

Manai F, Azzalin A, Gabriele F, Martinelli C, Morandi M, Biggiogera M, Bozzola M, Comincini

S. (2018) The In Vitro Effects of Enzymatic Digested Gliadin on the Functionality of the

Autophagy Process. International journal of molecular sciences. 19(2):E635.

Marshall KA, Ellington AD. (2000) In vitro selection of RNA aptamers. Methods in Enzymology.

318:193-214.

Miranda-Castro R, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ. (2016)

Harnessing Aptamers to Overcome Challenges in Gluten Detection. Biosensors (Basel). 6(2):16.

Mochizuki Y, Biyani M, Tsuji-Ueno S, Suzuki M, Nishigaki K, Husimi Y, Nemoto N. (2011) OnePot Preparation of mRNA/cDNA Display by a Novel and Versatile Puromycin-Linker DNA. ACS

Combinatorial Science. 13(5):478–485.

Mochizuki Y, Suzuki T, Fujimoto K, Nemoto N. (2015) A versatile puromycin-linker using cnvK

for high-throughput in vitro selection by cDNA display. Journal of Biotechnology. 212:174–180.

Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A, Ligat L, Rain JC, Favre G,

Olichon A, Perez F. (2016) NaLi-H1: A universal synthetic library of humanized nanobodies

providing highly functional antibodies and intrabodies. ELife, 5:e16228.

Muyldermans S, Cambillau C, Wyns L. (2001) Recognition of antigens by single-domain antibody

fragments: the superfluous luxury of paired domains. Trends Biochemical Science. 26(4):230–

235.

75

Nemoto N, Fukushima T, Kumachi S, Suzuki M, Nishigaki K, Kubo T. (2014) Versatile CTerminal Specific Biotinylation of Proteins Using Both a Puromycin-Linker and a Cell-Free

Translation System for Studying High-Throughput Protein–Molecule Interactions. Analytical

Chemistry. 86(17):8535–8540.

Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H. (1997) In vitro virus: bonding of mRNA

bearing puromycin at the 3'-terminal end to the C-terminal end of its encoded protein on the

ribosome in vitro. FEBS Letters. 414(2):405-8.

Nguyen VK, Su C, Muyldermans S, van der Loo W. (2002) Heavy-chain antibodies in Camelidae;

a case of evolutionary innovation. Immunogenetics. 54(1):39–47.

Nilsen EM, Jahnsen FL, Lundin KE, Johansen FE, Fausa O, Sollid LM, Jahnsen J, Scott H,

Brandtzaeg P. (1998) Gluten induces an intestinal cytokine response strongly dominated by

interferon gamma in patients with celiac disease. Gastroenterology. 115(3):551–563.

Olichon A, de Marco A. (2012) Preparation of a Naïve Library of Camelid Single Domain

Antibodies. Methods in Molecular Biology. 911:65–78.

Ontiveros N, Rodríguez-Bellegarrigue CI, Galicia-Rodríguez G, Vergara-Jiménez MJ, ZepedaGómez EM, Arámburo-Galvez JG, Gracia-Valenzuela MH, Cabrera-Chávez F. (2018) Prevalence

of Self-Reported Gluten-Related Disorders and Adherence to a Gluten-Free Diet in Salvadoran

Adult Population. International journal of environmental research and public health. 15(4):E786.

Osborne T.B (1907) The Proteins of the Wheat Kernel. Washington DC: Carnegie Institute of

Washington, doi.org/10.5962/bhl.title.22763.

76

Palosuo K, Varjonen E, Kekki OM, Klemola T, Kalkkinen N, Alenius H, Reunala T. (2001) Wheat

ꞷ-5 gliadin is a major allergen in children with immediate allergy to ingested wheat. J Allergy and

Clinical Immunology. 108(4):634-638.

Panda R, Zoerb HF, Cho CY, Jackson LS, Garber EA. (2015) Detection and Quantification of

Gluten during the Brewing and Fermentation of Beer Using Antibody-Based Technologies.

78(6):1167-77.

Parzanese I, Qehajaj D, Patrinicola F, Aralica M, Chiriva-Internati M, Stifter S, Elli L, Grizzi F.

(2017) Celiac disease: From pathophysiology to treatment. World J Gastrointestinal

Pathophysiology. 8(2):27-38.

Perez JW, Vargis EA, Russ PK, Haselton FR, Wright DW. (2011) Detection of respiratory

syncytial virus using nanoparticle amplified immuno-polymerase chain reaction, Analytical

Biochemistry. 410 (1):141-148.

Rasheed A, Xia X, Yan Y, Apples R, Mahmood T, He Z. (2014) Wheat seed storage proteins:

Advances in molecular genetics, diversity and breeding applications. Journal of Cereal Science.

60(1):11–24.

Roberts RW. (1999) Totally in vitro protein selection using mRNA-protein fusions and ribosome

display. Current Opinion in Chemical Biology. 3(3):268-273.

Sabir JS, Atef A, El-Domyati FM, Edris S, Hajrah N, Alzohairy AM, Bahieldin A. (2014)

Construction of naïve camelids VHH repertoire in phage display-based library. Comptes Rendus

Biologies, 337(4):244–249.

77

Saeed A, Assiri A, Cheema H. (2019) Celiac disease in children. J of Nature and Science of

Medicine. 2(1):23.

Salvador JP, Vilaplana L, Marco MP. (2019) Nanobody: outstanding features for diagnostic and

therapeutic applications. Analytical and Bioanalytical Chemistry. 411(9):1703–1713.

Sano T, Smith C, Cantor C. (1992) Immuno-PCR: very sensitive antigen detection by means of

specific antibody-DNA conjugates. Science. 258(5079):120–122.

Sapone A, Bai J, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K,

Sanders DS, Schumann M, et al. (2012) Spectrum of gluten disorders: Consensus on new

nomenclature and classification. BMC Medicine. 10(13).

Schaffitzel C, Hanes J, Jermutus L, Plückthun A. (1999) Ribosome display: an in vitro method for

selection and evolution of antibodies from libraries. Journal of Immunological Methods. 231(12):119–135.

Scherf KA, Koehler P, Wieser H. (2016) Gluten and wheat sensitivities – An overview. Journal of

Cereal Science. 67:2–11.

Scheuplein F, Rissiek B, Driver JP, Chen Y-G, Koch-Nolte F & Serreze DV (2010) A recombinant

heavy chain antibody approach blocks ART2 mediated deletion of an iNKT cell population that

upon activation inhibits autoimmune diabetes. J. Autoimmunology. 34(2):145–154.

Schuppan D. (2000) Current concepts of celiac disease pathogenesis. Gastroenterology.

119(1):234–242.

Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C. (2002) Structural

basis for gluten intolerance in Celiac Sprue. Science. 297(5590):2275–2279.

78

Shewry PR, Brennan C, Tatham AS, Warburton T, Fido R, Smith D, Griggs D, Cantrell I, Harris

N. (1996) The development, structure and composition of the barley grain in relation to its end use

properties. In: Cereals 96. Proceedings of the 46th Australian Cereal Chemistry Conference,

Sydney, 158–162.

Shewry PR, Popineau Y, Lafiandra D, Belton P. (2000) Wheat glutenin subunits and dough

elasticity: findings of the EUROWHEAT project. Trends in Food Science & Technology.

11(12):433–441.

Shewry PR, Tatham AS, Barro F, Barcelo P, Lazzeri P. (1995) Biotechnology of breadmaking:

unravelling and manipulating the multi-protein gluten complex. Nature Biotechnology. 13:1185–

1190.

Shewry PR, Tatham AS, Halford NG. (1999) The prolamins of the Triticeae. In: Shewry PR, Casey

R, eds. Seed proteins. Dordrecht: Kluwer Academic Publishers, 35–78.

Shewry PR, Tatham AS. (1990) The prolamin storage proteins of cereal seeds: structure and

evolution. Biochemical J. 267(1):1-12.

Shewry PR, Tatham AS. (1997) Disulphide bonds in wheat gluten proteins. J Cereal Science.

25(3):207-227.

Shewry PR, Tatham AS. (1999) The characteristics, structures and evolutionary relationships of

prolamins. In: Seed proteins. Shewry P.R. and Casey R. (Eds.). Kluwer Academic Publishers, the

Netherlands. pp. 11-34.

Shewry PR. (1999) The synthesis, processing and deposition of gluten proteins in the developing

wheat grain. Cereal Foods World. 44, 587–589.

79

Skerritt JH. (1985) A sensitive monoclonal-antibody-based test for gluten detection: quantitative

immunoassay. J of the Science of Food and Agriculture. 36(10):987-994.

Smith GP, Petrenko VA. (1997) Phage Display. Chemical Reviews. 97(2):391–410.

Stahl S, Uhlen M. (1997) Bacterial surface display: trends and progress. Trends in Biotecnology.

1997, 15(5):185-192.

Suzuki T, Mochizuki Y, Kimura S, Akazawa-Ogawa Y, Hagihara Y, Nemoto N. (2018) Antisurvivin single-domain antibodies derived from an artificial library including three synthetic

random regions by in vitro selection using cDNA display. Biochemical and Biophysical Research

Communications. 503(3):2054–2060.

Tanemura Y, Mochizuki Y, Kumachi S, Nemoto N. (2015) Easy and rapid binding assay for

functional analysis of disulfide-containing peptides by a pull-down method using a puromycinlinker and a cell-free translation system. Biology. 4(1):161–72.

Tawfik DS, Griffiths AD. (1998) Man-made cell-like compartments for molecular evolution.

Nature Biotechnology. 16(7):652–656.

Terai T, Anzai H, Nemoto N. (2019) Selection of Peptides that Associate with Dye-Conjugated

Solid Surfaces in a pH-Dependent Manner Using cDNA Display. ACS Omega. 4(4):7378-7384.

Tijink BM, Laeremans T, Budde M, Stigter-van Walsum M, Dreier T, de Haard HJ, Leemans CR,

van Dongen GAMS (2008) Improved tumor targeting of anti-epidermal growth factor receptor

Nanobodies through albumin binding: taking advantage of modular Nanobody technology.

Molecular Cancer Therapeutics. 7(8):2288–2297.

80

Ueno S, Nemoto, N. (2012) CDNA display: Rapid stabilization of mRNA display. Methods in

Molecular Biology. 805:113–135.

Ullman CG, Frigotto L, Cooley RN. (2011) In vitro methods for peptide display and their

applications. Briefings in Functional Genomics. 10(3):125–134.

Urade R, Sato N, Sugiyama M. (2018) Gliadins from wheat grain: an overview, from primary

structure to nanostructures of aggregates. Biophysical reviews. 10(2):435–443.

van Buggenum, J. A. G. L., Gerlach, J. P., Eising, S., Schoonen, L., van Eijl, R. A. P. M., Tanis,

S. E. J., Hogeweg, M., Hubner, N. C., van Hest, J. C., Bonger, K. M. and Mulder, K. W. (2016).

A covalent and cleavable antibody-DNA conjugation strategy for sensitive protein detection via

immuno-PCR. Sci. Rep 6, 22675.

Van Heel DA, West J. (2006) Recent advances in coeliac disease. Gut. 55(7):1037–1046.

Vu KB, Ghahroudi MA, Wyns L & Muyldermans S (1997) Comparison of llama VH sequences

from conventional and heavy chain antibodies. Molecular Immunology. 34(16-17): 1121–1131.

Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, Cauerhff A, Danquah W,

Rissiek B, Scheuplein F, Schwarz N, Boyer O, Seman M, Licea A, Serreze DV, Goldbaum FA,

Haag F, Koch-Nolte F. (2009) Single domain antibodies: promising experimental and therapeutic

tools in infection and immunity. Medical Microbiology and Immunology. 198(3): 157–174.

Yamaguchi J, Naimuddin M, Biyani M, Sasaki T, Machida M, Kubo T, Funatsu T, Husimi Y,

Nemoto N. (2009) cDNA display: a novel screening method for functional disulfide-rich peptides

by solid-phase synthesis and stabilization of mRNA-protein fusions. Nucleic Acids Research.

37(16):e108.

81

Yano H. (2019) Recent practical researches in the development of gluten-free breads. Science of

Food. 3(1):7.

Zahnd C, Amstutz P, Plückthun A. (2007) Ribosome display: selecting and evolving proteins in

vitro that specifically bind to a target. Nature Methods. 4(3):269-79.

82

Annex I

Table 1. Reaction buffers compositions.

1x PBS

137 mM Sodium Chloride, 10 mM phosphate, 2.7 mM

Potassium Chloride, pH 7.4

Gliadin immobilization buffer

PBS buffer, 70% ethanol, 10% DMSO

Binding buffer

20 mM Tris-HCl, 2 mM EDTA, 2 M NaCl, 0.2% (v/v)

Tween 20, pH 7.4

His tag binding buffer

20 mM sodium phosphate buffer, 0.5 M NaCl, 5 mM

imidazole, pH 7.4

His tag wash buffer

20 mM sodium phosphate buffer, 0.5 M NaCl, 20 mM

imidazole, pH 7.4

His tag elution buffer

20 µL, 20 mM sodium phosphate buffer, 0.5 M NaCl, 250

mM imidazole, pH 7.4

SDS/DTT elution buffer

1% (v/v) SDS, 50 mM DTT, 50 mM Tris-HCl, 0.5 M

NaCl, 1mM EDTA, 0.05% (v./v) Tween 20, pH 7.4

Table 2. Sequences of the DNA fragments used in constructing VHH DNA.

sequence(5’ to 3’)

Fragment name

T7 promoter, omega (Ω) GATCCCGCGAAATTAATACGACTCACTATAGGGGAAGTAT

enhancer,

Kozak TTTTACAACAATTACCAACAACAACAACAAACAACAACA

consensus sequence

His-tag,

and

ACATTACATTTTACATTCTACAACTACAAGCCACCATG

linker GGGGGAGGCAGCCATCATCATCATCATCACGGCGGAAGC

83

hybridization

region AGGACGGGGGGCGGCGTGGAAA

(LHR)

Table 3. Primers used in the study.

Primer name

sequence(5’ to 3’)

CTGCTCCTCGCGGCCCAGCCGGCCATGGCTSAGKTGCAG

Alp-Sfi-VHH-F1

CTCGTGGAGTC

TTTGCTCTGCGGCCGCAGAGGCCGTGGGGTCTTCGCTGT

Alp-Sfi-SHinge-R

GGTGCG

TTTGCTCTGCGGCCGCAGAGGCCGATTGTGGTTTTGGTGT

Alp-LHinge-R

CTTGGG

Alp-FR3-overlap-F

TCCGTGAAGGGCCGATTC

Alp-FR3-overlap-R

GAATCGGCCCTTCACGGA

New left-F

GATCCCGCGAAATTAATACGACTCACTATAGGG

cnvKpolyA-R

TTTCCACGCCGCCCCCCGTCCT

qPCR VHH 1 Forward

CAAGGCCAAGAACACGGTGTATC

qPCR VHH 1 Reverse

TCGAGATCTTCCTCTCCACGTACTAC

qPCR VHH 2 Forward

CGAATGGCGGCACTATCACA

qPCR VHH 2 Reverse

CTCCAGCTGATAGCGGCTACAA

qPCR VHH 3 Forward

GCTCTAATTCGATGGCCTGGTT

qPCR VHH 3 Reverse

CCACATAGCCCGTGTTACCATTTC

BDA_qPCR (+)

CTACAAGCCACCATGGATAAC

84

BDA_qPCR (-)

GCTTGGGTCATCTTTTAGGC

GFPVHHqPCRFw

AACACCATCCTGGGCGATAG

GFPVHHqPCRRv

GTGTTTTTGGCGCGATCAC

Table 4. Amino Acid sequences of the candidate VHHs.

Fragment name

Amino Acid sequence

AEVQLVESGGGLVQAGGSLRLSCAINDRTFSNYSMGWFR

QAPGKEREFVAAITHNGSTNFPDSVKGRFTISVDKAKNTV

VHH1

YLQMNSLKPEDTAVYYCAVDHSFITVVRGEEDLEVWGQ

GTLVTVSSAHHSEDPT

AEVQLVESGGGSVQAGGSLRLSCSASGPEWRHYHMGWF

RQPPGKEREFVAAISWSGGTTMYADSVKGRFTISRDNVK

VHH2

NTVYLQMNSLKPEDTAVYYCAAGDTVVALLDYRAYWG

QGTQVTVSSEPKTPKPQS

AEVQLVESGGDLVQPGGSLNLSCVADATIFGSNSMAWFR

QYPGKQRDLLATVARNGNTGYVDSVKGRFTISRDDGQNI

VHH3

VYLQMNSLKPEDTALYTCNLKRYRMGFILDGDYWGQGT

QVTVSSEPKTPKPQS

Table 5. Abbreviations

VHH

Camelid heavy-chain antibody VH

cDNA

Complementary DNA

85

PCR

Polymerase chain reaction

cD-iPCR

cDNA display mediated immuno-polymerase chain reaction

mRNA

Messenger RNA

ELISA

Enzyme-linked immunosorbent assay

CDR

complementarity determining region

cnvK

3-cyanovinylcarbazole nucleoside

qPCR

quantitative polymerase chain reaction

PAGE

Polyacrylamide gel electrophoresis

SDS

sodium dodecyl sulfate

TBE

Tris/Borate/EDTA

MES

2-(N-morpholino)ethanesulfonic acid

PBS

Phosphate-buffered saline

UV

Ultraviolet

FITC

Fluorescein isothiocyanate

SA beads

Streptavidin Magnetic Beads

Ni-NTA

nickel-charged affinity resin

DTT

Dithiothreitol

NGS

Next-generation Sequencing

BSA

Bovine serum albumin

HPR

horseradish peroxidase enzyme

Ct

Cycle threshold

DMSO

Dimethyl sulfoxide

GFP

Green Fluorescent Protein

86

BDA

B Domain protein A

IgG

Immunoglobulin G

Table 6. ELISA absorbance data (for Figure 2.11A)

VHH

Gliadin

concentration

VHH1

+ Gliadin

+ Gliadin

VHH2

VHH3

µg/mL

+ Gliadin

Anti-BSA

+ BSA + AntiBSA VHH

VHH

0.049

0.044

0.048

0.036

0.031

0.15

0.087

0.090

0.037

0.033

0.258

0.31

0.124

0.116

0.041

0.033

0.391

0.62

0.194

0.151

0.043

0.033

0.625

1.25

0.298

0.227

0.051

0.038

0.955

2.5

0.458

0.354

0.084

0.051

1.581

0.535

0.484

0.120

0.054

2.024

10

0.733

0.684

0.218

0.072

2.148

Table 7. Standard deviation data for Figure 3.5

Spiked

Concentration VHH1

VHH2

(ng/mL)

Rice

Buffer

Rice

Buffer

0.175

0.116

0.032

0.045

0.05

0.202

0.067

0.112

1.259

0.5

0.087

0.282

0.342

0.195

0.627

0.050

0.813

0.227

87

Table 8. Primers used in the NGS analysis.

Primer name

sequence(5’ to 3’)

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNN

prRd1N4VHH-F

NATGGCTGAGGTGCAGCTCGTG

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNN

prRd2N4VHH-R

NNTGATGATGATGGCTACCACCTCCCG

CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCT

prNexteraXTIndex1(N701)

CGTGGGCTCGG

CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCT

prNexteraXTIndex1(N702)

CGTGGGCTCGG

CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCT

prNexteraXTIndex1(N703)

CGTGGGCTCGG

CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCT

prNexteraXTIndex1(N704)

CGTGGGCTCGG

CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCT

prNexteraXTIndex1(N705)

CGTGGGCTCGG

CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCT

prNexteraXTIndex1(N706)

CGTGGGCTCGG

CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCT

prNexteraXTIndex1(N707)

CGTGGGCTCGG

CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTCT

prNexteraXTIndex1(N708)

CGTGGGCTCGG

88

CAAGCAGAAGACGGCATACGAGATAGCGTAGCGTCT

prNexteraXTIndex1(N709)

CGTGGGCTCGG

AATGATACGGCGACCACCGAGATCTACACTAGATCGC

prNexteraXTIndex2(N501)

TCGTCGGCAGCGTC

Materials and Reagents

Note: All reagents should be of molecular biology grade to avoid contamination of ribonuclease.

1. Polystyrene microtiter plate (MICROLON, 96 Well Single-Break Strip Plate, PS), Greiner

Bio-One 705071.

2. PCR tubes (End point PCR tubes; TreffLab Laboratory Consumables, catalog number:

96.09852.9.01, qPCR strip tubes; SSIBio, catalog number: 3248-00).

3. DNA oligos can be obtained from custom DNA synthesis service. Eurofins Genomics (Otaku, Tokyo, Japan), Store at -20 °C.

4. PrimeSTAR HS DNA polymerase (Takara, catalog number: R010A). Store at -20 °C.

5. FavorPrep PCR Clean-Up Mini Kit (Favorgen). Store at room temperature.

6. RiboMAXTM Large-Scale RNA Production System T7 (Promega, catalog number: P1300).

Store at -20 °C.

7. Wheat gliadin (RT) (Sigma, catalog number: G3375)

8. Dynabeads MyOne carboxylic acid beads (Invitrogen, catalog number: 65012).

9. RNA Clean-Up Kit (Favorgen, catalog number: FAPCK001), store at 4 °C.

10. Nuclease treated Rabbit Reticulocyte Lysate System, (Promega, catalog number: L4960).

Amino acid mixtures for translation are included. Store at -80 °C.

11. RNasin® Ribonuclease Inhibitor (Promega; catalog number: N2111). Store at -20 °C.

89

12. Dynabeads MyOne streptavidin C1 (VERITAS; catalog number: DB65002). Store at 4 °C.

13. ReverTra Ace® (Toyobo, catalog number: TRT-101). 5× RT Buffer and 2.5 mM each dNTP

mix are included. Store at -20 °C.

14. His Mag Sepharose Ni (GE Healthcare, catalog number: 2896390)

15. RNase T1 (1,000 U/L) (Thermo Fisher Scientific, catalog number: EN0541)

16. RNase H (Takara, catalog number: 2150A, 10 U) and 10× NE buffer 2 (NEB)

17. DL-Dithiothreitol ≥ 99.0% (RT) (Sigma, catalog number: 4381)

18. Quick-Load 100 bp DNA Ladder, (Biolabs: catalog number: N0467), NEB

19. SYBR Gold Nucleic Acid Gel Strain (Invitrogen, catalog number: S11494)

20. THUNDERBIRD SYBR qPCR Mix (Toyobo, catalog number: QPS-201)

21. 10x PBS (Phosphate-buffered saline -) (Wako, catalog number: 163-25265)

22. Skim milk (Wako, catalog number: 190-12865)

23. NaCl (Wako, catalog number: 191-01665)

24. Tris-HCl (Wako, catalog number: 208-14691)

25. KCl (Wako, catalog number: 163-03545)

26. MgCl2 (Wako, catalog number: 136-03995)

27. EDTA (Invitrogen, catalog number: 15575-038)

28. Urea (Wako, catalog number: 217-01215)

29. Bromophenol Blue (BPB) (Wako, catalog number: 021-02911)

30. Xylene Cyanol (XC) (Wako, catalog number: 244-00461)

31. UltraPure DNase/RNase-Free Distilled Water (UPDW)

32. Ammonium persulfate (Wako, catalog number: 012-20503)

33. Acrylamide (Nacalai tesque, catalog number: 00807-05)

90

34. Tetramethylethylenediamine (TEMED) (Wako, catalog number: 205-06313)

35. Tween20 (Sigma-Aldrich, catalog number: P9416)

36. Sodium phosphate Dibasic (Wako, catalog number: 042-29445)

37. Imidazole (Wako, catalog number: 095-05392)

38. 40% (w/v) Acrylamide-Bis (Nacalai tesque, catalog number: 00857-55)

39. Hydrochloric acid (HCl) (Sigma-Aldrich, catalog number: 320331)

40. Tris-borate-EDTA (TBE) Buffer (10X) (Invitrogen, catalog number: B52)

41. Tris-EDTA (TE) buffer (Invitrogen, catalog number: AM9849)

42. N-hydroxysuccinimide (NHS) (Tokyo chemical industry, catalog number: B0249)

43. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) (Tokyo chemical

industry, catalog number: D1601)

Equipment

1. Thermal cycler (Biometra, Model: TRIO48)

2. Biomolecular imager (GE healthcare, Model: Typhoon FLA9500)

3. NanoDrop Spectrophotometer (Thermo Scientific, Model: 1000 V3.3)

4. NanoDrop Spectrophotometer (Thermo Scientific, Model: 3300 V2.7, FITC)

5. Heat block (ANATECH, Model: cool stat 5200)

6. UV Crosslinker (UVP, Model: CL-1000)

7. Vortex mixer (IWAKI, Model: TM 2000)

8. Magnetic separator (Invitrogen, Model: 12320D)

9. Thermo block rotator (NISSIN, Model: SNP 24B)

10. StepOne Real-Time PCR System, (Thermo Fisher Scientific, Model: 4376600)

11. High speed refrigerated microcentrifuge (KITMAN, Model: Tomy Tech MX-301)

91

12. Gel electrophoresis apparatus (PAGE/SDS-PAGE) (ATTA, Model: AE 6510)

13. Pipettes (Gilson Pipetman, Model P2- P1000)

Software

1. Quantity One 1-D Analysis Software (Bio-Rad, Version 4.6.6)

2. Primer

Express

(Thermo

Fisher

92

Scientific,

Version

3.01)

...

参考文献をもっと見る