リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on Genetic Diversity of Leafy Amaranth (Amaranthus tricolor L.) in Vietnam」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on Genetic Diversity of Leafy Amaranth (Amaranthus tricolor L.) in Vietnam

グェン, ドゥク チン NGUYEN, DUC CHINH 筑波大学 DOI:10.15068/00160363

2020.07.21

概要

Climate change and high levels of pesticide residues on agricultural products are currently considered serious issues for agricultural production in Vietnam. The development of new crop cultivars with a high resistance and tolerance to abiotic stress and disease is one method that can be used to effectively address these issues. Species in the genus Amaranthus are considered promising crops for the 21st century owing to their excellent nutritional value, high adaptability to severe conditions, and lack of major diseases. Leafy amaranths, particularly A. tricolor, are a rich and inexpensive source of protein, carotenoids, vitamins, dietary fiber, and a wide range of minerals. However, A. tricolor has not been subjected to systematic breeding in Vietnam. Therefore, in this study, amaranth genetic resources in Vietnam were classified and assessed using molecular markers (barcoding and SSR markers) and morphological traits. All of the information obtained in this study will provide a basis for effectively utilizing and conserving these resources, as well as improving leafy amaranths in the future.

Alignment of the matK gene sequences from 272 VA, 27 WA, and 45 GRIN amaranth accessions gave a total length of 434 bp per accession, which included 96.8% constant, 3.2% variable, and 2.5% parsimoniously informative sites. The phylogenetic dendrogram was able to classify 7 of the 13 Amaranthus species analyzed in this study, including 3 leafy amaranths (A. tricolor, A. blitum, and A. viridis), 3 weed amaranths (A. spinosus, A. retroflexus, and A. powellii), and A. dubius (a relative of the grain amaranths). The phylogenetic analysis determined the species for 68% of the VA accessions, 120 of which were assigned to A. tricolor with high bootstrap support (85%), while a further 41 were assigned to A. dubius, 18 to A. blitum, and 6 to A. viridis. Thus, A. tricolor accounted for the highest proportion of accessions (44%) in the VA collection. However, matK alone could not clarify the relationship among the three grain amaranths (A. hypochondriacus, A. caudatus, and A. cruentus) and their putative ancestors (A. hybridus and A. quitensis). The 21 SSR markers that were developed in the present study allowed the overall genetic diversity of the VA and WA collections of A. tricolor and the genetic relationships among the geographic groups to be evaluated. These markers successfully amplified 153 alleles, with a mean allelic richness of 7.29 per marker and mean values of 0.14 for Ho,0.38 for He, and 0.35 for PIC.

There were significant differences between the VA collection and all of the overseas groups except the African collection. However, while the VA collection was found to be divergent from the South Asian and American collections, it was relatively closely genetically related to the East Asian collection and commercial cultivars. Furthermore, it was genetically closer to the East Asian accessions than the Southeast Asian accessions. This may be related to the dispersal events of amaranths from East Asia (China) to Vietnam during the migrations of the ancestors of most of today’s Vietnamese ethnic groups from south of the Yangtze River of China and the introduction of this crop during the long period of Chinese domination in Vietnam from 111 BC to 938 AD.

The STRUCTURE analysis indicated that the accessions could be grouped into two or four subpopulations. At K = 4, subgroup 1 mostly included accessions from East Asia and Vietnam, and contained 90.7% of all of the East Asian accessions and 88.9% of all of the commercial cultivars; subgroup 2 mostly included accessions from Vietnam; subgroup 3 mostly included accessions from South Asia; and subgroup 4 included 60% of the accessions from America. These results suggest that there is a relationship between the amaranth accessions and their origins among the VA collection and most of the overseas groups owing to the low level of genetic exchange of A. tricolor among these geographical areas. There was also a significant but small amount of variation among the geographical groups in Vietnam. However, there was no relationship between geographical distance and genetic diversity, indicating a high level of genetic exchange among the VA A. tricolor accessions.

The STRUCTURE analysis indicated that the VA collection of A. tricolor could be divided into two major types: a common type in East Asia and a unique type in Vietnam. Thus, it appears that the genetic diversity of Vietnamese A. tricolor was established by dispersal events mainly from East Asia and adaptation to the local environments through on-site cross pollination, as well as the retention of cross-pollinated seeds for the next season without any artificial selection. The morphological analysis indicated that A. tricolor accessions in the VA collection exhibited phenotypic traits. The common-type accessions had green leaves, stems or stripes on the stems, and inflorescences; an absence of betalain coloration on the petioles; and determinate inflorescences. By contrast, the majority of the unique-type accessions had purple leaves and petioles, stems or stripes on the stems, and inflorescences; and indeterminate inflorescences. In addition, while most of the VA accessions exhibited medium or strong resistance to disease and half were resistant to insects, eight accessions were strongly resistant to both of these, most of which belonged to the unique type.

In conclusion, the genetic diversity of amaranth germplasm resources in Vietnam were successfully identified and evaluated based on their genotypic and phenotypic traits, which may be useful for effectively managing and exploiting the genetic resources in gene banks and for genetically improving amaranths in the future.

この論文で使われている画像

参考文献

Achigan-Dako, E. G., Sogbohossou, O. E. D. and Maundu, P. (2014) Current knowledge on Amaranthus spp.: research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica 197: 303-317.

Aellen, P. L., 1959. Amaranthus L. In: Hegi, G.E. (Ed.), Illustrierte Flora von Mitteleuropa 3(2), Carl Hanser Verlag, München, pp. 465-516.

Akubugwo, I. E., Obasi, N. A., Chinyere, G. C. and Ugbogu, A. E. (2007) Nutritional and chemical value of Amaranthus hybridus L. leaves from Afikpo, Nigeria. African Journal of Biotechnology 6: 2833-2839.

Andini, R., Yoshida, S., Yoshida, Y. and Ohsawa, R. (2013) Amaranthus genetic resources in Indonesia: morphological and protein content assessment in comparison with worldwide amaranths. Genetic Resources and Crop Evolution 60: 2115-2128.

Assad, R., Reshi, Z. A., Jan, S. and Rashid, I. (2017) Biology of Amaranths. The Botanical Review 83: 382-436.

Brenner, D., Baltensperger, D., Kulakow, P., Lehmann, J., Myers, R., Slabbert, M. and Sleugh, B. (2000) Genetic resources and breeding of Amaranthus. Plant Breeding Reviews 19: 227-285.

Bressani, R., Gonzhles, J. M., Zuiiga, J., Breuner, M. and Elias, L. G. (1987) Yield, Selected Chemical Composition and Nutritive Value of 14 Selections of Amaranth Grain Representing Four Species. Journal of the Science of Food and Agriculture 38: 347-356.

Bui, V. L., Nguyen, T. D. M., Sadik, S., Tu, S., Vidal, J. and Tran, T. V. (1998) Rapid plant regeneration of a C4 dicot species: Amaranthus edulis. Plant Science 132: 45- 54.

Cai, Y., Sun, M. and Corke, H. (2005) Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends in Food Science and Technology 16: 370-376.

Chan, K. F. and Sun, M. (1997) Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species Amaranthus. Theoretical and Applied Genetics 95: 865-873.

Chandi, A., Milla-Lewis, S. R., Jordan, D. L., York, A. C., Burton, J. D., Zuleta, M. C., Whitaker, J. R. and Culpepper, A. S. (2013) Use of AFLP Markers to Assess Genetic Diversity in Palmer Amaranth (Amaranthus palmeri) Populations from North Carolina and Georgia. Weed Science 61: 136-145.

Chase, M. W., Cowan, R. S., Hollingsworth, P. M., Van Den Berg, C., Madrinan, S., Petersen, G., Seberg, O., Jorgsensen, T., Cameron, K. M., Carine, M., et al. (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56: 295- 299.

Chung, Y. S., Choi, S. C., Jun, T. H. and Kim, C. (2017) Genotyping-by-Sequencing: a Promising Tool for Plant Genetics Research and Breeding. Horticulture Environment and Biotechnology 58: 425-431.

Costea, M. and DeMason, D. A. (2001) Stem morphology and anatomy in Amaranthus L. (Amaranthaceae) - Taxonomic significance. Journal of the Torrey Botanical Society 128: 254-281.

Cumhur, A. and Malcolm, S. C. (2008) The Effects of Global Climate Change on Agriculture. American-Eurasian Journal of Agricultural and Environmental Sciences 3: 672-676.

Das, S. (2012) Systematics and taxonomic delimitation of vegetable, grain and weed amaranths: a morphological and biochemical approach. Genetic Resources and Crop Evolution 59: 289-303.

Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D. and Yan, J., 2007. The Impact of Sea Level Rise on Developing Countries. A Comparative Analysis. Policy Research Working Paper. World Bank, Washington, DC. pp 51.

Ebert, A. W., 2013. Ex situ Conservation of Plant Genetic Resources of Major Vegetables.Comservation of Tropical Plant Species. Springer, pp. 373-417.

Evanno, G., Regnaut, S. and Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620.

Excoffier, L. and Lischer, H. E. L. (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564-567.

Faircloth, B. C. (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Molecular Ecology Resources 8: 92- 94.

FAO, 2008. Climate Change and Food Security: A Framework Doccument. Rome, Italy.pp. 93.

FAO, 2011. Climate Change Impacts on Agriculture in Vietnam. Food and Agriculture Organization, Hanoi, Vietnam. pp. 10.

Fasuyi, A. O. and Akindahunsi, A. O. (2009) Nutritional Evaluation of Amaranthus cruentus Leaf Meal Based Broiler Diets Supplemented with Cellulase/Glucanase/Xylanase Enzyme. American Journal of Food Technology 4: 108-118.

Govindaraj, M., Vetriventhan, M. and Srinivasan, M. (2015) Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives. Genetics Research International.

Grubben, G. J. H. and Denton, O. A. (2004) Plant resources of tropical Africa 2.Vegetables, PROTA Foundation, Netherlands, p. 668.

Guichoux, E., Lagache, L., Wagner, S., Chaumeil, P., Leger, P., Lepais, O., Lepoittevin, C., Malausa, T., Revardel, E., Salin, F., et al. (2011) Current trends in microsatellite genotyping. Molecular Ecology Resources 11: 591-611.

Hilu, K. W., Borsch, T., Muller, K., Soltis, D. E., Soltis, P. S., Savolainen, V., Chase, M. W., Powell, M. P., Alice, L. A., Evans, R., et al. (2003) Angiosperm phylogeny based on matK sequence information. American Journal of Botany 90: 1758-1776.

Hilu, K. W. and Liang, H. P. (1997) The matK gene: Sequence variation and application in plant systematics. American Journal of Botany 84: 830-839.

Ho, C., 2018. The Climate Change in Vietnam and Its Impact on Agricultural sector in Vietnam. https://www.researchgate.net/profile/Cuong_Ho5/publication/329024730_pp. 30

Hoi, P. V., Mol, A. P. J., Oosterveer, P., Van Den Brink, P. J. and Huong, P. T. M. (2016) Pesticide use in Vietnamese vegetable production: a 10-year study. International Journal of Agricultural Sustainability 14: 325-338.

Hoi, V. P., Mol, A. and Oosterveer, P. (2013) State governance of pesticide use and trade in Vietnam. NJAS - Wageningen Journal of Life Sciences 67: 19-26.

Iamonico, D. (2015) Taxonomic revision of the genus Amaranthus (Amaranthaceae) in Italy. Phytotaxa 199: 1-84.

Jimenez-Aguilar, D. M. and Grusak, M. A. (2017) Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. Journal of Food Composition and Analysis 58: 33-39.

Khaing, A. A., Moe, K. T., Chung, J. W., Baek, H. J. and Park, Y. J. (2013) Genetic diversity and population structure of the selected core set in Amaranthus using SSR markers. Plant breeding 132: 165-173.

Khandaker, L., Akond, A., Ali, M. B. and Oba, S. (2010) Biomass yield and accumulations of bioactive compounds in red amaranth (Amaranthus tricolor L.) grown under different colored shade polyethylene in spring season. Scientia Horticulturae 123: 289-294.

Kietlinski, K. D., Jimenez, F., Jellen, E. N., Maughan, P. J., Smith, S. M. and Pratt, D. B. (2014) Relationships between the Weedy Amaranthus hybridus (Amaranthaceae) and the Grain Amaranths. Crop Science 54: 220-228.

Kumar, P., Gupta, V. K., Misra, A. K., Modi, D. R. and Pandey, B. K. (2009) Potential of Molecular Markers in Plant Biotechnology. Plant Omics 2: 141-162.

Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 1870-1874.

Lahaye, R., Van Der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O., Duthoit, S., Barraclough, T. G. and Savolainen, V. (2008) DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America 105: 2923-2928.

Lan, T. T. N., Le, N. P. and Phong, N. T. (2014) State pesticide management in Thai Binh province. Journal of Science and Development 14: 836-843.

Lanoue, K. Z., Wolf, P. G., Browning, S. and Hood, E. E. (1996) Phylogenetic analysis of restriction-site variation in wild and cultivated Amaranthus species (Amaranthaceae). Theoretical and Applied Genetics 93: 722-732.

Le, P. H., Vuong, T. Q., Tan, H. V. and Ninh, L. (1991) Histoty of Vietnam, VietNam Education Publishing House Hanoi, p. 162-167.

Lee, J.-R., Hong, G.-Y., Dixit, A., Chung, J.-W., Ma, K.-H., Lee, J.-H., Kang, H.-K., Cho,Y.-H., Gwag, J.-G. and Park, Y.-J. (2008) Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross-amplifications in wild species. Conservation Genetics 9: 243-246.

Liu, F. and Stutzel, H. (2004) Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae 102: 15-27.

Liu, K. J. and Muse, S. V. (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129.

Luo, P. P., Mu, D. R., Xue, H., Ngo-Duc, T., Dang-Dinh, K., Takara, K., Nover, D. and Schladow, G. (2018) Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Scientific Reports 8. 12623 | DOI:10.1038/s41598-018-30024-5

Mallory, M. A., Hall, R. V., Mcnabb, A. P., Pratt, D. B., Jellen, E. N. and Maughan, P. J. (2008) Development and characterization of microsatellite markers for the grain amaranths. Crop Science 48: 1098-1106.

Maughan, P. J., Smith, S. M., Fairbanks, D. J. and Jellen, E. N. (2011) Development, characterization, and linkage mapping of single nucleotide polymorphisms in the grain Amaranths (Amaranthus sp.). Plant Genome 4: 92-101.

Mertz, O., Halsnaes, K., Olesen, J. E. and Rasmussen, K. (2009) Adaptation to climate change in developing countries. Environmental Management 43: 743-752.

Mosyakin, S. L. and Robertson, K. R. (1996) New infrageneric taxa and combinations in Amaranthus (Amaranthaceae). Annales Botanici Fennici 33: 275-281.

Muller, K. F., Borsch, T. and Hilu, K. W. (2006) Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: Contrasting matK, trnT-F, and rbcL in basal angiosperms. Molecular Phylogenetics and Evolution 41: 99-117.

Myers, R. L., 1996. Amaranth: New crop opportunity. J. Janick (ed.), Progress in new crops. ASHS Press, Alexandria,VA, pp. 207-220.

Nguyen, T. M., N.T.T., L., J., H. and D. B., H. (2018) Pesticide use in vegetable production: A survey of Vietnamese farmers’ knowledge. Plant Protection Science 54: 203-214.

Nguyen, V. T. and Tran, K. T. (1996) The guide for vegetable growers, Agricultural Publishing House, p. 114.

Ogundipe, O. T. and Chase, M. (2009) Phylogenetic analyses of Amaranthaceae based on matK DNA sequence data with emphasis on West African species. Turkish Journal of Botany 33: 153-161.

Ooi, K., Endo, Y., Yokoyama, J. and Murakami, N. (1995) Useful primer designs to amplify DNA fragment of the plastid gene matK from angiosperm plants. Journal of Japanese Botany 70: 328-333.

O’Brien, G. K. and Price., M. L., 1983. Amaranth: Grain and vegetable type. Educational Concerns for Hunger Organization (ECHO) Technical Note #2, PP. 9.

Peakall, R. and Smouse, P. E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295.

Peakall, R. and Smouse, P. E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537- 2539.

Pischedda.S, Barral-Arca, R., Gómez-Carballa, A., Pardo-Seco, J., Catelli, M. L., Álvarez-Iglesias, V., Cárdenas, J. M., Nguyen, N. D., Ha, H. H., et al. (2017) Phylogeographic and genome-wide investigations of Vietnam ethnic groups reveal signatures of complex historical demographic movements. Scientific Reports 7. 12630 | DOI:10.1038/s41598-017-12813-6

Prc, 2018. Database of plant genetic resources Plant Resources Center, Vietnam.

Pritchard, J. K., Stephens, M. and Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics. 155: 945-959.

Rastogi, A. and Shukla, S. (2013) Amaranth: A new millennium crop of nutraceutical values. Critical Reviews in Food Science and Nutrition 53: 109-125.

Reddy, V. V. P. and Varalakshmi, B. (1998) Heterosis and combining ability for leaf yield and its components in vegetable amaranth (Amaranthus tricolor). Indian Journal of Agricultural Sciences 68: 773-775.

Robertson, K. R. (1981) The genera of Amaranthaceae in the Southeastern United States.Journal of the Arnold Arboretum 62: 267-313.

Roorkiwal, M., Von Wettberg, E. J., Upadhyaya, H. D., Warschefsky, E., Rathore, A. and Varshney, R. K. (2014) Exploring germplasm diversity to understand the domestication process in Cicer spp. using SNP and DArT Markers. PLoS ONE 9: e102016.

Sammour, R. H., Radwan, S. A. and Mira, M. (2012) Genetic diversity in genus Amaranthus: From morphology to genomic DNA. Research & Reviews in BioSciences 6: 351-360.

Sauer, J. D. (1950a) Amaranths as dye plants among the pueblo peoples. Southwestern Journal of Anthropology 6: 412-415.

Sauer, J. D. (1950b) The grain amaranths: A survey of their history and classification.Annals of the Missouri Botanical Garden 37: 561-632.

Sauer, J. D. (1955) Revision of the dioecious amaranths. Madroño 13: 5–46.

Sauer, J. D. (1967) The grain amaranths and their relatives: A revised taxonomic and geographic survey. Annals of the Missouri Botanical Garden 54: 103-137.

Sauer, J. D. (1969) Identity of archaeologic grain amaranths from the Valley of Tehuacan, Puebla, Mexico. American Antiquity 34: 80-81.

Sauer, J. D. (1993) Historical geography of crop plants: A Select Roster CRC Press, Boca Raton. pp. 320.

Schonfeldt, H. C. and Pretorius, B. (2011) The nutrient content of five traditional South African dark green leafy vegetables-A preliminary study. Journal of Food Composition and Analysis 24: 1141-1146.

Schweig, S. R. and Brown, R. N. (2018) Vegetable amaranths for summer greens production in the Northeastern United States. Horttechnology 28: 399-406.

Shimizu, T. and Yano, K. (2011) A post-labeling method for multiplexed and multicolored genotyping analysis of SSR, indel and SNP markers in single tube with bar-coded split tag (BStag). BMC Research Notes 4: 161.

Shukla, S., Bhargava, A., Chatterjee, A., Pandey, A. C. and Mishra, B. K. (2009) Diversity in phenotypic and nutritional traits in vegetable amaranth (Amaranthus tricolor), a nutritionally underutilised crop. Journal of the Science of Food and Agriculture 90: 139-144.

Shukla, S., Bhargava, A., Chatterjee, A. and Singh, S. P. (2004) Estimates of genetic parameters to determine variability for foliage yield and its different quantitative and qualitative traits in vegetable amaranth (A. tricolor). Journal of Genetics and Breeding 58: 169-176.

Shukla, S., Bhargava, A., Chatterjee, A., Srivastava, A. and Singh, S. P. (2006a) Genotypic variability in vegetable amaranth (Amaranthus tricolor L. for foliage yield and its contributing traits over successive cuttings and years. Euphytica 151: 103-110.

Shukla, S., Bhargava, A., Chatterjee, A., Srivastava, J., Singh, N. and Singh, S. P. (2006b) Mineral Profile and Variability in Vegetable Amaranth (Amaranthus tricolor). Plant Foods for Human Nutrition 61: 21-26.

Shukla, S. and Singh, S. P. (2000) Studies on genetic parameters in vegetable amaranth.Journal of Genetics and Breeding 54: 133-135.

Silva, P. I., Martins, A. M., Gouvea, E. G., Pessoa-Filho, M. and Ferreira, M. E. (2013) Development and validation of microsatellite markers for Brachiaria ruziziensisobtained by partial genome assembly of Illumina single-end reads. BMC Genomics 14: 17.

Singh, B., Pandey, S. and Kumar, J. (2013) A comparative study of Inter Simple Sequence Repeat (ISSR), Random Amplified Polymorphic DNA (RAPD) and Simple Sequence Repeat (SSR) loci in assessing genetic diversity in Amaranthus. Indian Journal of Genetics and Plant Breeding 73: 411-418.

Srivastava, R. (2017) An updated review on phyto-pharmacological and pharmacognostical profile of Amaranthus tricolor: A herb of nutraceutical potentials. Pharma Innov 6: 127-129.

Stetter, M. G. and Schmid, K. J. (2017) Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Molecular Phylogenetics and Evolution 109: 80-92.

Suarez-Gonzalez, A., Lexer, C. and Cronk, Q. C. B. (2018) Adaptive introgression: a plant perspective. Biology Letters 14: 8.

Suresh, S., Chung, J. W., Cho, G. T., Sung, J. S., Park, J. H., Gwag, J. G. and Baek, H. J. (2014) Analysis of molecular genetic diversity and population structure in Amaranthus germplasm using SSR markers. Plant Biosyst 148: 635-644.

Taheri, S., Abdullah, T. L., Yusop, M. R., Hanafi, M. M., Sahebi, M., Azizi, P. and Shamshiri, R. R. (2018) Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants. Molecules 23: 20.

Thapa, R. and Blair, M. W. (2018) Morphological Assessment of Cultivated and Wild Amaranth Species Diversity. Agronomy-Basel 8. pp. 13.

Tran, T., T., N. V., Huynh, T. L. H., Mai, V. K., Nguyen, X. H. and P., D. H., 2016.Climate Change and Sea Level Rise Scenarios for Viet Nam - Summary for Policymakers. Ministry of Natural Resources and Environment, Hanoi, Vietnam.

UPOV, 2008. Grain Amaranth. In: International Union for the protection of new varieties of plants (Ed.), TG/247/1. pp. 35.

Varshney, R. K., Graner, A. and Sorrells, M. E. (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23: 48-55.

Venskutonis, P. R. and Kraujalis, P. (2013) Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Comprehensive Reviews in Food Science and Food Safety 12: 381-412.

Vieira, M. L. C., Santini, L., Diniz, A. L. and Munhoz, C. D. (2016) Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology 39: 312-328.

Viljoen, E., Odeny, D. A., Coetzee, M. P. A., Berger, D. K. and Rees, D. J. G. (2018) Application of Chloroplast Phylogenomics to Resolve Species Relationships Within the Plant Genus Amaranthus. Journal of Molecular Evolution 86: 216-239. Wang, H., Moustier, P., Loc, N. T. T. and Tho, P. T. H. (2012) Quality Control of Safe Vegetables by Collective Action in Hanoi, Vietnam. Procedia Economics and Finance 2: 344-352.

Wang, X. Q. and Park, J. Y. (2013) Comparison of Genetic Diversity among Amaranth Accessions from South and Southeast Asia using SSR Markers Korean J. Medicinal Crop Science 21: 220-228.

Waselkov, K. E., Boleda, A. S. and Olsen, K. M. (2018) A phylogeny of the genus Amaranthus (Amaranthaceae) based on several low-copy nuclear loci and chloroplast regions. Systematic Botany 43: 439-458.

Wiens, J. J. (2004) The role of morphological data in phylogeny reconstruction.Systematic Biology 53: 653-661.

Wu, H. X., Sun, M., Yue, S. X., Sun, H. L., Cai, Y., Huang, R. H., Brenner, D. and Corke,H. (2000) Field evaluation of an Amaranthus genetic resource collection in China.Genetic Resources and Crop Evolution 47: 43-53.

Wu, X. B. and Blair, M. W. (2017) Diversity in grain amaranths and relatives distinguished by genotyping by sequencing (GBS). Frontiers in Plant Science 8: 12.

Xu, F. X. and Sun, M. (2001) Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. Molecular Phylogenetics and Evolution 21: 372-387.

Yu, J., Xue, J. H. and Zhou, S. L. (2011) New universal matK primers for DNA barcoding angiosperms. Journal of Systematics and Evolution 49: 176-181.

Yudina, R. S., Zheleznova, N. B., Zakharova, O. V., Zheleznov, A. V. and Shumny, V.K. (2005) Isozyme analysis in a genetic collection of amaranths (Amaranthus L.).Russian Journal of Genetics 41: 1395-1400.

Zalapa, J. E., Cuevas, H., Zhu, H. Y., Steffan, S., Senalik, D., Zeldin, E., Mccown, B., Harbut, R. and Simon, P. (2012) Using Next generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. American Journal of Botany 99: 193-208.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る