リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Use of Electrospun Organic and Carbon Nanofibers in Bone Regeneration」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Use of Electrospun Organic and Carbon Nanofibers in Bone Regeneration

Aoki, Kaoru Haniu, Hisao Kim, Yoong Ahm Saito, Naoto 信州大学 DOI:32244931

2021.02.04

概要

There has been an increasing amount of research on regenerative medicine for the treatment of bone defects. Scaffolds are needed for the formation of new bone, and various scaffolding materials have been evaluated for bone regeneration. Materials with pores that allow cells to differentiate into osteocytes are preferred in scaffolds for bone regeneration, and porous materials and fibers are well suited for this application. Electrospinning is an effective method for producing a nanosized fiber by applying a high voltage to the needle tip containing a polymer solution. The use of electrospun nanofibers is being studied in the medical field, and its use as a scaffold for bone regeneration therapy has become a topic of growing interest. In this review, we will introduce the potential use of electrospun nanofiber as a scaffold for bone regenerative medicine with a focus on carbon nanofibers produced by the electrospinning method.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Roddy, E.; DeBaun, M.R.; Daoud-Gray, A.; Yang, Y.P.; Gardner, M.J. Treatment of critical-sized bone defects:

Clinical and tissue engineering perspectives. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 351–362. [CrossRef]

Zhao, Z.; Yan, T.; Guo, W.; Yang, R.; Tang, X.; Wang, W. Surgical options and reconstruction strategies

for primary bone tumors of distal tibia: A systematic review of complications and functional outcome.

J. Bone Oncol. 2019, 14, 100209. [CrossRef]

Nishida, J.; Shimamura, T. Methods of reconstruction for bone defect after tumor excision: A review of

alternatives. Med. Sci. Monit. 2008, 14, RA107–RA113. [PubMed]

Goulet, J.A.; Senunas, L.E.; DeSilva, G.L.; Greenfield, M.L. Autogenous iliac crest bone graft: Complications

and functional assessment. Clin. Orthop. Relat. Res. 1997, 339, 76–81. [CrossRef] [PubMed]

Dimitriou, R.; Mataliotakis, G.I.; Angoules, N.K.; Kanakaris, A.G.; Giannoudis, P.V. Complications following

autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury 2011, 42

(Suppl. 2), S3–S15. [CrossRef]

Rabitsch, K.; Maurer-Ertl, W.; Pirker-Fruhauf, U.; Wibmer, C.; Leithner, A. Intercalary reconstructions with

vascularised fibula and allograft after tumour resection in the lower limb. Sarcoma 2013, 2013, 160295.

[CrossRef]

Muscolo, D.L.; Ayerza, M.A.; Aponte-Tinao, L.A. Massive allograft use in orthopedic oncology. Orthop. Clin.

N. Am. 2006, 37, 65–74. [CrossRef]

Manfrini, M.; Bindiganavile, S.; Say, F.; Colangeli, M.; Campanacci, L.; Depaolis, M.; Ceruso, M.; Donati, D. Is

there benefit to free over pedicled vascularized grafts in augmenting tibial intercalary allograft constructs?

Clin. Orthop. Relat. Res. 2017, 475, 1322–1337. [CrossRef]

Tamai, N.; Myoui, A.; Tomita, T.; Nakase, T.; Tanaka, J.; Ochi, T.; Yoshikawa, H. Novel hydroxyapatite

ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J. Biomed.

Mater. Res. 2002, 59, 110–117. [CrossRef]

Yoshikawa, H.; Tamai, N.; Murase, T.; Myoui, A. Interconnected porous hydroxyapatite ceramics for bone

tissue engineering. J. R. Soc. Interface 2009, 6 (Suppl. 3), S341–S348. [CrossRef]

Nanomaterials 2020, 10, 562

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

10 of 14

Tanaka, T.; Kumagae, Y.; Saito, M.; Chazono, M.; Komaki, H.; Kikuchi, T.; Kitasato, S.; Marumo, K. Bone

formation and resorption in patients after implantation of beta-tricalcium phosphate blocks with 60% and

75% porosity in opening-wedge high tibial osteotomy. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 86,

453–459. [CrossRef] [PubMed]

Ayoub, M.A.; El-Rosasy, M.A. Hybrid grafting of post-traumatic bone defects using beta-tricalcium phosphate

and demineralized bone matrix. Eur. J. Orthop. Surg. Traumatol. 2014, 24, 663–670. [CrossRef] [PubMed]

Sotome, S.; Ae, K.; Okawa, A.; Ishizuki, M.; Morioka, H.; Matsumoto, S.; Nakamura, T.; Abe, S.; Beppu, Y.;

Shinomiya, K. Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone

regeneration: A randomized controlled study. J. Orthop. Sci. 2016, 21, 373–380. [CrossRef] [PubMed]

Aktuglu, K.; Gunay, H.; Alakbarov, J. Monofocal bone transport technique for bone defects greater than 5 cm

in tibia: Our experience in a case series of 24 patients. Injury 2016, 47 (Suppl. 6), S40–S46. [CrossRef]

Yang, Z.; Tao, H.; Ye, Z.; Jin, L.; Lin, N.; Yang, D. Bone transport for reconstruction of large bone defects after

tibial tumor resection: A report of five cases. J. Int. Med. Res. 2018, 46, 3219–3225. [CrossRef]

Taylor, B.C.; French, B.G.; Fowler, T.T.; Russell, J.; Poka, A. Induced Membrane Technique for reconstruction

to manage tone loss. J. Am. Acad. Orthop. Surg. 2012, 20, 142–150. [CrossRef]

Gore, D.R. The arthrodesis rate in multilevel anterior cervical fusions using autogenous fibula. Spine 2001,

26, 1259–1263. [CrossRef]

Schwartz, C.E.; Martha, J.F.; Kowalski, P.; Wang, D.A.; Bode, R.; Li, L.; Kim, D.H. Prospective evaluation of

chronic pain associated with posterior autologous iliac crest bone graft harvest and its effect on postoperative

outcome. Health Qual. Life Outcomes 2009, 7, 49. [CrossRef]

Dimar, J.R., II; Glassman, S.D.; Burkus, J.K.; Pryor, P.W.; Hardacker, J.W.; Carreon, L.Y. Two-year fusion and

clinical outcomes in 224 patients treated with a single-level instrumented posterolateral fusion with iliac

crest bone graft. Spine J. 2009, 9, 880–885. [CrossRef]

Jakoi, A.M.; Iorio, J.A.; Cahill, P.J. Autologous bone graft harvesting: A review of grafts and surgical

techniques. Musculoskelet. Surg. 2015, 99, 171–178. [CrossRef]

Mohr, J.; Germain, M.; Winters, M.; Fraser, S.; Duong, A.; Garibaldi, A.; Simunovic, N.; Alsop, D.; Dao, D.;

Bessemer, R.; et al. Disinfection of human musculoskeletal allografts in tissue banking: A systematic review.

Cell Tissue Bank. 2016, 17, 573–584. [CrossRef] [PubMed]

Warnock, J.M.; Rowan, C.H.; Davidson, H.; Millar, C.; McAlinden, M.G. Improving efficiency of a regional

stand alone bone bank. Cell Tissue Bank. 2016, 17, 85–90. [CrossRef] [PubMed]

Zwitser, E.W.; Jiya, T.U.; George Licher, H.; van Royen, B.J. Design and management of an orthopaedic bone

bank in The Netherlands. Cell Tissue Bank. 2012, 13, 63–69. [CrossRef] [PubMed]

de Alencar, P.G.; Vieira, I.F. Bone banks. Rev. Bras. Ortop. 2010, 45, 524–528. [CrossRef]

Mishra, A.K.; Vikas, R.; Agrawal, H.S. Allogenic bone grafts in post-traumatic juxta-articular defects: Need

for allogenic bone banking. Med. J. Armed Forces India 2017, 73, 282–286. [CrossRef]

Kim, Y.H.; Park, J.W.; Kim, J.S.; Rastogi, D. High survivorship with cementless stems and cortical strut

allografts for large femoral bone defects in revision THA. Clin. Orthop. Relat. Res. 2015, 473, 2990–3000.

[CrossRef]

Mankin, H.J.; Gebhardt, M.C.; Jennings, L.C.; Springfield, D.S.; Tomford, W.W. Long-term results of allograft

replacement in the management of bone tumors. Clin. Orthop. Relat. Res. 1996, 324, 86–97. [CrossRef]

Halim, A.S.; Chai, S.C.; Wan Ismail, W.F.; Wan Azman, W.S.; Mat Saad, A.Z.; Wan, Z. Long-term outcome

of free fibula osteocutaneous flap and massive allograft in the reconstruction of long bone defect. J. Plast.

Reconstr. Aesthet. Surg. 2015, 68, 1755–1762. [CrossRef]

Ogose, A.; Kondo, N.; Umezu, H.; Hotta, T.; Kawashima, H.; Tokunaga, K.; Ito, T.; Kudo, N.; Hoshino, M.;

Gu, W.; et al. Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion) in

human bones. Biomaterials 2006, 27, 1542–1549. [CrossRef]

Yamasaki, N.; Hirao, M.; Nanno, K.; Sugiyasu, K.; Tamai, N.; Hashimoto, N.; Yoshikawa, H.; Myoui, A.

A comparative assessment of synthetic ceramic bone substitutes with different composition and microstructure

in rabbit femoral condyle model. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 91, 788–798. [CrossRef]

Kombate, N.K.; Walla, A.; Ayouba, G.; Bakriga, B.M.; Dellanh, Y.Y.; Abalo, A.G.; Dossimm, A.M.

Reconstruction of traumatic bone loss using the induced membrane technique: Preliminary results about 11

cases. J. Orthop. 2017, 14, 489–494. [CrossRef] [PubMed]

Nanomaterials 2020, 10, 562

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

11 of 14

Tsagozis, P.; Parry, M.; Grimer, R. High complication rate after extendible endoprosthetic replacement of the

proximal tibia: A retrospective study of 42 consecutive children. Acta Orthop. 2018, 89, 678–682. [CrossRef]

[PubMed]

Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of

pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [CrossRef]

[PubMed]

Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced pluripotent stem cells.

Nature 2007, 448, 313–317. [CrossRef] [PubMed]

Kwon, S.G.; Kwon, Y.W.; Lee, T.W.; Park, G.T.; Kim, J.H. Recent advances in stem cell therapeutics and tissue

engineering strategies. Biomater. Res. 2018, 22, 36. [CrossRef] [PubMed]

Mohammadian, F.; Abhari, A.; Nejati-Koshki, K.; Akbarzadeh, A. New state of nanofibers in regenerative

medicine. Artif. Cells Nanomed. Biotechnol. 2017, 45, 204–210. [CrossRef]

Chen, X.; Gleeson, S.E.; Yu, T.; Khan, N.; Yucha, R.W.; Marcolongo, M.; Li, C.Y. Hierarchically ordered

polymer nanofiber shish kebabs as a bone scaffold material. J. Biomed. Mater. Res. A 2017, 105, 1786–1798.

[CrossRef]

Saito, N.; Haniu, H.; Usui, Y.; Aoki, K.; Hara, K.; Takanashi, S.; Shimizu, M.; Narita, N.; Okamoto, M.;

Kobayashi, S.; et al. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev. 2014, 114,

6040–6079. [CrossRef]

Reneker, D.H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology

1996, 7, 216–223. [CrossRef]

Aagaard, J. The Carbomedics aortic heart valve prosthesis: A review. J. Cardiovasc. Surg. 2004, 45, 531–534.

Morice, M.C.; Bestehorn, H.P.; Carrie, D.; Macaya, C.; Aengevaeren, W.; Wijns, W.; Dubois, C.; de Winter, R.;

Verheye, S.; Hoffmann, S.; et al. Direct stenting of de novo coronary stenoses with tacrolimus-eluting versus

carbon-coated carbostents: The randomized JUPITER II trial. EuroIntervention 2006, 2, 45–52. [PubMed]

Becker, H.P.; Rosenbaum, D.; Zeithammel, G.; Gnann, R.; Bauer, G.; Gerngross, H.; Claes, L. Tenodesis versus

carbon fiber repair of ankle ligaments: A clinical comparison. Clin. Orthop. Relat. Res. 1996, 325, 194–202.

[CrossRef] [PubMed]

Guiral, J.; Ferrandez, L.; Curto, J.M.; Basora, J.; Vicente, P. Carbon and polyester fibers as a scaffold for bone

repair: Studies of segmentary implants in the rabbit radius. Acta Orthop. Scand. 1990, 61, 16–20. [CrossRef]

[PubMed]

Qiu, Y.S.; Shahgaldi, B.F.; Revell, W.J.; Heatley, F.W. Evaluation of Gateshead carbon fibre rod as an implant

material for repair of osteochondral defects: A morphological and mechanical study in the rabbit knee.

Biomaterials 2002, 23, 3943–3955. [CrossRef]

Visuri, T.; Kiviluoto, O.; Eskelin, M. Carbon fiber for repair of the rotator cuff: A 4-year follow-up of 14 cases.

Acta Orthop. Scand. 1991, 62, 356–359. [CrossRef]

Kim, C.; Yang, K.S.; Kojima, M.; Yoshida, K.; Kim, Y.J.; Kim, Y.A.; Endo, M. Fabrication of

electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries.

Adv. Funct. Mater. 2006, 16, 2393–2397. [CrossRef]

Aoki, K.; Usui, Y.; Narita, N.; Ogiwara, N.; Iashigaki, N.; Nakamura, K.; Kato, H.; Sano, K.; Ogiwara, N.;

Kametani, K.; et al. A Thin Carbon-Fiber Web as a Scaffold for Bone-Tissue Regeneration. Small 2009, 5,

1540–1546. [CrossRef]

Long, F.X. Building strong bones: Molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol.

2012, 13, 27–38. [CrossRef]

Carstens, M.H.; Chin, M.; Li, X.J. In situ osteogenesis: Regeneration of 10-cm mandibular defect in porcine

model using recombinant human bone morphogenetic protein-2 (rhBMP-2) and helistat absorbable collagen

sponge. J. Craniofac. Surg. 2005, 16, 1033–1042. [CrossRef]

Venugopal, J.; Low, S.; Choon, A.T.; Sampath Kumar, T.S.; Ramakrishna, S. Mineralization of osteoblasts with

electrospun collagen/hydroxyapatite nanofibers. J. Mater. Sci. Mater. Med. 2008, 19, 2039–2046. [CrossRef]

Gregory, C.A.; Gunn, W.G.; Peister, A.; Prockop, D.J. An Alizarin red-based assay of mineralization by

adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 2004, 329,

77–84. [CrossRef] [PubMed]

Nanomaterials 2020, 10, 562

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

12 of 14

Lee, H.; Yeo, M.; Ahn, S.; Kang, D.O.; Jang, C.H.; Lee, H.; Park, G.M.; Kim, G.H. Designed hybrid scaffolds

consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration.

J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97, 263–270. [CrossRef] [PubMed]

Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and

cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [CrossRef]

Yeo, M.; Lee, H.; Kim, G. Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone,

beta-tricalcium phosphate, and collagen nanofibers: Fabrication, physical properties, and in vitro cell activity

for bone tissue regeneration. Biomacromolecules 2011, 12, 502–510. [CrossRef]

Modulevsky, D.J.; Cuerrier, C.M.; Pelling, A.E. Biocompatibility of subcutaneously implanted plant-derived

cellulose biomaterials. PLoS ONE 2016, 11, e0157894. [CrossRef]

Cheng, F.; Wu, Y.; Li, H.; Yan, T.; Wei, X.; Wu, G.; He, J.; Huang, Y. Biodegradable N, O-carboxymethyl

chitosan/oxidized regenerated cellulose composite gauze as a barrier for preventing postoperative adhesion.

Carbohydr. Polym. 2019, 207, 180–190. [CrossRef]

Hodder, E.; Duin, S.; Kilian, D.; Ahlfeld, T.; Seidel, J.; Nachtigall, C.; Bush, P.; Covill, D.; Gelinsky, M.; Lode, A.

Investigating the effect of sterilisation methods on the physical properties and cytocompatibility of methyl

cellulose used in combination with alginate for 3D-bioplotting of chondrocytes. J. Mater. Sci. Mater. Med.

2019, 30, 10. [CrossRef]

Trivedi, P.; Saloranta-Simell, T.; Maver, U.; Gradišnik, L.; Prabhakar, N.; Smått, J.H.; Mohan, T.; Gericke, M.;

Heinze, T.; Fardim, P. Chitosan–cellulose multifunctional hydrogel beads: Design, characterization and

evaluation of cytocompatibility with breast adenocarcinoma and osteoblast cells. Bioengineering 2018, 5, 3.

[CrossRef]

Chakraborty, P.K.; Adhikari, J.; Saha, P. Facile fabrication of electrospun regenerated cellulose nanofiber

scaffold for potential bone-tissue engineering application. Int. J. Biol. Macromol. 2019, 122, 644–652.

[CrossRef]

Gasparic, P.; Kurecic, M.; Kargl, R.; Maver, U.; Gradisnik, L.; Hribernik, S.; Kleinschek, K.S.; Smole, M.S.

Nanofibrous polysaccharide hydroxyapatite composites with biocompatibility against human osteoblasts.

Carbohydr. Polym. 2017, 177, 388–396. [CrossRef]

Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and

applications. Mar. Drugs 2015, 13, 1133–1174. [CrossRef] [PubMed]

Huang, L.; Zhu, L.; Shi, X.; Xia, B.; Liu, Z.; Zhu, S.; Yang, Y.; Ma, T.; Cheng, P.; Luo, K.; et al. A compound

scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve

regeneration in vivo. Acta Biomater. 2018, 68, 223–236. [CrossRef] [PubMed]

Ahmad, S.; Minhas, M.U.; Ahmad, M.; Sohail, M.; Abdullah, O.; Badshah, S.F. Preparation and Evaluation

of Skin Wound Healing Chitosan-Based Hydrogel Membranes. AAPS PharmSciTech 2018, 19, 3199–3209.

[CrossRef] [PubMed]

Sharifi, F.; Atyabi, S.M.; Norouzian, D.; Zandi, M.; Irani, S.; Bakhshi, H. Polycaprolactone/carboxymethyl

chitosan nanofibrous scaffolds for bone tissue engineering application. Int. J. Biol. Macromol. 2018, 115,

243–248. [CrossRef] [PubMed]

Liu, H.; Peng, H.; Wu, Y.; Zhang, C.; Cai, Y.; Xu, G.; Li, Q.; Chen, X.; Ji, J.; Zhang, Y.; et al. The promotion

of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad

signaling pathway in BMSCs. Biomaterials 2013, 34, 4404–4417. [CrossRef]

Cao, Y.L.; Vacanti, J.P.; Paige, K.T.; Upton, J.; Vacanti, C.A. Transplantation of chondrocytes utilizing a

polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast. Reconstr. Surg.

1997, 100, 297–302. [CrossRef] [PubMed]

Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [CrossRef]

Saito, N.; Okada, T.; Horiuchi, H.; Murakami, N.; Takahashi, J.; Nawata, M.; Ota, H.; Nozaki, K.; Takaoka, K.

A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat. Biotechnol. 2001,

19, 332–335. [CrossRef]

Hoornaert, A.; d’Arros, C.; Heymann, M.F.; Layrolle, P. Biocompatibility, resorption and biofunctionality of

a new synthetic biodegradable membrane for guided bone regeneration. Biomed. Mater. 2016, 11, 045012.

[CrossRef]

Wang, Y.; Cui, W.; Chou, J.; Wen, S.; Sun, Y.; Zhang, H. Electrospun nanosilicates-based organic/inorganic

nanofibers for potential bone tissue engineering. Colloids Surf. B Biointerfaces 2018, 172, 90–97. [CrossRef]

Nanomaterials 2020, 10, 562

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

13 of 14

Gundberg, C.M.; Hauschka, P.V.; Lian, J.B.; Gallop, P.M. Osteocalcin: Isolation, characterization, and detection.

Methods Enzymol. 1984, 107, 516–544. [PubMed]

Yang, X.; Li, Y.; Liu, X.; Huang, Q.; Zhang, R.; Feng, Q. Incorporation of silica nanoparticles to PLGA

electrospun fibers for osteogenic differentiation of human osteoblast-like cells. Regen. Biomater. 2018, 5,

229–238. [CrossRef] [PubMed]

Enayati, M.S.; Behzad, T.; Sajkiewicz, P.; Rafienia, M.; Bagheri, R.; Ghasemi-Mobarakeh, L.; Kolbuk, D.;

Pahlevanneshan, Z.; Bonakdar, S.H. Development of electrospun poly (vinyl alcohol)-based bionanocomposite

scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 2018, 106, 1111–1120. [CrossRef]

Zhang, S.; Chen, L.; Jiang, Y.; Cai, Y.; Xu, G.; Tong, T.; Zhang, W.; Wang, L.; Ji, J.; Shi, P.; et al. Bi-layer

collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater.

2013, 9, 7236–7247. [CrossRef]

van den Borne, M.P.; Raijmakers, N.J.; Vanlauwe, J.; Victor, J.; de Jong, S.N.; Bellemans, J.; Saris, D.B.;

International Cartilage Repair Society. International Cartilage Repair Society (ICRS) and Oswestry

macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI)

and microfracture. Osteoarthr. Cartil. 2007, 15, 1397–1402. [CrossRef]

Hayashi, K.; Ochiai-Shino, H.; Shiga, T.; Onodera, S.; Saito, A.; Shibahara, T.; Azuma, T. Transplantation of

human-induced pluripotent stem cells carried by self-assembling peptide nanofiber hydrogel improves bone

regeneration in rat calvarial bone defects. BDJ Open 2016, 2, 15007. [CrossRef]

Xie, J.; Peng, C.; Zhao, Q.; Wang, X.; Yuan, H.; Yang, L.; Li, K.; Lou, X.; Zhang, Y. Osteogenic differentiation

and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Acta Biomater. 2016,

29, 365–379. [CrossRef]

Asatrian, G.; Pham, D.; Hardy, W.R.; James, A.W.; Peault, B. Stem cell technology for bone regeneration:

Current status and potential applications. Stem Cells Cloning 2015, 8, 39–48. [CrossRef]

Jin, Y.Z.; Lee, J.H. Mesenchymal Stem Cell Therapy for Bone Regeneration. Clin. Orthop. Surg. 2018, 10,

271–278. [CrossRef]

Yoshikawa, T.; Ohgushi, H.; Tamai, S. Immediate bone forming capability of prefabricated osteogenic

hydroxyapatite. J. Biomed. Mater. Res. 1996, 32, 481–492. [CrossRef]

Xu, T.; Yao, Q.; Miszuk, J.M.; Sanyour, H.J.; Hong, Z.; Sun, H.; Fong, H. Tailoring weight ratio of PCL/PLA in

electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells.

Colloids Surf. B Biointerfaces 2018, 171, 31–39. [CrossRef] [PubMed]

Park, J.B.; Kim, K.Y.; Lee, W.; Kim, H.; Kim, I. Combinatorial effect of stem cells derived from mandible and

recombinant human bone morphogenetic protein-2. Tissue Eng. Regen. Med. 2015, 12, 343–351. [CrossRef]

Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015,

11, 45–54. [CrossRef] [PubMed]

Subramanian, G.; Bialorucki, C.; Yildirim-Ayan, E. Nanofibrous yet injectable polycaprolactone-collagen

bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2.

Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 51, 16–27. [CrossRef]

Mohammadi, M.; Alibolandi, M.; Abnous, K.; Salmasi, Z.; Jaafari, M.R.; Ramezani, M. Fabrication of hybrid

scaffold based on hydroxyapatite-biodegradable nanofibers incorporated with liposomal formulation of

BMP-2 peptide for bone tissue engineering. Nanomedicine 2018, 14, 1987–1997. [CrossRef]

Das, A.; Fishero, B.A.; Christophel, J.J.; Li, C.J.; Kohli, N.; Lin, Y.; Dighe, A.S.; Cui, Q. Poly(lactic-co-glycolide)

polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible

defect repair. Cell Tissue Res. 2016, 364, 125–135. [CrossRef]

Berner, A.; Boerckel, J.D.; Saifzadeh, S.; Steck, R.; Ren, J.; Vaquette, C.; Zhang, J.Q.; Nerlich, M.; Guldberg, R.E.;

Hutmacher, D.W.; et al. Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of

BMP-7 for large bone defect regeneration. Cell Tissue Res. 2012, 347, 603–612. [CrossRef]

Del Rosario, C.; Rodriguez-Evora, M.; Reyes, R.; Delgado, A.; Evora, C. BMP-2, PDGF-BB, and bone

marrow mesenchymal cells in a macroporous beta-TCP scaffold for critical-size bone defect repair in rats.

Biomed. Mater. 2015, 10, 045008. [CrossRef]

Roussy, Y.; Bertrand Duchesne, M.P.; Gagnon, G. Activation of human platelet-rich plasmas: Effect on growth

factors release, cell division and in vivo bone formation. Clin. Oral Implants Res. 2007, 18, 639–648. [CrossRef]

Nanomaterials 2020, 10, 562

14 of 14

90.

Cheng, G.; Ma, X.; Li, J.; Cheng, Y.; Cao, Y.; Wang, Z.; Shi, X.; Du, Y.; Deng, H.; Li, Z. Incorporating platelet-rich

plasma into coaxial electrospun nanofibers for bone tissue engineering. Int. J. Pharm. 2018, 547, 656–666.

[CrossRef]

91. Izadpanahi, M.; Seyedjafari, E.; Arefian, E.; Hamta, A.; Hosseinzadeh, S.; Kehtari, M.; Soleimani, M.

Nanotopographical cues of electrospun PLLA efficiently modulate non-coding RNA network to osteogenic

differentiation of mesenchymal stem cells during BMP signaling pathway. Mater. Sci. Eng. C Mater. Biol. Appl.

2018, 93, 686–703. [CrossRef] [PubMed]

92. Sankar, S.; Kakunuri, M.; Eswaramoorthy, S.; Sharma, C.S.; Rath, S.N. Effect of patterned electrospun

hierarchical structures on alignment and differentiation of mesenchymal stem cells: Biomimicking bone.

J. Tissue Eng. Regen. Med. 2018, 12, e2073–e2084. [CrossRef] [PubMed]

93. Shao, S.; Zhou, S.; Li, L.; Li, J.; Luo, C.; Wang, J.; Li, X.; Weng, J. Osteoblast function on electrically conductive

electrospun PLA/MWCNTs nanofibers. Biomaterials 2011, 32, 2821–2833. [CrossRef]

94. Grande, F.; Tucci, P. Titanium dioxide nanoparticles: A risk for human health? Mini Rev. Med. Chem. 2016,

16, 762–769. [CrossRef] [PubMed]

95. Donaldson, K.; Stone, V.; Clouter, A.; Renwick, L.; MacNee, W. Ultrafine particles. Occup. Environ. Med.

2001, 58, 211–216. [CrossRef] [PubMed]

96. Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.;

Kreyling, W.; Lai, D.; et al. Principles for characterizing the potential human health effects from exposure to

nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol. 2005, 2, 8. [CrossRef]

97. Usui, Y.; Aoki, K.; Narita, N.; Murakami, N.; Nakamura, I.; Nakamura, K.; Ishigaki, N.; Yamazaki, H.;

Horiuchi, H.; Kato, H.; et al. Carbon nanotubes with high bone-tissue compatibility and bone-formation

acceleration effects. Small 2008, 4, 240–246. [CrossRef]

98. Vittorio, O.; Raffa, V.; Cuschieri, A. Influence of purity and surface oxidation on cytotoxicity of multiwalled

carbon nanotubes with human neuroblastoma cells. Nanomedicine 2009, 5, 424–431. [CrossRef]

99. Liao, C.; Li, Y.; Tjong, S.C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J.

Mol. Sci. 2018, 19, 3564. [CrossRef]

100. Bach, F.H.; Fishman, J.A.; Daniels, N.; Proimos, J.; Anderson, B.; Carpenter, C.B.; Forrow, L.; Robson, S.C.;

Fineberg, H.V. Uncertainty in xenotransplantation: Individual benefit versus collective risk. Nat. Med. 1998,

4, 141–144. [CrossRef]

101. Butler, D. Last chance to stop acid think on risks of xenotransplants. Nature 1998, 391, 320–324. [CrossRef]

[PubMed]

102. Delustro, F.; Dasch, J.; Keefe, J.; Ellingsworth, L. Immune responses to allogeneic and xenogeneic implants of

collagen and collagen derivatives. Clin. Orthop. Relat. Res. 1990, 260, 263–279. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る