リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Applications of Carbon Nanotubes in Bone Regenerative Medicine」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Applications of Carbon Nanotubes in Bone Regenerative Medicine

Tanaka, Manabu Aoki, Kaoru Haniu, Hisao Kamanaka, Takayuki Takizawa, Takashi Sobajima, Atsushi Yoshida, Kazushige Okamoto, Masanori Kato, Hiroyuki Saito, Naoto 信州大学 DOI:32252244

2021.02.04

概要

Scaffolds are essential for bone regeneration due to their ability to maintain a sustained release of growth factors and to provide a place where cells that form new bone can enter and proliferate. In recent years, scaffolds made of various materials have been developed and evaluated. Functionally effective scaffolds require excellent cell affinity, chemical properties, mechanical properties, and safety. Carbon nanotubes (CNTs) are fibrous nanoparticles with a nano-size diameter and have excellent strength and chemical stability. In the industrial field, they are used as fillers to improve the performance of materials. Because of their excellent physicochemical properties, CNTs are studied for their promising clinical applications as biomaterials. In this review article, we focused on the results of our research on CNT scaffolds for bone regeneration, introduced the promising properties of scaffolds for bone regeneration, and described the potential of CNT scaffolds.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Marsell, R.; Einhorn, T.A. The biology of fracture healing. Injury 2011, 42, 551–555. [CrossRef] [PubMed]

Baht, G.S.; Vi, L.; Alman, B.A. The Role of the Immune Cells in Fracture Healing. Curr. Osteoporos. Rep. 2018,

16, 138–145. [CrossRef] [PubMed]

Fazzalari, N.L. Bone fracture and bone fracture repair. Osteoporos. Int. 2011, 22, 2003–2006. [CrossRef]

Granero-Moltó, F.; Weis, J.A.; Miga, M.I.; Landis, B.; Myers, T.J.; O’Rear, L.; Longobardi, L.; Jansen, E.D.;

Mortlock, D.P.; Spagnoli, A. Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture

Healing. Stem Cells 2009, 27, 1887–1898. [CrossRef] [PubMed]

Tsuji, K.; Bandyopadhyay, A.; Harfe, B.D.; Cox, K.; Kakar, S.; Gerstenfeld, L.; Einhorn, T.; Tabin, C.J.; Rosen, V.

BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing.

Nat. Genet. 2006, 38, 1424–1429. [CrossRef] [PubMed]

Wan, C.; Gilbert, S.R.; Wang, Y.; Cao, X.; Shen, X.; Ramaswamy, G.; Jacobsen, K.A.; Alaql, Z.S.; Eberhardt, A.W.;

Gerstenfeld, L.C.; et al. Activation of the hypoxia-inducible factor-1 pathway accelerates bone regeneration.

Proc. Natl. Acad. Sci. USA 2008, 105, 686–691. [CrossRef] [PubMed]

Dimitriou, R.; Tsiridis, E.; Giannoudis, P.V. Current concepts of molecular aspects of bone healing. Injury

2005, 36, 1392–1404. [CrossRef]

Gerstenfeld, L.C.; Alkhiary, Y.M.; Krall, E.A.; Nicholls, F.H.; Stapleton, S.N.; Fitch, J.L.; Bauer, M.; Kayal, R.;

Graves, D.T.; Jepsen, K.J.; et al. Three-dimensional Reconstruction of Fracture Callus Morphogenesis.

J. Histochem. Cytochem. 2006, 54, 1215–1228. [CrossRef]

Tsiridis, E.; Upadhyay, N.; Giannoudis, P. Molecular aspects of fracture healing: Which are the important

molecules? Injury 2007, 38, S11–S25. [CrossRef]

Burg, K.J.L.; Porter, S.; Kellam, J.F. Biomaterial developments for bone tissue engineering. Biomater. 2000, 21,

2347–2359. [CrossRef]

Stevens, M.M. Biomaterials for bone tissue engineering. Mater. Today 2008, 11, 18–25. [CrossRef]

Tollemar, V.; Collier, Z.J.; Mohammed, M.K.; Lee, M.J.; Ameer, G.A.; Reid, R.R. Stem cells, growth factors and

scaffolds in craniofacial regenerative medicine. Genes Dis. 2016, 3, 56–71. [CrossRef] [PubMed]

Arvidson, K.; Abdallah, B.M.; Applegate, L.A.; Baldini, N.; Cenni, E.; Gomez-Barrena, E.; Granchi, D.;

Kassem, M.; Konttinen, Y.T.; Mustafa, K.; et al. Bone regeneration and stem cells. J. Cell. Mol. Med. 2011, 15,

718–746. [CrossRef]

Solheim, E. Growth factors in bone. Int. Orthop. 1998, 22, 410–416. [CrossRef] [PubMed]

Cartmell, S. Controlled Release Scaffolds for Bone Tissue Engineering. J. Pharm. Sci. 2009, 98, 430–441.

[CrossRef] [PubMed]

Allen, T.M. Drug Delivery Systems: Entering the Mainstream. Sci. 2004, 303, 1818–1822. [CrossRef] [PubMed]

Dash, A.; Cudworth, G. Therapeutic applications of implantable drug delivery systems. J. Pharmacol.

Toxicol. Methods 1998, 40, 1–12. [CrossRef]

Zhao, J.; Shinkai, M.; Takezawa, T.; Ohba, S.; Chung, U.; Nagamune, T. Bone regeneration using collagen

type I vitrigel with bone morphogenetic protein-2. J. Biosci. Bioeng. 2009, 107, 318–323. [CrossRef]

Chang, P.-C.; Liu, B.-Y.; Liu, C.-M.; Chou, H.-H.; Ho, M.-H.; Liu, H.-C.; Wang, D.-M.; Hou, L.-T. Bone tissue

engineering with novel rhBMP2-PLLA composite scaffolds. J. Biomed. Mater. Res. Part A 2007, 81A, 771–780.

[CrossRef]

Fernandes, H.R.; Gaddam, A.; Rebelo, A.; Brazete, D.; Stan, G.E.; Ferreira, J.M.F. Bioactive glasses and

glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials 2018, 11,

2530. [CrossRef]

Han, D.; Dai, K. Prefabrication of a Vascularized Bone Graft With Beta Tricalcium Phosphate Using an In

Vivo Bioreactor. Artif. Organs 2013, 37, 884–893. [CrossRef]

Nanomaterials 2020, 10, 659

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

11 of 15

Li, J.P.; Habibovic, P.; van den Doel, M.; Wilson, C.E.; de Wijn, J.R.; van Blitterswijk, C.A.; de Groot, K. Bone

ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 2007, 28, 2810–2820.

[CrossRef]

Takizawa, T.; Nakayama, N.; Haniu, H.; Aoki, K.; Okamoto, M.; Nomura, H.; Tanaka, M.; Sobajima, A.;

Yoshida, K.; Kamanaka, T.; et al. Titanium Fiber Plates for Bone Tissue Repair. Adv. Mater. 2018, 30, 1703608.

[CrossRef]

Aoki, K.; Usui, Y.; Narita, N.; Ogiwara, N.; Iashigaki, N.; Nakamura, K.; Kato, H.; Sano, K.; Ogiwara, N.;

Kametani, K.; et al. A Thin Carbon-Fiber Web as a Scaffold for Bone-Tissue Regeneration. Small 2009, 5,

1540–1546. [CrossRef]

Nakahara, H.; Misawa, H.; Yoshida, A.; Hayashi, T.; Tanaka, M.; Furumatsu, T.; Tanaka, N.; Kobayashi, N.;

Ozaki, T. Bone repair using a hybrid scaffold of self-assembling peptide PuraMatrix and polyetheretherketone

cage in rats. Cell Transplant. 2010, 19, 791–797. [CrossRef]

Oryan, A.; Alidadi, S.; Moshiri, A.; Maffulli, N. Bone regenerative medicine: Classic options, novel strategies,

and future directions. J. Orthop. Surg. Res. 2014, 9, 18. [CrossRef]

Egol, K.A.; Nauth, A.; Lee, M.; Pape, H.-C.; Watson, J.T.; Borrelli, J. Bone Grafting. J. Orthop. Trauma 2015, 29,

S10–S14. [CrossRef]

Giannoudis, P.V.; Dinopoulos, H.; Tsiridis, E. Bone substitutes: An update. Injury 2005, 36, S20–S27.

[CrossRef]

Halim, A.S.; Chai, S.C.; Wan Ismail, W.F.; Wan Azman, W.S.; Mat Saad, A.Z.; Wan, Z. Long-term outcome

of free fibula osteocutaneous flap and massive allograft in the reconstruction of long bone defect. J. Plast.

Reconstr. Aesthetic Surg. 2015, 68, 1755–1762. [CrossRef]

Kim, Y.-H.; Park, J.-W.; Kim, J.-S.; Rastogi, D. High Survivorship With Cementless Stems and Cortical Strut

Allografts for Large Femoral Bone Defects in Revision THA. Clin. Orthop. Relat. Res. 2015, 473, 2990–3000.

[CrossRef]

Tamai, N.; Myoui, A.; Tomita, T.; Nakase, T.; Tanaka, J.; Ochi, T.; Yoshikawa, H. Novel hydroxyapatite

ceramics with an interconnective porous structure exhibit superior osteoconductionin vivo. J. Biomed.

Mater. Res. 2002, 59, 110–117. [CrossRef]

Sotome, S.; Ae, K.; Okawa, A.; Ishizuki, M.; Morioka, H.; Matsumoto, S.; Nakamura, T.; Abe, S.; Beppu, Y.;

Shinomiya, K. Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone

regeneration: A randomized controlled study. J. Orthop. Sci. 2016, 21, 373–380. [CrossRef]

Saito, N.; Haniu, H.; Usui, Y.; Aoki, K.; Hara, K.; Takanashi, S.; Shimizu, M.; Narita, N.; Okamoto, M.;

Kobayashi, S.; et al. Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chem. Rev. 2014, 114,

6040–6079. [CrossRef]

Saito, N.; Usui, Y.; Aoki, K.; Narita, N.; Shimizu, M.; Ogiwara, N.; Nakamura, K.; Ishigaki, N.; Kato, H.;

Taruta, S.; et al. Carbon Nanotubes for Biomaterials in Contact with Bone. Curr. Med. Chem. 2008, 15,

523–527. [CrossRef]

Supronowicz, P.R.; Ajayan, P.M.; Ullmann, K.R.; Arulanandam, B.P.; Metzger, D.W.; Bizios, R. Novel

current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J. Biomed.

Mater. Res. 2002, 59, 499–506. [CrossRef]

Bajaj, P.; Khang, D.; Webster, T.J. Control of spatial cell attachment on carbon nanofiber patterns on

polycarbonate urethane. Int. J. Nanomed. 2006, 1, 361–365.

Lin, C.; Wang, Y.; Lai, Y.; Yang, W.; Jiao, F.; Zhang, H.; Ye, S.; Zhang, Q. Incorporation of carboxylation

multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering.

Colloids Surf. B Biointerfaces 2011, 83, 367–375. [CrossRef]

Zanello, L.P.; Zhao, B.; Hu, H.; Haddon, R.C. Bone Cell Proliferation on Carbon Nanotubes. Nano Lett. 2006,

6, 562–567. [CrossRef]

Niu, L.; Kua, H.; Chua, D.H.C. Bonelike Apatite Formation Utilizing Carbon Nanotubes as Template.

Langmuir 2010, 26, 4069–4073. [CrossRef]

Balani, K.; Anderson, R.; Laha, T.; Andara, M.; Tercero, J.; Crumpler, E.; Agarwal, A. Plasma-sprayed

carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro.

Biomaterials 2007, 28, 618–624. [CrossRef]

Li, X.; Wang, L.; Fan, Y.; Feng, Q.; Cui, F.-Z.; Watari, F. Nanostructured scaffolds for bone tissue engineering.

J. Biomed. Mater. Res. Part A 2013, 101A, 2424–2435. [CrossRef]

Nanomaterials 2020, 10, 659

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

12 of 15

Ahmad, M.; Gawronski, D.; Blum, J.; Goldberg, J.; Gronowicz, G. Differential response of human

osteoblast-like cells to commercially pure (cp) titanium grades 1 and 4. J. Biomed. Mater. Res. 1999,

46, 121–131. [CrossRef]

Li, X.; van Blitterswijk, C.A.; Feng, Q.; Cui, F.; Watari, F. The effect of calcium phosphate microstructure on

bone-related cells in vitro. Biomaterials 2008, 29, 3306–3316. [CrossRef] [PubMed]

Degasne, I.; Baslé, M.F.; Demais, V.; Huré, G.; Lesourd, M.; Grolleau, B.; Mercier, L.; Chappard, D.

Effects of Roughness, Fibronectin and Vitronectin on Attachment, Spreading, and Proliferation of Human

Osteoblast-Like Cells (Saos-2) on Titanium Surfaces. Calcif. Tissue Int. 1999, 64, 499–507. [CrossRef] [PubMed]

Webster, T.J.; Ergun, C.; Doremus, R.H.; Siegel, R.W.; Bizios, R. Specific proteins mediate enhanced osteoblast

adhesion on nanophase ceramics. J. Biomed. Mater. Res. 2000, 51, 475–483. [CrossRef]

Sakane, M.; Noguchi, H.; Funayama, T.; Ochiai, N. Novel scaffold for bone tissue engineering: Unidirectional

porous hydroxyapatite. In Bone Grafts: Procedures, Complications and Alternatives; Nova Science Publishers:

New York, NY, USA, 2013; pp. 29–40.

Feng, P.; Wu, P.; Gao, C.; Yang, Y.; Guo, W.; Yang, W.; Shuai, C. A Multimaterial Scaffold With Tunable

Properties: Toward Bone Tissue Repair. Adv. Sci. 2018, 5, 1700817. [CrossRef]

Zhu, N.; Che, X. Biofabrication of Tissue Scaffolds. Adv. Biomater. Sci. Biomed. Appl. 2013, 2013, 315–328.

Tamai, N.; Myoui, A.; Kudawara, I.; Ueda, T.; Yoshikawa, H. Novel fully interconnected porous hydroxyapatite

ceramic in surgical treatment of benign bone tumor. J. Orthop. Sci. 2010, 15, 560–568. [CrossRef]

Tanaka, M.; Haniu, H.; Kamanaka, T.; Takizawa, T.; Sobajima, A.; Yoshida, K.; Aoki, K.; Okamoto, M.; Kato, H.;

Saito, N. Physico-Chemical, In Vitro, and In Vivo Evaluation of a 3D Unidirectional Porous Hydroxyapatite

Scaffold for Bone Regeneration. Materials 2017, 10, 33. [CrossRef]

Tanaka, M.; Sato, Y.; Zhang, M.; Haniu, H.; Okamoto, M.; Aoki, K.; Takizawa, T.; Yoshida, K.; Sobajima, A.;

Kamanaka, T.; et al. In Vitro and In Vivo Evaluation of a Three-Dimensional Porous Multi-Walled Carbon

Nanotube Scaffold for Bone Regeneration. Nanomaterials 2017, 7, 46. [CrossRef]

Whang, K.; Goldstick, T.K.; Healy, K.E. A biodegradable polymer scaffold for delivery of osteotropic factors.

Biomaterials 2000, 21, 2545–2551. [CrossRef]

Chen, L.; Shao, L.; Wang, F.; Huang, Y.; Gao, F. Enhancement in sustained release of antimicrobial peptide

and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv. 2019,

9, 10494–10507. [CrossRef]

Lin, H.; Tang, Y.; Lozito, T.P.; Oyster, N.; Wang, B.; Tuan, R.S. Efficient in vivo bone formation by BMP-2

engineered human mesenchymal stem cells encapsulated in a projection stereolithographically fabricated

hydrogel scaffold. Stem Cell Res. Ther. 2019, 10, 254. [CrossRef]

Xu, T.; Sheng, L.; He, L.; Weng, J.; Duan, K. Enhanced osteogenesis of hydroxyapatite scaffolds by coating with

BMP-2-loaded short polylactide nanofiber: A new drug loading method for porous scaffolds. Regen. Biomater.

2020, 7, 91–98. [CrossRef]

Loozen, L.D.; Kruyt, M.C.; Kragten, A.H.M.; Schoenfeldt, T.; Croes, M.; Oner, C.F.; Dhert, W.J.A.; Alblas, J.

BMP-2 gene delivery in cell-loaded and cell-free constructs for bone regeneration. PLoS ONE 2019, 14,

e0220028. [CrossRef]

Stevens, M.M.; Marini, R.P.; Schaefer, D.; Aronson, J.; Langer, R.; Shastri, V.P. In vivo engineering of organs:

The bone bioreactor. Proc. Natl. Acad. Sci. USA 2005, 102, 11450–11455. [CrossRef]

Cowin, S.C. Wolff’s Law of Trabecular Architecture at Remodeling Equilibrium. J. Biomech. Eng. 1986, 108,

83–88. [CrossRef]

Suchanek, W.; Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as

hard tissue replacement implants. J. Mat. Res. 1998, 13.1, 94–117. [CrossRef]

Markowicz, M.; Koellensperger, E.; Neuss, S.; Koenigschulte, S.; Bindler, C.; Pallua, N. Human Bone

Marrow Mesenchymal Stem Cells Seeded on Modified Collagen Improved Dermal Regeneration In Vivo.

Cell Transplant. 2006, 15, 723–732. [CrossRef]

Matsusaki, M.; Ochi, M.; Uchio, Y.; Shu, N.; Kurioka, H.; Kawasaki, K.; Adachi, N. Effects of Basic Fibroblast

Growth Factor on Proliferation and Phenotype Expression of Chondrocytes Embedded in Collagen Gel.

Gen. Pharmacol. Vasc. Syst. 1998, 31, 759–764. [CrossRef]

Masuda, K.; Sah, R.L.; Hejna, M.J.; Thonar, E.J.-M.A. A novel two-step method for the formation of

tissue-engineered cartilage by mature bovine chondrocytes: The alginate-recovered-chondrocyte (ARC)

method. J. Orthop. Res. 2003, 21, 139–148. [CrossRef]

Nanomaterials 2020, 10, 659

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

13 of 15

Prasadh, S.; Wong, R.C.W. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral

and maxillofacial defects. Oral Sci. Int. 2018, 15, 48–55. [CrossRef]

Gutiérrez-Hernández, J.M.; Escobar-García, D.M.; Escalante, A.; Flores, H.; González, F.J.; Gatenholm, P.;

Toriz, G. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon

nanotubes as scaffold for bone regeneration. Mater. Sci. Eng. C 2017, 75, 445–453. [CrossRef] [PubMed]

Li, X.; Liu, H.; Niu, X.; Yu, B.; Fan, Y.; Feng, Q.; Cui, F.-Z.; Watari, F. The use of carbon nanotubes to induce

osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo.

Biomaterials 2012, 33, 4818–4827. [CrossRef]

Aoki, N.; Akasaka, T.; Watari, F.; Yokoyama, A. Carbon Nanotubes as Scaffolds for Cell Culture and Effect on

Cellular Functions. Dent. Mater. J. 2007, 26, 178–185. [CrossRef]

Das, K.; Madhusoodan, A.; Mili, B.; Kumar, A.; Saxena, A.C.; Kumar, K.; Sarkar, M.; Singh, P.; Shrivastava, S.;

Bag, S. Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of

canine mesenchymal stem cells. Int. J. Nanomed. 2017, 12, 3235–3252. [CrossRef]

Hirano, S.; Fujitani, Y.; Furuyama, A.; Kanno, S. Uptake and cytotoxic effects of multi-walled carbon

nanotubes in human bronchial epithelial cells. Toxicol. Appl. Pharmacol. 2010, 249, 8–15. [CrossRef]

Tsukahara, T.; Haniu, H. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube

in human lung cells. Mol. Cell. Biochem. 2011, 352, 57–63. [CrossRef]

Haniu, H.; Saito, N.; Matsuda, Y.; Kim, Y.-A.; Park, K.C.; Tsukahara, T.; Usui, Y.; Aoki, K.; Shimizu, M.;

Ogihara, N.; et al. Effect of dispersants of multi-walled carbon nanotubes on cellular uptake and biological

responses. Int. J. Nanomed. 2011, 3295. [CrossRef]

Haniu, H.; Saito, N.; Matsuda, Y.; Tsukahara, T.; Maruyama, K.; Usui, Y.; Aoki, K.; Takanashi, S.; Kobayashi, S.;

Nomura, H.; et al. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B

cells and subsequent biological response. Toxicol. Vitr. 2013, 27, 1679–1685. [CrossRef]

Kalfas, I.H. Principles of bone healing. Neurosurg. Focus 2001, 10, 1–4. [CrossRef]

Akasaka, T.; Watari, F.; Sato, Y.; Tohji, K. Apatite formation on carbon nanotubes. Mater. Sci. Eng. C 2006, 26,

675–678. [CrossRef]

Tanaka, M.; Sato, Y.; Haniu, H.; Nomura, H.; Kobayashi, S.; Takanashi, S.; Okamoto, M.; Takizawa, T.;

Aoki, K.; Usui, Y.; et al. A three-dimensional block structure consisting exclusively of carbon nanotubes

serving as bone regeneration scaffold and as bone defect filler. PLoS ONE 2017, 12, e0172601. [CrossRef]

Zhang, T.; Tang, M.; Yao, Y.; Ma, Y.; Pu, Y. MWCNT interactions with protein: Surface-induced changes in

protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity. Int. J. Nanomed.

2019, 14, 993–1009. [CrossRef]

Sureshbabu, A.R.; Kurapati, R.; Russier, J.; Ménard-Moyon, C.; Bartolini, I.; Meneghetti, M.; Kostarelos, K.;

Bianco, A. Degradation-by-design: Surface modification with functional substrates that enhance the

enzymatic degradation of carbon nanotubes. Biomaterials 2015, 72, 20–28. [CrossRef]

Hadjidemetriou, M.; Kostarelos, K. Evolution of the nanoparticle corona. Nat. Nanotechnol. 2017, 12, 288–290.

[CrossRef]

He, Z.; Zhou, J. Probing carbon nanotube–amino acid interactions in aqueous solution with molecular

dynamics simulations. Carbon 2014, 78, 500–509. [CrossRef]

Hirano, A.; Tanaka, T.; Kataura, H.; Kameda, T. Arginine Side Chains as a Dispersant for Individual

Single-Wall Carbon Nanotubes. Chem. A Eur. J. 2014, 20, 4922–4930. [CrossRef]

Huh, J.-E.; Choi, J.-Y.; Shin, Y.-O.; Park, D.-S.; Kang, J.; Nam, D.; Choi, D.-Y.; Lee, J.-D. Arginine Enhances

Osteoblastogenesis and Inhibits Adipogenesis through the Regulation of Wnt and NFATc Signaling in

Human Mesenchymal Stem Cells. Int. J. Mol. Sci. 2014, 15, 13010–13029. [CrossRef]

Liu, Z.; Tabakman, S.M.; Chen, Z.; Dai, H. Preparation of carbon nanotube bioconjugates for biomedical

applications. Nat. Protoc. 2009, 4, 1372–1381. [CrossRef]

Perkins, B.L.; Naderi, N. Carbon Nanostructures in Bone Tissue Engineering. Open Orthop. J. 2016, 10,

877–899. [CrossRef]

Wahl, D.; Czernuszka, J. Collagen-Hydroxyapatite Composites for Hard Tissue Repair. Eur. Cells Mater. 2006,

11, 43–56. [CrossRef] [PubMed]

Tanodekaew, S.; Channasanon, S.; Kaewkong, P.; Uppanan, P. PLA-HA Scaffolds: Preparation and Bioactivity.

Procedia Eng. 2013, 59, 144–149. [CrossRef]

Nanomaterials 2020, 10, 659

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

14 of 15

Cao, H.; Kuboyama, N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering.

Bone 2010, 46, 386–395. [CrossRef] [PubMed]

Chen, G.; Sato, T.; Ohgushi, H.; Ushida, T.; Tateishi, T.; Tanaka, J. Culturing of skin fibroblasts in a thin

PLGA–collagen hybrid mesh. Biomaterials 2005, 26, 2559–2566. [CrossRef] [PubMed]

Hirata, E.; Uo, M.; Takita, H.; Akasaka, T.; Watari, F.; Yokoyama, A. Multiwalled carbon nanotube-coating of

3D collagen scaffolds for bone tissue engineering. Carbon 2011, 49, 3284–3291. [CrossRef]

Valverde, T.M.; Castro, E.G.; Cardoso, M.H.S.; Martins-Júnior, P.A.; Souza, L.M.O.; Silva, P.P.; Ladeira, L.O.;

Kitten, G.T. A novel 3D bone-mimetic scaffold composed of collagen/MTA/MWCNT modulates cell migration

and osteogenesis. Life Sci. 2016, 162, 115–124. [CrossRef] [PubMed]

Ferraris, S.; Cochis, A.; Cazzola, M.; Tortello, M.; Scalia, A.; Spriano, S.; Rimondini, L. Cytocompatible

and Anti-bacterial Adhesion Nanotextured Titanium Oxide Layer on Titanium Surfaces for Dental and

Orthopedic Implants. Front. Bioeng. Biotechnol. 2019, 7, 1–12. [CrossRef] [PubMed]

Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M.V. Review on the antimicrobial properties of Carbon

nanostructures. Materials 2017, 10, 1066. [CrossRef] [PubMed]

Elgrabli, D.; Dachraoui, W.; Ménard-Moyon, C.; Liu, X.J.; Bégin, D.; Bégin-Colin, S.; Bianco, A.; Gazeau, F.;

Alloyeau, D. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding

of Biological Pathway. ACS Nano 2015, 9, 10113–10124. [CrossRef]

Takanashi, S.; Hara, K.; Aoki, K.; Usui, Y.; Shimizu, M.; Haniu, H.; Ogihara, N.; Ishigaki, N.; Nakamura, K.;

Okamoto, M.; et al. Carcinogenicity evaluation for the application of carbon nanotubes as biomaterials in

rasH2 mice. Sci. Rep. 2012, 2, 498. [CrossRef]

Nomura, H.; Takanashi, S.; Tanaka, M.; Haniu, H.; Aoki, K.; Okamoto, M.; Kobayashi, S.; Takizawa, T.;

Usui, Y.; Oishi, A.; et al. Specific biological responses of the synovial membrane to carbon nanotubes. Sci. Rep.

2015. [CrossRef] [PubMed]

Sobajima, A.; Haniu, H.; Nomura, H.; Tanaka, M.; Takizawa, T.; Kamanaka, T.; Aoki, K.; Okamoto, M.;

Yoshida, K.; Sasaki, J.; et al. Organ accumulation and carcinogenicity of highly dispersed multi-walled

carbon nanotubes administered intravenously in transgenic rasH2 mice. Int. J. Nanomed. 2019, 14, 6465–6480.

[CrossRef]

Charlier, J.-C. Defects in Carbon Nanotubes. Acc. Chem. Res. 2002, 35, 1063–1069. [CrossRef] [PubMed]

Flores-Cervantes, D.X.; Maes, H.M.; Schäffer, A.; Hollender, J.; Kohler, H.-P.E. Slow Biotransformation of

Carbon Nanotubes by Horseradish Peroxidase. Environ. Sci. Technol. 2014, 48, 4826–4834. [CrossRef]

[PubMed]

Russier, J.; Ménard-Moyon, C.; Venturelli, E.; Gravel, E.; Marcolongo, G.; Meneghetti, M.; Doris, E.; Bianco, A.

Oxidative biodegradation of single- and multi-walled carbon nanotubes. Nanoscale 2011, 3, 893–896.

[CrossRef] [PubMed]

Poland, C.A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W.A.H.; Seaton, A.; Stone, V.; Brown, S.;

MacNee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show

asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428. [CrossRef]

Usui, Y.; Aoki, K.; Narita, N.; Murakami, N.; Nakamura, I.; Nakamura, K.; Ishigaki, N.; Yamazaki, H.;

Horiuchi, H.; Kato, H.; et al. Carbon Nanotubes with High Bone-Tissue Compatibility and Bone-Formation

Acceleration Effects. Small 2008, 4, 240–246. [CrossRef]

Narita, N.; Kobayashi, Y.; Nakamura, H.; Maeda, K.; Ishihara, A.; Mizoguchi, T.; Usui, Y.; Aoki, K.; Simizu, M.;

Kato, H.; et al. Multiwalled Carbon Nanotubes Specifically Inhibit Osteoclast Differentiation and Function.

Nano Lett. 2009, 9, 1406–1413. [CrossRef]

Shimizu, M.; Kobayashi, Y.; Mizoguchi, T.; Nakamura, H.; Kawahara, I.; Narita, N.; Usui, Y.; Aoki, K.;

Hara, K.; Haniu, H.; et al. Carbon Nanotubes Induce Bone Calcification by Bidirectional Interaction with

Osteoblasts. Adv. Mater. 2012, 24, 2176–2185. [CrossRef]

Sato, Y.; Ootsubo, M.; Yamamoto, G.; Van Lier, G.; Terrones, M.; Hashiguchi, S.; Kimura, H.; Okubo, A.;

Motomiya, K.; Jeyadevan, B.; et al. Super-Robust, Lightweight, Conducting Carbon Nanotube Blocks

Cross-Linked by De-fluorination. ACS Nano 2008, 2, 348–356. [CrossRef]

McElhaney, J.H.; Fogle, J.L.; Melvin, J.W.; Haynes, R.R.; Roberts, V.L.; Alem, N.M. Mechanical properties of

cranial bone. J. Biomech. 1970, 3, 495–511. [CrossRef]

Yang, J.; Chiou, R.; Ruprecht, A.; Vicario, J.; MacPhail, L.A.; Rams, T.E. A new device for measuring density

of jaw bones. Dentomaxillofacial Radiol. 2002, 31, 313–316. [CrossRef] [PubMed]

Nanomaterials 2020, 10, 659

15 of 15

105. Keller, T.S.; Mao, Z.; Spengler, D.M. Young’s modulus, bending strength, and tissue physical properties of

human compact bone. J. Orthop. Res. 1990, 8, 592–603. [CrossRef] [PubMed]

106. Cui, Y.; Zhang, M. Cross-links in Carbon Nanotube Assembly Introduced by Using Polyacrylonitrile as

Precursor. ACS Appl. Mater. Interfaces 2013, 5, 8173–8178. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る