リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spatio-temporal variability of soil microbial communities and their identity for litter decomposition in cool-temperate montane forests」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spatio-temporal variability of soil microbial communities and their identity for litter decomposition in cool-temperate montane forests

執行, 宣彦 東京大学 DOI:10.15083/0002002277

2021.10.13

概要

Microbial ecologists have long sought to understand what factors govern soil fungal and bacterial communities. Climate and soil conditions have been regarded as the main factors determining soil microbial communities. However, based on a number of observations that plant community structures also drive forest ecosystems, plant-soil linkages may affect soil fungal and bacterial communities. The interactions between plants and soil microbial communities show a direct pathway through plant roots and indirect pathway through soil food webs. Although the direct pathway has strong specificity, idiosyncratic relationships between soil microbial communities and plants are not fully clarified in the indirect pathway.

 In forest ecosystems, one idiosyncratic relationship that is particularly relevant for litter decomposition has been identified as home-field advantage (HFA). Namely, soil microbial communities may become specialized in breaking down litter that they are associated with, resulting litter decomposing more rapidly in its ‘home’ environment than in an ‘away’ environment. Clarifying the mechanism of HFA can fully explain variations of litter decomposition and solve the problem of biogeochemical models. However, it is not clear how these idiosyncratic microbial communities are positioned in the whole community and how it responds to environmental changes.

 This thesis aims to verify how soil microbial communities exhibit spatio- temporal variability and identity to litter decomposition. Chapter two clarifies the importance of relationships between plant communities and soil properties along elevational gradients. The following chapters also focus on two major spatio-temporal scales where aboveground ecosystem components mainly influence soil microbial communities. The first is elevational change, which is covered in chapter three. The second is seasonal change, which is handled in chapter four. Chapter five deals with the relationships between HFA for litter decomposition and soil microbial identity. This thesis consists of the general introduction (Chapter 1), four chapters presenting the main research of the doctoral thesis (Chapters 2-5), and the general discussion of the key findings (Chapter 6).

 Chapter two examined the direct and indirect roles of environmental factors in forming elevational diversity gradients (EDGs) of forest understory vegetation. EDGs of vegetation can be shaped by the evolutionary histories of plants as well as by ecological factors However, few studies of EDGs have focused on the roles of phylogenetic constraints and the associations with complicated interactions among environmental factors. In this research, taxonomic and phylogenetic diversities of tree seedlings increased monotonically with elevation, and the same pattern was found for the taxonomic diversity of herbs. Structural equation modeling indicated that both the taxonomic and phylogenetic diversity of tree seedlings were most associated with soil properties, although the phylogenetic diversity of herbs was related to light conditions. These results highlight the importance of environmental filtering by soil properties in shaping EDGs of tree seedlings. This research implies that phylogenetic constraints in adaptation to soil properties should be considered when predicting changes in EDGs under environmental fluctuations.

 Chapter three examined how plant functional diversity, soil properties and soil temperature affect EDGs of soil bacteria and fungi at different soil depths. Elevational gradients also represent model systems for understanding the relationships between soil microbial communities and environmental factors, but the multiple influences of plant- soil linkages and the climate on EDGs of soil microbes have never been explored. In this research, the diversity of bacteria decreased with elevation in surface soils but showed no relationship with elevation in deep soils. Structural equation modeling showed that soil bacterial diversity across elevational gradients was directly affected by plant functional diversity, especially where leaf C:N ratio diversity had stronger effects than soil properties. Chapter three found that EDGs of soil bacteria as a consequence of the total effect of elevation were determined by the degree of negative indirect effects of soil temperature, via plant functional diversity and soil properties, against a positive direct effect of soil temperature on bacterial diversity. These findings demonstrate that community assembly of soil microbes is causally linked with the climate, plant functional diversity and soil properties, which determine EDGs.

 Chapter four aimed to evaluate the importance of seasonality, elevation, and soil depth in determining soil fungal and bacterial communities, given the influence of climate conditions, soil properties, and plant traits. Both aboveground and belowground properties operate over seasonal timescale in forest ecosystems at the mid-to-high latitude, but the seasonality of soil fungal and bacterial communities in this area has not been fully understood. Seasonal diversity and abundance patterns did not match between fungi and bacteria, where the peak of fungal diversity and bacterial abundance was observed in April, but those of bacterial diversity occurred in January. Model-based clustering found taxonomic groups associating carbon and biogeographical cycles that were paralleled with seasonality, implying that they are indispensable taxa driving ecosystem processes in temperate forests. Furthermore, bacterial communities were profoundly explained by both spatial and seasonal changes in soil water contents, while many taxonomic groups of soil fungi were related to plant traits along elevational gradients. These findings suggest that the contribution of the seasonal variability of climate conditions, soil properties, and plant traits are equal to or greater than those of spatial changes for microbial communities in forest soils at mid-to-high latitudes.

 Chapter five aimed to understand the relationships between HFA for litter decomposition and soil microbial communities. Given the “community-by-environment” interaction in microbial ecology, it is assumed that both soil and climate affinity strongly influenced litter decomposition, but this hypothesis was not supported. Rather, HFA effects of litter decomposition highly depended on the source soil via fungal and bacterial identity. Although a home-climate advantage for litter was significant in the early stage of decomposition, it was not a strong limiting factor as compared with a soil advantage. These suggest that litter decomposition in temperate forests was explained by microbial communities that are not functionally redundant, but these relationships may have the robustness to climate change. As mentioned in chapter one, HFA for litter decomposition plays an essential role in understanding overall decomposition processes that have implications for global climate and biogeochemical models. These findings contribute to an understanding of the impacts of global climate changes on belowground ecosystem processes and the role of microbial communities in biogeochemical cycles of forest ecosystems. Chapter five also implies that ignoring home-soil advantages for litter decomposition could lead to misinform biogeochemical models and potential cascading consequences for forest management.

 Chapter six recaptures and discusses the results obtained in the main researches of the doctoral thesis (Chapters 2-5) and combines these findings. This thesis found that:
(1) plant-soil linkages were significant along elevational gradients in cool-temperate montane forests; (2) Community assembly of soil fungi and bacteria was linked with the climate, plant traits, and soil properties, which determine elevational and seasonal diversity patterns; (3) Identity of soil microbial communities for litter decomposition has the robustness to climate change. The findings of the doctoral thesis highlight that soil microbial communities have spatio-temporal variability in response to environmental changes, but their identity for litter decomposition has the robustness to environmental perturbations, which explained by plant-soil linkages in forest ecosystems. The further elucidation of the linkages between microbial identity and forest ecosystem functionings may simplify an understanding of the manner how plant-soil linkages shape ecosystem processes.

参考文献

Aanderud, Z. T., S. E. Jones, N. Fierer, and J. T. Lennon. 2015. ResusAanderud, Z. T., S. E. Jones, N. Fierer, and J. T. Lennon. 2015. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity. Frontiers in Microbiology 6:1–11.

Abarenkov, K., R. Henrik Nilsson, K.-H. Larsson, I. J. Alexander, U. Eberhardt, S. Erland, K. Høiland, R. Kjøller, E. Larsson, T. Pennanen, R. Sen, A. F. S. Taylor, L. Tedersoo, B. M. Ursing, T. Vrålstad, K. Liimatainen, U. Peintner, and U. Kõljalg. 2010. The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytologist 186:281–285.

Abedi, M., M. Bartelheimer, and P. Poschlod. 2013. Aluminium toxic effects on seedling root survival affect plant composition along soil reaction gradients – a case study in dry sandy grasslands. Journal of Vegetation Science 24:1074–1085.

Aber, J. D., K. J. Nadelhoffer, P. Steudler, and J. M. Melillo. 1989. Nitrogen saturation in northern forest ecosystems. BioScience 39:378–386.

Allison, S. D., and K. K. Treseder. 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology 14:2898–2909.

Anderson, I. C., D. R. Genney, and I. J. Alexander. 2014. Fine-scale diversity and distribution of ectomycorrhizal fungal mycelium in a Scots pine forest. New Phytologist 201:1423– 1430.

Andersson, A. F., L. Riemann, and S. Bertilsson. 2010. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. The ISME Journal 4:171–181.

Angiosperm Phylogeny Group III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161:105–121.

Aponte, C., L. V. García, and T. Marañón. 2013. Tree species effects on nutrient cycling and soil biota: A feedback mechanism favouring species coexistence. Forest Ecology and Management 309:36–46.

Araya, Y. N., J. Silvertown, D. J. Gowing, K. J. McConway, H. P. Linder, and G. Midgley. 2011. A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytologist 189:253–258.

Armstrong, J., and W. Armstrong. 2001. An overview of the effects of phytotoxins on Phragmites australis in relation to die-back. Aquatic Botany 69:251–268.

Asplund, J., H. Kauserud, S. Bokhorst, M. H. Lie, M. Ohlson, and L. Nybakken. 2018. Fungal communities influence decomposition rates of plant litter from two dominant tree species. Fungal Ecology 32:1–8.

Austin, A. T., L. Vivanco, A. González-Arzac, and L. I. Pérez. 2014. There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytologist 204:307–314.

Ayres, E., H. Steltzer, S. Berg, and D. H. Wall. 2009a. Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. Journal of Ecology 97:901–912.

Ayres, E., H. Steltzer, B. L. Simmons, R. T. Simpson, J. M. Steinweg, M. D. Wallenstein, N. Mellor, W. J. Parton, J. C. Moore, and D. H. Wall. 2009b. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology and Biochemistry 41:606– 610.

Bååth, E. 1996. Adaptation of soil bacterial communities to prevailing pH in different soils. FEMS Microbiology Ecology 19:227–237.

Badri, D. V., and J. M. Vivanco. 2009. Regulation and function of root exudates. Plant, Cell & Environment 32:666–681.

Baldrian, P. 2017. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiology Reviews 41:109–130.

Baldrian, P., V. Merhautová, T. Cajthaml, M. Petránková, and J. Šnajdr. 2010. Small-scale distribution of extracellular enzymes, fungal, and bacterial biomass in Quercus petraea forest topsoil. Biology and Fertility of Soils 46:717–726.

Baldrian, P., J. Šnajdr, V. Merhautová, P. Dobiášová, T. Cajthaml, and V. Valášková. 2013. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biology and Biochemistry 56:60–68.

Barberán, A., K. L. McGuire, J. A. Wolf, F. A. Jones, S. J. Wright, B. L. Turner, A. Essene, S. P. Hubbell, B. C. Faircloth, and N. Fierer. 2015. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecology Letters 18:1397–1405.

Barbier, S., F. Gosselin, and P. Balandier. 2008. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. Forest Ecology and Management 254:1–15.

Bardgett, R. D., W. D. Bowman, R. Kaufmann, and S. K. Schmidt. 2005. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution 20:634–641.

Bardgett, R. D., C. Freeman, and N. J. Ostle. 2008. Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal 2:805–814.

Bardgett, R. D., and W. H. van der Putten. 2014. Belowground biodiversity and ecosystem functioning. Nature 515:505–511.

Barrett, L. G., J. M. Kniskern, N. Bodenhausen, W. Zhang, and J. Bergelson. 2009. Continua of specificity and virulence in plant host-pathogen interactions: causes and consequences. New Phytologist 183:513–529.

Beatty, S. W. 1984. Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65:1406–1419.

Bengtsson-Palme, J., M. Ryberg, M. Hartmann, S. Branco, Z. Wang, A. Godhe, P. De Wit, M. Sánchez-García, I. Ebersberger, F. de Sousa, A. S. Amend, A. Jumpponen, M. Unterseher, E. Kristiansson, K. Abarenkov, Y. J. K. Bertrand, K. Sanli, K. M. Eriksson, U. Vik, V. Veldre, and R. H. Nilsson. 2013. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution 4:914–919.

Berg, M. P., J. P. Kniese, and H. A. Verhoef. 1998. Dynamics and stratification of bacteria and fungi in the organic layers of a scots pine forest soil. Biology and Fertility of Soils 26:313–322.

Berg, M. P., and J. Bengtsson. 2007. Temporal and spatial variability in soil food web structure. Oikos 116:1789–1804.

Bever, J. D. 1994. Feedback between plants and their soil communities in an old field community. Ecology 75:1965–1977.

Bezemer, T. M., C. S. Lawson, K. Hedlund, A. R. Edwards, A. J. Brook, J. M. Igual, S. R. Mortimer, and W. H. V. D. Putten. 2006. Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. Journal of Ecology 94:893–904.

Bhattarai, K. R., and O. R. Vetaas. 2003. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography 12:327–340.

Blaško, R., L. Holm Bach, S. A. Yarwood, S. E. Trumbore, P. Högberg, and M. N. Högberg. 2015. Shifts in soil microbial community structure, nitrogen cycling and the concomitant declining N availability in ageing primary boreal forest ecosystems. Soil Biology and Biochemistry 91:200–211.

Blomberg, S. P., T. Garland, and A. R. Ives. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745.

Boddy, L. 1999. Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 91:13.

Bödeker, I. T. M., K. E. Clemmensen, W. de Boer, F. Martin, Å. Olson, and B. D. Lindahl. 2014. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytologist 203:245–256.

Bonan, G. B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449.

Bouffaud, M.-L., M.-A. Poirier, D. Muller, and Y. Moënne-Loccoz. 2014. Root microbiome relates to plant host evolution in maize and other Poaceae: Poaceae evolution and root bacteria. Environmental Microbiology 16:2804–2814.

Brabcová, V., M. Štursová, and P. Baldrian. 2018. Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biology and Biochemistry 118:187–198.

Brodribb, T. J., S. A. M. McAdam, G. J. Jordan, and T. S. Feild. 2009. Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytologist 183:839–847.

Brundrett, M. C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154:275–304.

Bryant, J. A., C. Lamanna, H. Morlon, A. J. Kerkhoff, B. J. Enquist, and J. L. Green. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences 105:11505–11511.

Buckeridge, K. M., S. Banerjee, S. D. Siciliano, and P. Grogan. 2013. The seasonal pattern of soil microbial community structure in mesic low arctic tundra. Soil Biology and Biochemistry 65:338–347.

Burke, I. C. 1999. Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems 2:422–438.

Burns, J. H., and S. Y. Strauss. 2011. More closely related species are more ecologically similar in an experimental test. Proceedings of the National Academy of Sciences 108:5302–5307.

Buscardo, E., J. Geml, S. K. Schmidt, H. Freitas, H. B. da Cunha, and L. Nagy. 2018. Spatio-temporal dynamics of soil bacterial communities as a function of Amazon forest phenology. Scientific Reports 8:4382.

Cadotte, M. W., K. Carscadden, and N. Mirotchnick. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services: Functional diversity in ecology and conservation. Journal of Applied Ecology 48:1079–1087.

Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Peña, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, and R. Knight. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7:335–336.

Caporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg-Lyons, J. Huntley, N. Fierer, S. M. Owens, J. Betley, L. Fraser, M. Bauer, N. Gormley, J. A. Gilbert, G. Smith, and R. Knight. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal 6:1621–1624.

Carey, A. B., and C. A. Harrington. 2001. Small mammals in young forests: implications for management for sustainability. Forest Ecology and Management 154:289–309.

Carey, J. C., J. Tang, P. H. Templer, K. D. Kroeger, T. W. Crowther, A. J. Burton, J. S. Dukes, B. Emmett, S. D. Frey, M. A. Heskel, L. Jiang, M. B. Machmuller, J. Mohan, A. M. Panetta, P. B. Reich, S. Reinsch, X. Wang, S. D. Allison, C. Bamminger, S. Bridgham, S. L. Collins, G. de Dato, W. C. Eddy, B. J. Enquist, M. Estiarte, J. Harte, A. Henderson, B. R. Johnson, K. S. Larsen, Y. Luo, S. Marhan, J. M. Melillo, J. Peñuelas, L. Pfeifer-Meister, C. Poll, E. Rastetter, A. B. Reinmann, L. L. Reynolds, I. K. Schmidt, G. R. Shaver, A. L. Strong, V. Suseela, and A. Tietema. 2016. Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences 113:13797–13802.

Carson, J. K., V. Gonzalez-Quiñones, D. V. Murphy, C. Hinz, J. A. Shaw, and D. B. Gleeson. 2010. Low pore connectivity increases bacterial diversity in soil. Applied and Environmental Microbiology 76:3936–3942.

Castaño, C., B. D. Lindahl, J. G. Alday, A. Hagenbo, J. M. de Aragón, J. Parladé, J. Pera, and J. A. Bonet. 2018. Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytologist 220:1211–1221.

Cavender-Bares, J., K. H. Kozak, P. V. A. Fine, and S. W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12:693–715.

Chapman, K., J. B. Whittaker, and O. W. Heal. 1988. Metabolic and faunal activity in litters of tree mixtures compared with pure stands. Agriculture, Ecosystems & Environment 24:33–40.

Chen, D. M., A. F. S. Taylor, R. M. Burke, and J. W. G. Cairney. 2001. Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi. New Phytologist 152:151–158.

Christensen, B. T. 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52:345–353.

Classen, A. T., M. K. Sundqvist, J. A. Henning, G. S. Newman, J. A. M. Moore, M. A. Cregger, L. C. Moorhead, and C. M. Patterson. 2015. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6:art130.

Clemmensen, K. E., R. D. Finlay, A. Dahlberg, J. Stenlid, D. A. Wardle, and B. D. Lindahl. 2015. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytologist 205:1525–1536.

Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Díaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas, and H. Poorter. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51:335.

Costa, R., M. Götz, N. Mrotzek, J. Lottmann, G. Berg, and K. Smalla. 2006. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds: DGGE fingerprinting of microbial communities in the rhizosphere. FEMS Microbiology Ecology 56:236–249.

Cotrufo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef, and E. Paul. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 19:988–995.

Coûteaux, M.-M., P. Bottner, and B. Berg. 1995. Litter decomposition, climate and liter quality. Trends in Ecology & Evolution 10:63–66.

Crowther, T. W., and M. A. Bradford. 2013. Thermal acclimation in widespread heterotrophic soil microbes. Ecology Letters 16:469–477.

Crowther, T. W., H. B. Glick, K. R. Covey, C. Bettigole, D. S. Maynard, S. M. Thomas, J. R. Smith, G. Hintler, M. C. Duguid, G. Amatulli, M.-N. Tuanmu, W. Jetz, C. Salas, C. Stam, D. Piotto, R. Tavani, S. Green, G. Bruce, S. J. Williams, S. K. Wiser, M. O. Huber, G. M. Hengeveld, G.-J. Nabuurs, E. Tikhonova, P. Borchardt, C.-F. Li, L. W. Powrie, M. Fischer, A. Hemp, J. Homeier, P. Cho, A. C. Vibrans, P. M. Umunay, S. L. Piao, C. W. Rowe, M. S. Ashton, P. R. Crane, and M. A. Bradford. 2015. Mapping tree density at a global scale. Nature 525:201–205.

Cruz-Martínez, K., K. B. Suttle, E. L. Brodie, M. E. Power, G. L. Andersen, and J. F. Banfield. 2009. Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. The ISME Journal 3:738–744.

Currie, D. J., G. G. Mittelbach, H. V. Cornell, R. Field, J.-F. Guégan, B. A. Hawkins, D. M. Kaufman, J. T. Kerr, T. Oberdorff, E. O’Brien, and J. R. G. Turner. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7:1121–1134.

DeAngelis, K. M., G. Pold, B. D. Topçuoğlu, V. Diepen, L. T. A, R. M. Varney, J. L. Blanchard, J. Melillo, and S. D. Frey. 2015. Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology 6.

Debenport, S. J., K. Assigbetse, R. Bayala, L. Chapuis-Lardy, R. P. Dick, and B. B. McSpadden Gardener. 2015. Association of shifting populations in the root zone microbiome of millet with enhanced crop productivity in the Sahel Region (Africa). Applied and Environmental Microbiology 81:2841–2851.

Delgado-Baquerizo, M., L. Giaramida, P. B. Reich, A. N. Khachane, K. Hamonts, C. Edwards, L. A. Lawton, and B. K. Singh. 2016. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. Journal of Ecology 104:936– 946.

Delgado-Baquerizo, M., A. M. Oliverio, T. E. Brewer, A. Benavent-González, D. J. Eldridge, R. D. Bardgett, F. T. Maestre, B. K. Singh, and N. Fierer. 2018. A global atlas of the dominant bacteria found in soil. Science 359:320–325.

Delgado-Baquerizo, M., J. R. Powell, K. Hamonts, F. Reith, P. Mele, M. V. Brown, P. G. Dennis, B. C. Ferrari, A. Fitzgerald, A. Young, B. K. Singh, and A. Bissett. 2017. Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale. New Phytologist 215:1186–1196.

Delgado‐Baquerizo, M., P. B. Reich, A. N. Khachane, C. D. Campbell, N. Thomas, T. E. Freitag, W. A. Al‐Soud, S. Sørensen, R. D. Bardgett, and B. K. Singh. 2017. It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology 19:1176–1188.

DeSantis, T. Z., P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G. L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72:5069–5072.

Dinerstein, E., D. Olson, A. Joshi, C. Vynne, N. D. Burgess, E. Wikramanayake, N. Hahn, S. Palminteri, P. Hedao, R. Noss, M. Hansen, H. Locke, E. C. Ellis, B. Jones, C. V. Barber, R. Hayes, C. Kormos, V. Martin, E. Crist, W. Sechrest, L. Price, J. E. M. Baillie, D. Weeden, K. Suckling, C. Davis, N. Sizer, R. Moore, D. Thau, T. Birch, P. Potapov, S. Turubanova, A. Tyukavina, N. de Souza, L. Pintea, J. C. Brito, O. A. Llewellyn, A. G. Miller, A. Patzelt, S. A. Ghazanfar, J. Timberlake, H. Klöser, Y. Shennan-Farpón, R. Kindt, J.-P. B. Lillesø, P. van Breugel, L. Graudal, M. Voge, K. F. Al-Shammari, and M. Saleem. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67:534–545.

Djukic, I., F. Zehetner, A. Watzinger, M. Horacek, and M. H. Gerzabek. 2013. In situ carbon turnover dynamics and the role of soil microorganisms therein: a climate warming study in an Alpine ecosystem. FEMS Microbiology Ecology 83:112–124.

Duboc, O., M.-F. Dignac, I. Djukic, F. Zehetner, M. H. Gerzabek, and C. Rumpel. 2014. Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters. Global Change Biology 20:2272–2285.

Dumbrell, A. J., M. Nelson, T. Helgason, C. Dytham, and A. H. Fitter. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal 4:337–345.

Ebihara, A., M. Ito, H. Nagamasu, S. Fujii, T. Katsuyama, K. Yonekura, and T, Yahara. 2016. Fern GreenList ver. 1.0. http://www. rdplants.org/gl/. Accessed 7 Dec 2016.

Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.

Ehrenfeld, J. G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523.

Eilers, K. G., S. Debenport, S. Anderson, and N. Fierer. 2012. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology and Biochemistry 50:58–65.

Engelhardt, I. C., A. Welty, S. J. Blazewicz, D. Bru, N. Rouard, M.-C. Breuil, A. Gessler, L. Galiano, J. C. Miranda, A. Spor, and R. L. Barnard. 2018. Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. The ISME Journal 12:1061–1071.

Eriksson, O. 1993. The species-pool hypothesis and plant community diversity. Oikos 68:371. Ettema, C. H., and D. A. Wardle. 2002. Spatial soil ecology. Trends in Ecology & Evolution 17:177–183.

Fanin, N., S. Hättenschwiler, S. Barantal, H. Schimann, and N. Fromin. 2011. Does variability in litter quality determine soil microbial respiration in an Amazonian rainforest? Soil Biology and Biochemistry 43:1014–1022.

Fanin, N., and I. Bertrand. 2016. Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biology and Biochemistry 94:48–60.

FAO. 2015. Global Forest Resource Assessment. Food and Agricultural Organization of United Nations, Rome.

Faust, K., L. Lahti, D. Gonze, W. M. de Vos, and J. Raes. 2015. Metagenomics meets time series analysis: unraveling microbial community dynamics. Current Opinion in Microbiology 25:56–66.

Fenchel, T. 2002. Microbial Behavior in a Heterogeneous World. Science 296:1068–1071.

Fierer, N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology 15:579–590.

Fierer, N., J. M. Craine, K. McLauchlan, and J. P. Schimel. 2005. Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326.

Fierer, N., J. A. Jackson, R. Vilgalys, and R. B. Jackson. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology 71:4117–4120.

Fierer, N., and R. B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences 103:626–631.

Fierer, N., C. M. McCain, P. Meir, M. Zimmermann, J. M. Rapp, M. R. Silman, and R. Knight. 2011. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92:797–804.

Fierer, N., M. S. Strickland, D. Liptzin, M. A. Bradford, and C. C. Cleveland. 2009. Global patterns in belowground communities. Ecology Letters 12:1238–1249.

Finzi, A. C., N. Van Breemen, and C. D. Canham. 1998. Canopy tree–soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecological Applications 8:440–446.

Fisher, J. B., Y. Malhi, I. C. Torres, D. B. Metcalfe, M. J. van de Weg, P. Meir, J. E. Silva-Espejo, and W. H. Huasco. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889–902.

Franklin, J. 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography 19:474–499.

Frazer, G. W., C. D. Canham, and K. P. Lertzman. 1999. Gap light analyzer (GLA), version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, CA and the Institute of Ecosystem Studies, Millbrook, New York, US.

Freschet, G. T., R. Aerts, and J. H. C. Cornelissen. 2012. A plant economics spectrum of litter decomposability. Functional Ecology 26:56–65.

Freschet, G. T., R. Aerts, and J. H. C. Cornelissen. 2012. Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis: Substrate-matrix quality interactions in decay. Journal of Ecology 100:619–630.

Freschet, G. T., J. H. C. Cornelissen, R. S. P. van Logtestijn, and R. Aerts. 2010. Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology 98:362–373.

Frey‐Klett, P., J. Garbaye, and M. Tarkka. 2007. The mycorrhiza helper bacteria revisited. New Phytologist 176:22–36.

Fuhrman, J. A., J. A. Steele, I. Hewson, M. S. Schwalbach, M. V. Brown, J. L. Green, and J. H. Brown. 2008. A latitudinal diversity gradient in planktonic marine bacteria. Proceedings of the National Academy of Sciences 105:7774–7778.

Gallwitz, B. 2009. Implications of postprandial glucose and weight control in people with type 2 diabetes: Understanding and implementing the international diabetes federation guidelines. Diabetes Care 32:S322–S325.

Gamfeldt, L., T. Snäll, R. Bagchi, M. Jonsson, L. Gustafsson, P. Kjellander, M. C. Ruiz-Jaen, M. Fröberg, J. Stendahl, C. D. Philipson, G. Mikusiński, E. Andersson, B. Westerlund, H. Andrén, F. Moberg, J. Moen, and J. Bengtsson. 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications 4:1340.

García‐Baquero, G., J. Silvertown, D. J. Gowing, and C. J. Valle. 2016. Dissecting the hydrological niche: soil moisture, space and lifespan. Journal of Vegetation Science 27:219–226.

García-Palacios, P., E. A. Shaw, D. H. Wall, and S. Hättenschwiler. 2016. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecology Letters 19:554–563.

Gholz, H. L., D. A. Wedin, S. M. Smitherman, M. E. Harmon, and W. J. Parton. 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology 6:751–765.

Gies, E. A., K. M. Konwar, J. T. Beatty, and S. J. Hallam. 2014. Illuminating microbial dark matter in Meromictic Sakinaw Lake. Applied and Environmental Microbiology 80:6807– 6818.

Gilbert, B., and M. J. Lechowicz. 2004. Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences 101:7651–7656.

Gilbert, J. A., J. A. Steele, J. G. Caporaso, L. Steinbrück, J. Reeder, B. Temperton, S. Huse, A. C. McHardy, R. Knight, I. Joint, P. Somerfield, J. A. Fuhrman, and D. Field. 2012.Defining seasonal marine microbial community dynamics. The ISME Journal 6:298–308.

Gilliam, F. S. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 57:845–858.

Giraud, T., P. Gladieux, and S. Gavrilets. 2010. Linking the emergence of fungal plant diseases with ecological speciation. Trends in Ecology & Evolution 25:387–395.

Glassman, S. I., C. Weihe, J. Li, M. B. N. Albright, C. I. Looby, A. C. Martiny, K. K. Treseder, S. D. Allison, and J. B. H. Martiny. 2018. Decomposition responses to climate depend on microbial community composition. Proceedings of the National Academy of Sciences 115:11994–11999.

Gordon, A., and G. Hannon. 2010. FASTX-Toolkit. FASQ/A short-reads preprocessing tools. http://hannonlab.cshl.edu/fastx_toolkit/

Grace, J. B., S. Harrison, and E. I. Damschen. 2011. Local richness along gradients in the Siskiyou herb flora: R. H. Whittaker revisited. Ecology 92:108–120.

Graham, C. H., A. C. Carnaval, C. D. Cadena, K. R. Zamudio, T. E. Roberts, J. L. Parra, C. M. McCain, R. C. K. Bowie, C. Moritz, S. B. Baines, C. J. Schneider, J. VanDerWal, C. Rahbek, K. H. Kozak, and N. J. Sanders. 2014. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37:711–719.

Gray, J. C., and M. R. Goddard. 2012. Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations. BMC Evolutionary Biology 12:43.

Griffiths, B. S. 1994. Microbial-feeding nematodes and protozoa in soil: Their effects on microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant and Soil 164:25–33.

Grigulis, K., S. Lavorel, U. Krainer, N. Legay, C. Baxendale, M. Dumont, E. Kastl, C. Arnoldi, R. D. Bardgett, F. Poly, T. Pommier, M. Schloter, U. Tappeiner, M. Bahn, and J.-C. Clément. 2013. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology 101:47–57.

Grime, J. P. 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester.

Grime, J. P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86:902–910.

Groffman, P. M., and J. M. Tiedje. 1989. Denitrification in north temperate forest soils: Relationships between denitrification and environmental factors at the landscape scale. Soil Biology and Biochemistry 21:621–626.

Grundmann, G. L., and D. Debouzie. 2000. Geostatistical analysis of the distribution of NH4+ and NO2−-oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiology Ecology 34:57–62.

Guerrero-Campo, J., and G. Montserrat-Martí. 2004. Comparison of floristic changes on vegetation affected by different levels of soil erosion in Miocene clays and Eocene marls from Northeast Spain. Plant Ecology 173:83–93.

Gweon, H. S., A. Oliver, J. Taylor, T. Booth, M. Gibbs, D. S. Read, R. I. Griffiths, and K. Schonrogge. 2015. PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods in Ecology and Evolution 6:973–980.

Hanert, H. H. 1992. The genus Gallionella. In the Prokaryotes. Balows A, Trüper G, Dworkin M, Harder W, Schleifer KH. (eds). New York: Springer Verlag, pp. 4082–4088.

Hartley, I. P., D. W. Hopkins, M. H. Garnett, M. Sommerkorn, and P. A. Wookey. 2008. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecology Letters 11:1092–1100.

Hättenschwiler, S., and P. M. Vitousek. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology & Evolution 15:238–243.

Harvey, P. H., and M. D. Pagel. 1991. The comparative methods in evolutionary biology. Oxford University Press, Oxford.

Hawkins, B. A., M. Rueda, T. F. Rangel, R. Field, and J. A. F. Diniz‐Filho. 2014. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests. Journal of Biogeography 41:23–38.

He, F., B. Yang, H. Wang, Q. Yan, Y. Cao, and X. He. 2016. Changes in composition and diversity of fungal communities along Quercus mongolica forests developments in Northeast China. Applied Soil Ecology 100:162–171.

Helmus, M. R., T. J. Bland, C. K. Williams, and A. R. Ives. 2007. Phylogenetic Measures of Biodiversity. The American Naturalist 169:E68–E83.

Hendershot, J. N., Q. D. Read, J. A. Henning, N. J. Sanders, and A. T. Classen. 2017. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98:1757–1763.

Holm, S. R., B. R. Noon, J. D. Wiens, and W. J. Ripple. 2016. Potential trophic cascades triggered by the barred owl range expansion. Wildlife Society Bulletin 40:615–624.

Hrivnák, R., D. Gömöry, M. Slezák, K. Ujházy, R. Hédl, B. Jarčuška, and M. Ujházyová. 2014. Species richness pattern along altitudinal gradient in central European beech forests. Folia Geobotanica 49:425–441.

Hu, L., and P. M. Bentler. 1999. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6:1–55.

Ihrmark, K., I. T. M. Bödeker, K. Cruz‐Martinez, H. Friberg, A. Kubartova, J. Schenck, Y. Strid, J. Stenlid, M. Brandström‐Durling, K. E. Clemmensen, and B. D. Lindahl. 2012. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology 82:666–677.

Ito, M., H. Nagamasu, S. Fujii, T. Katsuyama, K. Yonekura, A. Ebihara, and T. Yahara. 2016. GreenList ver. 1.01. http://www. rdplants.org/gl/. Accessed 7 Dec 2016.

Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist 104:501–528.

Jobbágy, E. G., and R. B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10:423–436.

Kardol, P., M. A. Cregger, C. E. Campany, and A. T. Classen. 2010. Soil ecosystem functioning under climate change: plant species and community effects. Ecology 91:767– 781.

Karhu, K., M. D. Auffret, J. A. J. Dungait, D. W. Hopkins, J. I. Prosser, B. K. Singh, J.-A. Subke, P. A. Wookey, G. I. Ågren, M.-T. Sebastià, F. Gouriveau, G. Bergkvist, P. Meir, A. T. Nottingham, N. Salinas, and I. P. Hartley. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84.

Keiser, A. D., D. A. Keiser, M. S. Strickland, and M. A. Bradford. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology 102:603–609.

Kellner, H., P. Luis, B. Schlitt, and F. Buscot. 2009. Temporal changes in diversity and expression patterns of fungal laccase genes within the organic horizon of a brown forest soil. Soil Biology and Biochemistry 41:1380–1389.

Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg, and C. O. Webb. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464.

Kessler, M., J. Kluge, A. Hemp, and R. Ohlemüller. 2011. A global comparative analysis of elevational species richness patterns of ferns: global analysis of fern transects. Global Ecology and Biogeography 20:868–880.

Kirchman, D. L. 2012. Processes in microbial ecology. OUP Oxford.

Kitagawa, R., M. Mimura, A. S. Mori, and A. Sakai. 2015. Topographic patterns in the phylogenetic structure of temperate forests on steep mountainous terrain. AoB Plants 7:plv134.

Kleiber, C., and A. Zeileis. 2016 Visualizing count data regressions using rootograms. The American Statistician 70:296–303.

Klironomos, J. N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70.

Klironomos, J. N., M. C. Rillig, and M. F. Allen. 1999. Designing belowground field experiments with the help of semi-variance and power analyses. Applied Soil Ecology 12:227–238.

Kluge, J., and M. Kessler. 2011. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient: Phylogenetic and trait diversity of ferns. Journal of Biogeography 38:394–405.

Koenig, J. E., A. Spor, N. Scalfone, A. D. Fricker, J. Stombaugh, R. Knight, L. T. Angenent, and R. E. Ley. 2011. Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences 108:4578–4585.

Körner, C. 2007. The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution 22:569–574.

Kozlowski, T. T. 2002. Physiological ecology of natural regeneration of harvested and disturbed forest stands: implications for forest management. Forest Ecology and Management 158:195–221.

Krause, S., X. Le Roux, P. A. Niklaus, V. Bodegom, P. M, J. T. Lennon, S. Bertilsson, H.-P. Grossart, L. Philippot, and P. L. E. Bodelier. 2014. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Frontiers in Microbiology 5.

Kurth, F., K. Zeitler, L. Feldhahn, T. R. Neu, T. Weber, V. Krištůfek, T. Wubet, S. Herrmann, F. Buscot, and M. T. Tarkka. 2013. Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiology 13:205.

Kuzyakov, Y., and E. Blagodatskaya. 2015. Microbial hotspots and hot moments in soil: concept & review. Soil Biology and Biochemistry 83:184–199.

Lal, R. 2005. Forest soils and carbon sequestration. Forest Ecology and Management 220:242–258.

Lamoreux, J. F., J. C. Morrison, T. H. Ricketts, D. M. Olson, E. Dinerstein, M. W. McKnight, and H. H. Shugart. 2006. Global tests of biodiversity concordance and the importance of endemism. Nature 440:212–214.

Larkin, A. A., and A. C. Martiny. 2017. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environmental Microbiology Reports 9:55–70.

Lauber, C. L., M. S. Strickland, M. A. Bradford, and N. Fierer. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry 40:2407–2415.

Lazzaro, A., D. Hilfiker, and J. Zeyer. 2015. Structures of microbial communities in alpine soils: seasonal and elevational effects. Frontiers in Microbiology 6.

Leff, J. W., R. D. Bardgett, A. Wilkinson, B. G. Jackson, W. J. Pritchard, J. R. D. Long, S. Oakley, K. E. Mason, N. J. Ostle, D. Johnson, E. M. Baggs, and N. Fierer. 2018. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. The ISME Journal 12:1794–1805.

Leisch, F. 2004. FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R. Journal of Statistical Software 11.

Levy-Booth, D. J., C. E. Prescott, and S. J. Grayston. 2014. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry 75:11–25.

Lin, D., M. Pang, N. Fanin, H. Wang, S. Qian, L. Zhao, Y. Yang, X. Mi, and K. Ma. 2018. Fungi participate in driving home-field advantage of litter decomposition in a subtropical forest. Plant and Soil.

Liu, G., L. Wang, L. Jiang, X. Pan, Z. Huang, M. Dong, and J. H. C. Cornelissen. 2018. Specific leaf area predicts dryland litter decomposition via two mechanisms. Journal of Ecology 106:218–229.

Liu, X., M. Liang, R. S. Etienne, Y. Wang, C. Staehelin, and S. Yu. 2012. Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest: phylogenetic Janzen-Connell effect. Ecology Letters 15:111–118.

Lladó, S., R. López-Mondéjar, and P. Baldrian. 2017. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews 81:e00063-16.

Lososová, Z., P. Šmarda, M. Chytrý, O. Purschke, P. Pyšek, J. Sádlo, L. Tichý, and M. Winter. 2015. Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. Journal of Vegetation Science 26:1080–1089.

Love, M. I., W. Huber, and S. Anders. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15.

Lüneberg, K., D. Schneider, C. Siebe, and R. Daniel. 2018. Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley, Mexico. Scientific Reports 8.

Magnani, F., M. Mencuccini, M. Borghetti, P. Berbigier, F. Berninger, S. Delzon, A. Grelle, P. Hari, P. G. Jarvis, P. Kolari, A. S. Kowalski, H. Lankreijer, B. E. Law, A. Lindroth, D. Loustau, G. Manca, J. B. Moncrieff, M. Rayment, V. Tedeschi, R. Valentini, and J. Grace. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:849–851.

Mailly, D., S. Turbis, and R. L. Chazdon. 2013. solarcalc 7.0: an enhanced version of a program for the analysis of hemispherical canopy photographs. Computers and Electronics in Agriculture 97:15–20.

Männistö, M. K., E. Kurhela, M. Tiirola, and M. M. Häggblom. 2013. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures. FEMS Microbiology Ecology 84:47–59.

Marland, G., and B. Schlamadinger. 1997. Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis. Biomass and Bioenergy 13:389–397.

Masella, A. P., A. K. Bartram, J. M. Truszkowski, D. G. Brown, and J. D. Neufeld. 2012. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:31.

Maser, C., J. M. Trappe, and R. A. Nussbaum. 1978. Fungal-small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology 59:799–809.

Matulich, K. L., and J. B. H. Martiny. 2015. Microbial composition alters the response of litter decomposition to environmental change. Ecology 96:154–163.

Mayfield, M. M., and J. M. Levine. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities: phylogeny and coexistence. Ecology Letters 13:1085–1093.

McClaugherty, C. A., J. Pastor, J. D. Aber, and J. M. Melillo. 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66:266– 275.

McDonald, R., M. McKnight, D. Weiss, E. Selig, M. O’Connor, C. Violin, and A. Moody. 2005. Species compositional similarity and ecoregions: Do ecoregion boundaries represent zones of high species turnover? Biological Conservation 126:24–40.

McKane, R. B., L. C. Johnson, G. R. Shaver, K. J. Nadelhoffer, E. B. Rastetter, B. Fry, A. E. Giblin, K. Kielland, B. L. Kwiatkowski, J. A. Laundre, and G. Murray. 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71.

McIntosh, A. C. S., S. E. Macdonald, and S. A. Quideau. 2016. Understory plant community composition is associated with fine-scale above- and below-ground resource heterogeneity in mature lodgepole pine (Pinus contorta) forests. PLoS ONE 11:e0151436.

McMurdie, P. J., and S. Holmes. 2014. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Computational Biology 10:e1003531.

Melillo, J. M., P. A. Steudler, J. D. Aber, K. Newkrik, H. Lux, F. P. Bowles, C. Catricala, A. Magill, T. Ahrens, and S. Morrisseau. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176.

Merckx, V. S. F. T., K. P. Hendriks, K. K. Beentjes, C. B. Mennes, L. E. Becking, K. T. C. A. Peijnenburg, A. Afendy, N. Arumugam, H. de Boer, A. Biun, M. M. Buang, P.-P. Chen, A. Y. C. Chung, R. Dow, F. A. A. Feijen, H. Feijen, C. F. Soest, J. Geml, R. Geurts, B. Gravendeel, P. Hovenkamp, P. Imbun, I. Ipor, S. B. Janssens, M. Jocqué, H. Kappes, E. Khoo, P. Koomen, F. Lens, R. J. Majapun, L. N. Morgado, S. Neupane, N. Nieser, J. T. Pereira, H. Rahman, S. Sabran, A. Sawang, R. M. Schwallier, P.-S. Shim, H. Smit, N. Sol,

M. Spait, M. Stech, F. Stokvis, J. B. Sugau, M. Suleiman, S. Sumail, D. C. Thomas, J. van Tol, F. Y. Y. Tuh, B. E. Yahya, J. Nais, R. Repin, M. Lakim, and M. Schilthuizen. 2015. Evolution of endemism on a young tropical mountain. Nature 524:347–350.

Messier, C., S. Parent, and Y. Bergeron. 1998. Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests. Journal of Vegetation Science 9:511.

Meteorology Division, Fundamental Data Development Committee, the University of Tokyo Forests 2015. Annual report of meteorological observations in the University of Tokyo Forests, The University of Tokyo (Jan.2013-Dec.2013). Miscellaneous information, the University of Tokyo Forests 57:319–342. (in Japanese)

Milcu, A., and P. Manning. 2011. All size classes of soil fauna and litter quality control the acceleration of litter decay in its home environment. Oikos 120:1366–1370.

Mo, X.-X., L.-L. Shi, Y.-J. Zhang, H. Zhu, and J. W. F. Slik. 2013. Change in phylogenetic community structure during succession of traditionally managed tropical rainforest in southwest China. PLoS ONE 8:e71464.

Monson, R. K., D. L. Lipson, S. P. Burns, A. A. Turnipseed, A. C. Delany, M. W. Williams, and S. K. Schmidt. 2006. Winter forest soil respiration controlled by climate and microbial community composition. Nature 439:711–714.

Moore, J. C., and H. William Hunt. 1988. Resource compartmentation and the stability of real ecosystems. Nature 333:261–263.

Morin, X., L. Fahse, M. Scherer-Lorenzen, and H. Bugmann. 2011. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters 14:1211–1219.

Müller, P. E. 1884. Studier over skovjord, som bidrag til skovdyrkningens teori: om muld og mor i egeskove og paa heder. Tidsskrift for Skovbrug 7:1–232.

Muller, R. N. 2014. Nutrient Relations of the Herbaceous Layer in Deciduous Forest Ecosystems. Pages 12–34 in F. Gilliam, editor. The Herbaceous Layer in Forests of Eastern North America. Oxford University Press.

Nathan, D. M., M. B. Davidson, R. A. DeFronzo, R. J. Heine, R. R. Henry, R. Pratley, and B. Zinman. 2007. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care 30:753–759.

Navarro-Cano, J. A., M. Goberna, A. Valiente-Banuet, A. Montesinos-Navarro, C. García, and M. Verdú. 2014. Plant phylodiversity enhances soil microbial productivity in facilitation-driven communities. Oecologia 174:909–920.

Nilsson, M.-C., and D. A. Wardle. 2005. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment 3:421–428.

Nilsson, M.-C., D. A. Wardle, and A. Dahlberg. 1999. Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 86:16.

Nogué, S., V. Rull, and T. Vegas-Vilarrúbia. 2013. Elevational gradients in the neotropical table mountains: patterns of endemism and implications for conservation. Diversity and Distributions 19:676–687.

Nottingham, A. T., J. Whitaker, B. L. Turner, N. Salinas, M. Zimmermann, Y. Malhi, and P. Meir. 2015. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. BioScience 65:906–921.

O’Brien, S. L., S. M. Gibbons, S. M. Owens, J. Hampton‐Marcell, E. R. Johnston, J. D. Jastrow, J. A. Gilbert, F. Meyer, and D. A. Antonopoulos. 2016. Spatial scale drives patterns in soil bacterial diversity. Environmental Microbiology 18:2039–2051.

Ohashi, H., M. Yoshikawa, K. Oono, N. Tanaka, Y. Hatase, and Y. Murakami. 2014. The impact of sika deer on vegetation in Japan: setting management priorities on a national scale. Environmental Management 54:631–640.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H Wagner. 2012. vegan: community ecology package. R package version 2.5-3.

Olson, J. S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331.

Palozzi, J. E., and Z. Lindo. 2018. Are leaf litter and microbes team players? Interpreting home-field advantage decomposition dynamics. Soil Biology and Biochemistry 124:189– 198.

Pärtel, M. 2002. Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–2366.

Pearce, J., and L. Venier. 2005. Small mammals as bioindicators of sustainable boreal forest management. Forest Ecology and Management 208:153–175.

Pearse, I. S., and A. L. Hipp. 2012. Global patterns of leaf defenses in Oak species. Evolution 66:2272–2286.

Pearse, I. S., R. C. Cobb, and R. Karban. 2014. The phenology-substrate-match hypothesis explains decomposition rates of evergreen and deciduous oak leaves. Journal of Ecology 102:28–35.

Peay, K. G., C. von Sperber, E. Cardarelli, H. Toju, C. A. Francis, O. A. Chadwick, and P. M. Vitousek. 2017. Convergence and contrast in the community structure of Bacteria, Fungi and Archaea along a tropical elevation–climate gradient. FEMS Microbiology Ecology 93.

Pei, Z., D. Eichenberg, H. Bruelheide, W. Kröber, P. Kühn, Y. Li, G. von Oheimb, O. Purschke, T. Scholten, F. Buscot, and J. L. M. Gutknecht. 2016. Soil and tree species traits both shape soil microbial communities during early growth of Chinese subtropical forests. Soil Biology and Biochemistry 96:180–190.

Peltzer, D. A., and D. A. Wardle. 2016. Soil fertility effects on tree seedling performance are light-dependent: evidence from a long-term soil chronosequence. Oikos 125:1121–1133.

Piwczyński, M., R. Puchałka, and W. Ulrich. 2016. Influence of tree plantations on the phylogenetic structure of understorey plant communities. Forest Ecology and Management 376:231–237.

Powers, R. F. 1990. Nitrogen mineralization along an altitudinal gradient: Interactions of soil temperature, moisture, and substrate quality. Forest Ecology and Management 30:19–29.

Preston-Mafham, J., L. Boddy, and P. F. Randerson. 2002. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles – a critique. FEMS Microbiology Ecology 42:1–14.

Purahong, W., T. Wubet, G. Lentendu, M. Schloter, M. J. Pecyna, D. Kapturska, M. Hofrichter, D. Krüger, and F. Buscot. 2016. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology 25:4059– 4074.

Qian, H. 2014. Contrasting relationships between clade age and temperature along latitudinal versus elevational gradients for woody angiosperms in forests of South America. Journal of Vegetation Science 25:1208–1215.

Qian, H., R. Field, J.-L. Zhang, J. Zhang, and S. Chen. 2016. Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees in forest communities in China. Journal of Biogeography 43:603–615.

Qian, H., Z. Hao, and J. Zhang. 2014. Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology 7:154–165.

Qian, H., and R. E. Ricklefs. 2000. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407:180–182.

R Core Development Team. 2017. R: a language and environment for statistical computing. R foundation for statistical computing.

Rahbek, C. 2004. The role of spatial scale and the perception of large-scale species-richness patterns: Scale and species-richness patterns. Ecology Letters 8:224–239.

Rao, C. R. 1982. Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology 21:24–43.

Read, D. J. 1991. Mycorrhizas in ecosystems. Experientia 47:376–391.

Read, D. J., and J. Perez‐Moreno. 2003. Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytologist 157:475–492.

Reboud, X., and G. Bell. 1997. Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity 78:507–514.

Reich, P. B., D. F. Grigal, J. D. Aber, and S. T. Gower. 1997. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology 78:335–347.

Reich, P. B., J. Oleksyn, J. Modrzynski, P. Mrozinski, S. E. Hobbie, D. M. Eissenstat, J. Chorover, O. A. Chadwick, C. M. Hale, and M. G. Tjoelker. 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters 8:811–818.

Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things): phytools: R package. Methods in Ecology and Evolution 3:217–223.

Roberts, D. 2010. Labdsv: ordination and multivariate analysis for ecology. R package version 1.4-1.

Rognes, T., T. Flouri, B. Nichols, C. Quince, and F. Mahé. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584.

Romell, L. G., and S. O. Heiberg. 1931. Types of humus layer in the forests of Northeastern United States. Ecology 12:567–608.

Rorison, I. H. 1980. The effects of soil acidity on nutrient availability and plant response. Pages 283–304 Effects of Acid Precipitation on Terrestrial Ecosystems. Springer, Boston, MA.

Rosseel, Y. 2012. Lavaan: an R package for structural equation modeling. Journal of Statistical Software 48.

Rousk, J., and N. M. Nadkarni. 2009. Growth measurements of saprotrophic fungi and bacteria reveal differences between canopy and forest floor soils. Soil Biology and Biochemistry 41:862–865.

Rousk, J., E. Bååth, P. C. Brookes, C. L. Lauber, C. Lozupone, J. G. Caporaso, R. Knight, and N. Fierer. 2010a. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal 4:1340–1351.

Rousk, J., P. C. Brookes, and E. Bååth. 2010b. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry 42:926–934.

Sanders, N. J., and C. Rahbek. 2012. The patterns and causes of elevational diversity gradients. Ecography 35:1–3.

Santalahti, M., H. Sun, A. Jumpponen, T. Pennanen, and J. Heinonsalo. 2016. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiology Ecology 92.

Satake, Y., H. Hara, S. Watari, T. Tominari. (eds.) 1989. Wild flowers of Japan: woody plants. Heibonsha, Tokyo, Japan. 53: 319–342. (in Japanese)

Satake, Y., J. Ohwi, S. Kitamura, S. Watari, T. Tominari. (eds.) 1982. Wild flowers of Japan: herbaceous plants. Heibonsha, Tokyo, Japan. (in Japanese)

Schimel, J. P., and J. Bennett. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602.

Schimel, J. P., R. G. Cates, and R. Ruess. 1998. The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochemistry 42:221–234.

Schlesinger, W. H., and A. M. Pilmanis. 1998. Plant-soil interactions in deserts. Biogeochemistry 42:169–187.

Schmidt, S. K., E. K. Costello, D. R. Nemergut, C. C. Cleveland, S. C. Reed, M. N. Weintraub, A. F. Meyer, and A. M. Martin. 2007. Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88:1379–1385.

Schmidt, S. K., S. C. Reed, D. R. Nemergut, A. S. Grandy, C. C. Cleveland, M. N. Weintraub, A. W. Hill, E. K. Costello, A. F. Meyer, J. C. Neff, and A. M. Martin. 2008. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proceedings of the Royal Society of London B: Biological Sciences 275:2793–2802.

Schreeg, L. A., W. J. Kress, D. L. Erickson, and N. G. Swenson. 2010. Phylogenetic analysis of local-scale tree soil associations in a lowland moist tropical forest. PLoS ONE 5:e13685.

Schuster, B., and M. Diekmann. 2003. Changes in species density along the soil pH gradient — evidence from German plant communities. Folia Geobotanica 38:367–379.

Scott-Denton, L. 2003. Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biology and Biochemistry 35:525–534.

Shade, A., and J. A. Gilbert. 2015. Temporal patterns of rarity provide a more complete view of microbial diversity. Trends in Microbiology 23:335–340.

Shade, A., H. Peter, S. D. Allison, D. L. Baho, M. Berga, H. Bürgmann, D. H. Huber, S. Langenheder, J. T. Lennon, J. B. H. Martiny, K. L. Matulich, T. M. Schmidt, and J. Handelsman. 2012. Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology 3.

Shen, C., Y. Ni, W. Liang, J. Wang, and H. Chu. 2015. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Frontiers in Microbiology 6.

Shen, C., J. Xiong, H. Zhang, Y. Feng, X. Lin, X. Li, W. Liang, and H. Chu. 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry 57:204–211.

Shigyo, N., K. Umeki, H. Ohashi, K. Kawada, and T. Hirao. 2017. Phylogenetic constraints to soil properties determine elevational diversity gradients of forest understory vegetation. Plant Ecology 218:821–834.

Shihan, A., S. Hättenschwiler, A. Milcu, F.-X. Joly, M. Santonja, and N. Fromin. 2017. Changes in soil microbial substrate utilization in response to altered litter diversity and precipitation in a Mediterranean shrubland. Biology and Fertility of Soils 53:171–185.

Siggins, A., E. Gunnigle, and F. Abram. 2012. Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiology Ecology 80:265– 280.

Siles, J. A., T. Cajthaml, A. Filipová, S. Minerbi, and R. Margesin. 2017. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biology and Biochemistry 112:1–13.

Siles, J. A., and R. Margesin. 2016. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? Microbial Ecology 72:207–220.

Silvertown, J., M. E. Dodd, D. J. G. Gowing, and J. O. Mountford. 1999. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61– 63.

Singh, D., K. Takahashi, M. Kim, J. Chun, and J. M. Adams. 2012. A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microbial Ecology 63:429–437.

Smith, L. M., and H. L. Reynolds. 2015. Plant–soil feedbacks shift from negative to positive with decreasing light in forest understory species. Ecology 96:2523–2532.

Smith, J. R., A. D. Letten, P.-J. Ke, C. B. Anderson, J. N. Hendershot, M. K. Dhami, G. A. Dlott, T. N. Grainger, M. E. Howard, B. M. L. Morrison, D. Routh, P. A. San Juan, H. A. Mooney, E. A. Mordecai, T. W. Crowther, and G. C. Daily. 2018. A global test of ecoregions. Nature Ecology & Evolution.

Steinbauer, M. J., R. Field, J.-A. Grytnes, P. Trigas, C. Ah-Peng, F. Attorre, H. J. B. Birks, P. A. V. Borges, P. Cardoso, C.-H. Chou, M. De Sanctis, M. M. de Sequeira, M. C. Duarte, R. B. Elias, J. M. Fernández-Palacios, R. Gabriel, R. E. Gereau, R. G. Gillespie, J. Greimler, D. E. V. Harter, T.-J. Huang, S. D. H. Irl, D. Jeanmonod, A. Jentsch, A. S. Jump, C. Kueffer, S. Nogué, R. Otto, J. Price, M. M. Romeiras, D. Strasberg, T. Stuessy, J.-C. Svenning, O. R. Vetaas, and C. Beierkuhnlein. 2016. Topography-driven isolation, speciation and a global increase of endemism with elevation: topographic isolation and endemism. Global Ecology and Biogeography 25:1097–1107.

Strickland, M. S., C. Lauber, N. Fierer, and M. A. Bradford. 2009. Testing the functional significance of microbial community composition. Ecology 90:441–451.

Sundqvist, M. K., N. J. Sanders, and D. A. Wardle. 2013. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics 44:261–280.

Sundqvist, M. K., D. A. Wardle, E. Olofsson, R. Giesler, and M. J. Gundale. 2012. Chemical properties of plant litter in response to elevation: subarctic vegetation challenges phenolic allocation theories. Functional Ecology 26:1090–1099.

Swift, M. J., O. W. Heal, and J. M. Anderson. 1979. Decomposition in Terrestrial Ecosystems. Berkeley: University of California Press.

Takatsuki, S. 2009. Effects of sika deer on vegetation in Japan: A review. Biological Conservation 142:1922–1929.

Tedersoo, L., M. Bahram, S. Põlme, U. Kõljalg, N. S. Yorou, R. Wijesundera, L. V. Ruiz, A. M. Vasco-Palacios, P. Q. Thu, A. Suija, M. E. Smith, C. Sharp, E. Saluveer, A. Saitta, M. Rosas, T. Riit, D. Ratkowsky, K. Pritsch, K. Põldmaa, M. Piepenbring, C. Phosri, M. Peterson, K. Parts, K. Pärtel, E. Otsing, E. Nouhra, A. L. Njouonkou, R. H. Nilsson, L. N. Morgado, J. Mayor, T. W. May, L. Majuakim, D. J. Lodge, S. S. Lee, K.-H. Larsson, P. Kohout, K. Hosaka, I. Hiiesalu, T. W. Henkel, H. Harend, L. Guo, A. Greslebin, G. Grelet, J. Geml, G. Gates, W. Dunstan, C. Dunk, R. Drenkhan, J. Dearnaley, A. D. Kesel, T. Dang, X. Chen, F. Buegger, F. Q. Brearley, G. Bonito, S. Anslan, S. Abell, and K. Abarenkov. 2014. Global diversity and geography of soil fungi. Science 346:1256688.

Tláskal, V., J. Voříšková, and P. Baldrian. 2016. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiology Ecology 92.

Toberman, H., C. Freeman, C. Evans, N. Fenner, and R. R. E. Artz. 2008. Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. FEMS Microbiology Ecology 66:426–436.

Trofymow, J. A., T. R. Moore, B. Titus, C. Prescott, I. Morrison, M. Siltanen, S. Smith, J. Fyles, R. Wein, C. Camiré, L. Duschene, L. Kozak, M. Kranabetter, and S. Visser. 2002. Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Canadian Journal of Forest Research 32:789–804.

Tyler, G. 1997. Soil chemistry and plant distributions in rock habitats of southern Sweden. Nordic Journal of Botany 16:609–635.

Tylianakis, J. M., R. K. Didham, J. Bascompte, and D. A. Wardle. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters 11:1351–1363.

Ulrich, W., M. Piwczyński, M. K. Zaplata, S. Winter, W. Schaaf, and A. Fischer. 2014. Small-scale spatial variability in phylogenetic community structure during early plant succession depends on soil properties. Oecologia 175:985–995.

Urbanová, M., J. Šnajdr, and P. Baldrian. 2015. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry 84:53–64.

van der Heijden, M. G. A., R. D. Bardgett, and N. M. van Straalen. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11:296–310.

van der Putten, W. H., M. A. Bradford, E. P. Brinkman, T. F. J. van de Voorde, and G. F. Veen. 2016. Where, when and how plant–soil feedback matters in a changing world. Functional Ecology 30:1109–1121.

Veen, G. F. (Ciska), M. K. Sundqvist, and D. A. Wardle. 2015. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Functional Ecology 29:981–991.

Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255:571–586.

Vetaas, O. R., and J.-A. Grytnes. 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal: Diversity along the Himalayan elevation gradient. Global Ecology and Biogeography 11:291–301.

Vincenot, C. E., F. Cartenì, G. Bonanomi, S. Mazzoleni, and F. Giannino. 2017. Plant-soil negative feedback explains vegetation dynamics and patterns at multiple scales. Oikos 126:1319–1328.

Vitousek, P. M., P. A. Matson, and D. R. Turner. 1988. Elevational and age gradients in hawaiian montane rainforest: foliar and soil nutrients. Oecologia 77:565–570.

Voříšková, J., V. Brabcová, T. Cajthaml, and P. Baldrian. 2014. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist 201:269–278.

Wachinger, G., S. Fiedler, K. Zepp, A. Gattinger, M. Sommer, and K. Roth. 2000. Variability of soil methane production on the micro-scale: spatial association with hot spots of organic material and Archaeal populations. Soil Biology and Biochemistry 32:1121– 1130.

Wang, G., and D. Or. 2013. Hydration dynamics promote bacterial coexistence on rough surfaces. The ISME Journal 7:395–404.

Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261–5267.

Wardle, D. A. 2002. Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press.

Wardle, D. A. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629–1633.

Wardle, D. A., and D. A. Peltzer. 2003. Interspecific interactions and biomass allocation among grassland plant species. Oikos 100:497–506.

Waterman, P. G., and S. Mole. 1994. Extraction and chemical quantification. Pages 66–103 in Waterman, P. G., and S. Mole. Analysis of phenolic plant metabolites. Blackwell Science, Oxford, UK.

Webb, C. O. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist 156:145–155.

Webb, C. O., D. D. Ackerly, and S. W. Kembel. 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100.

Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475–505.

Webb, C. O., and M. J. Donoghue. 2005. Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes 5:181–183.

Weedon, J. T., W. K. Cornwell, J. H. C. Cornelissen, A. E. Zanne, C. Wirth, and D. A. Coomes. 2009. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters 12:45–56.

Wheeler, K. A., B. F. Hurdman, and J. I. Pitt. 1991. Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. International Journal of Food Microbiology 12:141–149.

Whittaker, R. H. 1960. Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs 30:279–338.

Wiens, J. J., and M. J. Donoghue. 2004. Historical biogeography, ecology and species richness. Trends in Ecology & Evolution 19:639–644.

Wikstrom, N., V. Savolainen, and M. W. Chase. 2001. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society B: Biological Sciences 268:2211–2220.

Wilhelm, R. C., R. Singh, L. D. Eltis, and W. W. Mohn. 2018. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. The ISME Journal.

Yuan, Y., G. Si, J. Wang, T. Luo, and G. Zhang. 2014. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiology Ecology 87:121–132.

Zak, D. R., P. M. Groffman, K. S. Pregitzer, S. Christensen, and J. M. Tiedje. 1990. The vernal dam: plant-microbe competition for nitrogen in northern hardwood forests. Ecology 71:651–656.

Zeevi, D., T. Korem, N. Zmora, D. Israeli, D. Rothschild, A. Weinberger, O. Ben-Yacov, D. Lador, T. Avnit-Sagi, M. Lotan-Pompan, J. Suez, J. A. Mahdi, E. Matot, G. Malka, N. Kosower, M. Rein, G. Zilberman-Schapira, L. Dohnalová, M. Pevsner-Fischer, R. Bikovsky, Z. Halpern, E. Elinav, and E. Segal. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163:1079–1094.

Zhang, D., D. Hui, Y. Luo, and G. Zhou. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology 1:85–93.

Zhou, J., Y. Deng, L. Shen, C. Wen, Q. Yan, D. Ning, Y. Qin, K. Xue, L. Wu, Z. He, J. W. Voordeckers, J. D. V. Nostrand, V. Buzzard, S. T. Michaletz, B. J. Enquist, M. D. Weiser, M. Kaspari, R. Waide, Y. Yang, and J. H. Brown. 2016. Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications 7:12083.

Žifčáková, L., T. Větrovský, V. Lombard, B. Henrissat, A. Howe, and P. Baldrian. 2017. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 5.

Zmora, N., D. Zeevi, T. Korem, E. Segal, and E. Elinav. 2016. Taking it personally: Personalized utilization of the human microbiome in health and disease. Cell Host & Microbe 19:12–20.

Zobel, M. 2016. The species pool concept as a framework for studying patterns of plant diversity. Journal of Vegetation Science 27:8–18.

Zohlen, A., and G. Tyler. 2000. Immobilization of tissue iron on calcareous soil: differences between calcicole and calcifuge plants. Oikos 89:95–106.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る